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60 PERCEPTRON

60.1

In this and the next chapter we discuss two binary classification schemes known
as Perceptron and support vector machines. In contrast to logistic regression,
these methods do not approximate the conditional pdf, fe;(7|h), nor the joint
pdf, fy r(7,h). Instead, both schemes are examples of deterministic methods
that operate directly on data realizations {(n), h,} and learn from the training
data how to discriminate between classes. As the derivations will show, these
methods rely on geometric arguments to construct hyperplanes that separate
the data into classes. The Perceptron algorithm, discussed in this chapter, is
one of the earliest iterative solutions devised for binary classification problems.
Its development led to a flurry of interest in learning methods culminating with
various techniques for cascading elementary units into the form of neural net-
works for more sophisticated solutions. We will motivate Perceptron from first
principles for linearly separable data and comment on its convergence properties
and limitations. In comparison to logistic regression, which continually updates
its weight iterate w, in response to data, the Perceptron algorithm limits its
updates only to data points that are misclassified. This results in a simpler im-
plementation albeit at a cost. For instance, we will find that Perceptron is not
able to complement its classification decision with a confidence level, as was the
case with logistic regression.

LINEAR SEPARABILITY

Assume we are given N independent realizations {y(n), h, }, where v(n) € {£1}
is the binary label corresponding to the n—th feature vector h,, € RM. The
objective is to construct a classifier c(h) : RY — {£1} that maps features
vectors h into their labels. One popular classification structure is the set of
“affine-based” classifiers defined by

c(h) = sign (hTw — 0) (60.1)

where each classifier is parameterized by a vector w € RM and an offset pa-
rameter # € IR. The qualification “affine” or, more simply “linear”, refers to the
relation hTw — @ that appears inside the sign operation. Any point A that lies
on the hyperplane defined by (w, ) satisfies hTw — § = 0. On the other hand,
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points lying on one side of the hyperplane satisfy h'w — 6 > 0 while points
lying on the other side satisfy hTw — 6 < 0 — see Fig. 60.1. The sign operation
therefore allows us to identify where a given h lies in relation to the hyperplane
hTw — 6 = 0. This class of “linear” classifiers is very useful in practice even in
situations when the data cannot be well-separated by “linear” structures. This is
because they will serve as building blocks for more elaborate classifiers. We will
illustrate this situation later in Example 63.1 and also in future Sec. 63.2 when
we discuss kernel methods.

We will say that a given dataset {y(n),hy,} is linearly separable when linear
classifiers of the form (60.1) exist that are able to separate the data into its
two classes with one class lying on one side of the hyperplane and the other class
lying on the other side of the hyperplane. This situation is illustrated in Fig. 60.1
for the case M = 2. In two-dimensional spaces, a hyperplane is simply a line (it
will be a plane in IR® when M = 3). The figure shows two situations depending
on whether the separating line passes through the origin or not. It is clear from
the figure that separating lines are not unique, especially since the slopes of the
lines can be altered in many ways and still succeed in separating the data into
two classes. Once a separating hyperplane is chosen, with parameters denoted
by (w*,0*), then the classifier can be used to assign feature vectors h into one
class or the other by performing the following check:

(60.2)

if hTw* < 6*, assign h to class —1
if hTw* > 6*, assign h to class +1

In the sequel we derive the Perceptron algorithm, which will provide one way to
determine a separating hyperplane (w*, 6*) from the training data {v(n), h,}.

-

\ / a second

a second separating line
separating line . &
class +1 l class +1 :

separating

separating line passes through the origin  separating line does not pass through the origin

Figure 60.1 Illustration of linearly separable data in IR2. The separating line on the
left passes through the origin (i.e., it has a zero offset parameter), while the
separating line on the right does not pass through the origin. The vector w represents
the normal direction to the line.
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PERCEPTRON EMPIRICAL RISK

Assuming the N—data points {vy(n), h,} are linearly separable, our objective is
to construct a hyperplane (w*,6*) that separates the data into its two classes.
We pursue a geometric argument.

Let (w,0) denote the parameters of some generic hyperplane. By definition,
all vectors h € IR that lie on this hyperplane satisfy the equation

h'w—0=0 (60.3)

Moreover, the vector w is called the normal direction to the hyperplane. This is
because if we consider any two vectors (hg, hy) on the hyperplane, i.e.,

hlw—60=0 hlw-60=0 (60.4)
then by subtracting we find that
(ha —hy)Tw =0 (60.5)

so that w is orthogonal to the difference of any two vectors lying in the hyperplane
— recall Fig. 56.6. Accordingly, with every hyperplane defined by the parameters
(w, 8), we associate the unit-norm normal direction:

unit-norm normal direction = w/||wl|| (60.6)

We wish to determine parameters (w, ) such that any data pair (y(n), hy,) in
the training set will be correctly classified by this hyperplane, namely, such that

hlw—60>0, when y(n) = +1
(60.7)

hlw—60 <0, when y(n) = -1

In the first case, h,, will lie on one side of the hyperplane, while in the second
case it will lie on the other side. We can combine these two conditions into a
single relation by writing that the choice for (w, ) should enforce the following
condition for all training data points, n =0,1,..., N — 1:

)

v(n) (hhw —6) >0, (correct classification) (60.8)

Geometric construction
Pick an arbitrary vector h, that belongs to the hyperplane (w, ), i.e.,

hlw—-6=0 (60.9)

The distance from any training feature h,, to the hyperplane w can be determined
by projecting the vector difference (h,, —h,) onto the unit-norm direction w/||w||
and retaining the absolute value of this projection — see Fig. 60.2:
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Figure 60.2 Distance from h,, to the separating hyperplane can be obtained by
computing, for any he, the inner product of the difference (h, — hq) and the
unit-norm vector, w/||w]|.

distance from h,, to hyperplane = |(h, — ha)THIwU—”

1
T hlw>]
Tl

(60-9) (hTw - 9)1”‘
w

n

—

a 1

= |y(n)(h)w — 0)‘ (60.10)
]l

where we added y(n) in step (a) because |y(n)| = 1. We know from (60.8) that if

(v(n), hy,) is misclassified by (w,6), then v(n) (hfw — 6) < 0. When this occurs,

the distance expression becomes:

=

distance from a misclassified point h,, to (w, )

= —y(n) (hyw —0) .

T (60.11)

If we add the distances of all misclassified points to the hyperplane (their index
set is denoted by M) we get:

i (S 02 -0) (€012

neM

The scaling by 1/||w]| is irrelevant since we can always re-normalize the sepa-
rating hyperplane (w,#) by scaling its w to have unit norm and by scaling 6
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similarly, i.e., we can always replace any (w,0) in (60.3) by (w/|lw]||,8/||w||). As
such, we will remove the scaling by 1/|lw|| from (60.12) and consider instead the
sum:

S=—Y ) (hw-0) (60.13)
neM
In order to reduce classification errors on the N —training data points, we would
like to keep this sum small. We can rewrite the above expression in an equivalent
manner that incorporates all training points as follows:

N-1
8 = Z max{O7 —(n) (hlw - 9)} (60.14)
n=0
where, by comparing against zero, we are in effect only keeping the contributions
arising from the misclassified points (y(n), hy,). If we scale by 1/N we arrive at
the empirical risk function that is associated with the Perceptron construction,
namely,

N-1
(w*, 6%) = argmin {P(w) = %Zmax{o, —W(n)(hlw—ﬂ)}}
n=0

welRM HcIR
(60.15)

Clearly, when the data is linearly separable, a hyperplane (w*,60*) exists that
separates the data correctly and reduces the sum of misclassified distances in
(60.13) to zero. If we invoke ergodicity, we find that P(w) motivates the following
stochastic risk function:

% NZI maX{O» —y(n)(hjw — 9)} N2 B max {0, —y(hTw — g)}
. (60.16)

so that the Perceptron construction can also be interpreted as solving the fol-
lowing Bayesian inference problem:

w’ = argmin (E max{O, —y(hTw — 9)} (60.17)
weRM fclR

where the expectation is over the joint distribution of (v, h).

Online recursion

Problem (60.15) can now be solved by a variety of stochastic optimization meth-
ods, already discussed in previous chapters, such as using stochastic subgradient
algorithms and variations thereof. It is sufficient to illustrate the construction by
considering one solution method. We will therefore focus on stochastic subgradi-
ent implementations, with and without regularization, that rely on instantaneous
subgradient approximations. The sampling of the data in the stochastic imple-
mentation can also be done with or without replacement.
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In practice, the optimization problem (60.15) is modified to incorporate reg-
ularization for the reasons already explained in Chapter 51, such as reducing
ill-conditioning, reducing the possibility of overfitting, and endowing w* with
desirable properties such as having a small norm or sparse structure. For illus-
tration, we will consider Perceptron risks under ¢;—regularization and replace
(60.15) by

N-—1
x gx\y A . 2 i _ T, _
(w*,6%) 2  argmin {mwn + & > max{0, —y(n) (hw e)}}

welRM HcR n=0

(60.18)

where p is a nonnegative scalar. Using the result of Example 16.9, we show in
(60.19) a listing for a regularized Perceptron algorithm for solving (60.18). The
notation I[x] refers to the indicator function that is equal to one when condition
x is true and zero otherwise.

Regularized Perceptron for minimizing (60.18)

given dataset {y(m), hy, }N 0 or streaming data (y(n), hy,);
start from an arbitrary initial condition, w_;.
repeat until convergence over n > 0 :
select at random or receive a sample (y(n), h,,) at iteration n; (60.19)
F(n) = hlw,_, —0(n — 1)
8(n) = 6(n — 1) — py() L [y(n)F () < 0]
wn = (1~ 2p)wnr + pey(n)hn T [ (m)3(n) < 0]
end
return w* < wy,, ;0% < 0(n);
classify a feature h by using the sign of ¥ = hTw* — 6*.

We can simplify the notation by extending the feature and weight vectors as
follows:
1 —0
he H we [_] (6020
h w

so that the recursions in (60.19) can be rewritten more compactly in the following
manner where the offset parameter is now implicit:

2 T
¥(n) =h,wn_
) ' _ (60.21)
wy = Aw,y + (py() Iy ()F(0) < 0] ) hn, 120
and the diagonal matrix A depends on the regularization parameter:
a |1
A= 60.22
[ (1= 2pp)In } (60.22)
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When a mini-batch of size B is used, the Perceptron recursion is replaced by

select B data samples {v(b), hy} at random
y(b) = hjw,_1, b=0,1,...,B—1

B—1 (60.23)
wy = Aw, 1+ Y (1Y) TYBFE) < 0]y, 0> 0
b=0

On the other hand, in the absence of regularization (p = 0), we obtain the
classical Perceptron update:

Wy, = Wp_1 + py(m)hy, I[v(n)y(n) <0], n>0 (60.24)

which can be rewritten in the equivalent form

wy, = Wu—1 + py(n)h,, if y(n)y(n) <0 (60.25)

That is, the weight iterate is updated from w,,_; to w,, only when the data point
(v(n), hy,) is misclassified, i.e., when the signs of y(n) and 4(n) do not match, in
which case the vectors v(n)h,, and w,,_; will have a non-positive inner product.
This situation is illustrated in Fig. 60.3. We therefore find that the Perceptron
iteration (60.25) perturbs w,_; to w, in order to obtain a vector w,, that is
more correlated with y(n)h,,.

/ result of the Perceptron update \

ey (n)hy,

the inner product between

\\ these two vectors is non-positive /

Figure 60.3 Iteration (60.25) updates w,—1 to wy in order to obtain a vector w, that
is more correlated with ~(n)h..

It is useful to note that the inequality condition (n)~(n) < 0 in (60.25) cannot
be replaced by the strict inequality (n)y(n) < 0. This is because if we start
from the initial condition w_; = 0, as is typical in Perceptron implementations,
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then 4(0) = hOTw,l = 0 and the recursion will never update the weight iterate.
Moreover, in most implementations of the Perceptron algorithm, the step-size
parameter is set to 4 = 1, which leads to — see the explanation after (63.31)
and also Prob. 60.1:

Wy =Wp-1 + Y(N)hy, if ¥(n)¥(n) <0 (60.26)

Example 60.1 (Binary classification using Perceptron) Figure 60.4 shows a collection

of 150 feature samples h,, € IR? whose classes +1 are known beforehand: 120 samples
are selected for training and 30 samples are selected for testing. The data arises from the
dimensionally reduced iris dataset from Example 57.3; we denoted the two-dimensional
reduced feature vectors by the notation h,, in that example. We denote them by h,
here. We employ the two classes shown in the bottom plot of Fig. 57.5 and denote them
by v(n) € {£1}. We extend the feature data and weight vector according to (60.20).

. training samples (120) . test samples (30); error = 0%
"% o
1f ) 1r °®
2 %R ° f
w o @ «» of class-1 @ Y S
51 g TR oo
>t (] >4l "4 °
class -1 ®
ol Y ..O ol class +1
class +l. ®
203 2 1 o0 1 2 3 B0 3 2 1 o0 1 2 3
X-axis X-axis

Figure 60.4 The plots show 120 data points used for training (left) and 30 data points
used for testing (right). The separating line is obtained by running the Perceptron
algorithm (60.27a)—(60.27b) five times over the training data.

We use 120 samples to train the Perceptron classifier by running 5 passes over the data:

J(n) = hpwn 1 (60.27a)
Wn = Wn—1 +y(N)hn, if v(n)7(n) <0 (60.27b)

During each pass of the algorithm, the data {7(n), h,} is randomly reshuffled and the
algorithm is re-run starting from the weight iterate obtained at the end of the previous
pass. The line in the figure shows the separating curve obtained in this manner with
parameters (after undoing the extension (60.20)):

. [ 23494 .

w* = [ —0.4372 ] , 07=20 (60.28)
It is seen that the separation curve is able to classify all test vectors and leads to a 0%
empirical error rate.
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TERMINATION IN FINITE STEPS

One useful property of the Perceptron algorithm (60.25) is that it terminates in
a finite number of steps for linearly separable data {(n), h,,}. To see this, recall
first that linear separability means that there exists at least one vector w* that
is able to separate the data into two classes and satisfy

Jw* such that y(n)h w* >0, forn=0,1,...,N —1 (60.29)

where we are assuming that the feature data and the weight vector have been
extended according to (60.20). When this happens, there will exist at least one
point h in the training data that will be closest to the hyperplane w*. The
distance from this closest point to the hyperplane is called the margin. This
situation is illustrated in Fig. 60.5. Using expression (60.10) with w = w* and
setting # = 0 (since h,, and w* are assumed to have been extended), we find that
the margin can be found by computing:

hT * ] hT *
m(w*) 2 min y(hyw 929 in [y 7] (60.30)
0<n<N-1 [lw~|| 0<n<N-1 | |Jw*]|

Observe that the margin is dependent on the choice of w*. The next result shows
that the performance of the Perceptron algorithm is sensitive to the margin.
Specifically,the number of mis-classifications encountered by the algorithm is
inversely proportional to m?(w*) so that larger margins are preferable. Although
the result guarantees convergence in a finite number of steps, the number of steps
required can still be large because the margin can be small.

LEMMA 60.1. (Finite number of errors) Assume the N-—size dataset
{v(m), hyn } is linearly separable, i.e., there exists at least one vector w* satisfying
(60.29) and denote its margin by m(w*). Assume further that the feature vec-
tors are bounded, say, ||hy| < H for all n. The Perceptron algorithm (60.25) is
applied continuously over the data, including possibly multiple passes, as needed.
At any iteration t, the total number of erroneous misclassifications encountered
by the algorithm until that point in time is bounded by
H2

m?2(w*)

Since the Perceptron algorithm updates only when misclassifications occur, it
follows from this result that the algorithm will only perform a finite number of
updates.

M| < (60.31)

Proof: We refer to (60.25) and assume, without loss of generality, that the algorithm
starts from the initial condition w_; = 0; if w_; is nonzero, then we should incorpo-
rate its value into the derivation below. Let M; denote the collection of all iteration
indexes for which the algorithm encounters a misclassification (i.e., when it performs
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Figure 60.5 The closest feature vector to the separating hyperplane w* is highlighted
inside a circle with its distance to w* representing the margin, m(w™*).

an update). Iterating (60.25), we find that at any iteration ¢:
we = [ ( Z ’y(n)hn> (60.32)
neMy¢
where the sum is over the set of misclassified data up to time ¢, i.e., points for which
y(n)hpw,—1 <0, for n e M; (60.33)

and (y(n), hn) is the sample pair selected at the n—th iteration. Computing the inner
product of w; with w* we get

wiwt = p < Z 'y(n)hlw*>

neMy
(60.29) N
(3 )
neMy¢
(60.30) . .
> pm(w”) [[w]] [Me] (60.34)

in terms of the cardinality of the set M;. It follows that
lwell® lw*|* > Jwi w*[* > p?m® (w*) Jw*||* (M| (60.35)

where we applied the Cauchy-Schwarz inequality for the inner product of two vectors,
which states that |a"b| < ||a| ||b]|. We then arrive at the lower bound:

lwel|? > pPm®(w*) (M, (60.36)
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We can similarly derive an upper bound for |Jw;||? as follows. We return to the Percep-
tron recursion (60.25) and note that, for any step ¢ where an update occurs:

lwell? = llwer + py(E)hel?
— el + 2RO + 209 kw0
< wealP + p2POllhdl® (because of (60.33))
— ol + @2 IRl? (since v2() = 1) (60.37)

Iterating starting from w_1, we find that

lwel|* < p? ( > ||hn||2> (60.38)

neM;
and we arrive at the upper bound
wel> < p?H? (M| (60.39)
Combining this result with (60.36) we conclude that
o () MG < el < p2H M (60.40)

These bounds are valid as long as the lower bound is smaller than the upper bound,
i.e.,

wPm?(w*) (Me|? < pPH? M| (60.41)

which is only satisfied if the number of updates (and, hence, the number of erroneous
decisions) is bounded according to (60.31). This result holds irrespective of the value of
t and is also independent of the feature dimension, M. The bound in (60.31) confirms
termination of the Perceptron algorithm after a finite number of iterations for linearly
separable data.

POCKET PERCEPTRON

When the training data {y(m), hy} is not linearly separable, the Perceptron
iteration (60.25) will not terminate and the weight vector will continue to update
and possibly move from a “good” to a “bad” solution, i.e., from a hyperplane that
separates well a large fraction of the data to another hyperplane that performs
poorly on the same data. One variation that improves the behavior of Perceptron
under these circumstances is to introduce a pocket variable to keep track of the
best iterate. At the conclusion of the training phase, the pocket variable provides
the desired weight estimate. Pocket Perceptron operates as follows.

Let w, € RM denote the weight iterate that is saved in the “pocket”. We
set its value initially to some random vector (e.g., the zero vector) and evaluate
its empirical error rate over the N training data points, {v(m), h,,} (i-e., we
compute the fraction of incorrect classifications by w,). We denote this value by

1 N—-1
£ 5 2 Tvm)hw, < 0] (60.42)

m=0

Ry
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At any subsequent iteration of index n, the Perceptron recursion (60.26) updates
Wp_1 to a new value w, only when w,_1 misclassifies h,. Each time an update
occurs, from w,_1 to w,, we compute the empirical error rate of the new iterate
over the entire training dataset:

1

R(w,) 2 5 2 Tm)hw, < 0] (60.43)

N—1
m—
and compare it against R, in order to decide whether to replace the pocket
variable by the new value, wy,:

if R(w,) < R, then w, < w, and R, < R(wy,) (60.44)

At the end of the training phase, the hyperplane that is selected as the final
classifier is the one that has been saved in the pocket, i.e., w,. One inconvenience
of this implementation is that it assumes, at every iteration, that the algorithm
has access to the entire training data to assess the empirical error rates, R(ws,).

Pocket Perceptron algorithm for binary classification

given dataset {y(m), hp, ,]X;(l);

assume vectors are extended according to (60.20);

start from initial conditions, w_; = w, = 0y, Ry = 1.

repeat until convergence over n > 0 :

select at random (7y(n), h,) at iteration n;

5(n) = hlw,

if (n)7(n) <0

+ v(n)hn (60.45)
N-1

end
return w* +— w,

Example 60.2 (Binary classification using pocket Perceptron) Figure 60.6 illustrates
the behavior of the pocket algorithm on training samples that are not linearly sepa-
rable. The data arises from the dimensionally-reduced iris dataset from Example 57.3;
we denoted the two-dimensional reduced feature vectors by the notation h,, in that
example. We denote them by h, here. We consider the situation involving three classes
shown in the top plot of Fig. 57.5, and extract the data corresponding to classes r = 1
(versicolor) and r = 2 (virginica) — see, for example, the bottom rightmost plot in
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Fig. 59.9. We denote these two classes by vy(n) € {£1}. There are a total of 100 data
samples; we select 80 samples for training and 20 samples for testing.

We use the 80 samples to train the traditional Perceptron classifier (60.26) and the
pocket Perceptron classifier (60.45), both under extensions (60.20). In each case, we
run 5 passes of the algorithm over the training data using random reshuffling. The lines
in Fig. 60.6 show the separating curves obtained in this manner with parameters

w* = [ _éigg; ] , 0" =-5.0, (traditional Perceptron) (60.46)

w' = [ _i’gggg ] , 0"=-5.0, (pocket Perceptron) (60.47)

The resulting empirical error rates on the test data are 20% for Perceptron (4 misclas-
sifications in 20 test samples) and 10% for Pocket Perceptron (2 misclassifications in
20 test samples). The empirical error rates over the training data are 16.25% and 10%,
respectively.

training samples (Perceptron) . test samples (Perceptron)

20 B2
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-3
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-3 2 -1 0 1 - 1
X-axis X-axis
t3raining samples (pocket Perceptron) . test samples (pocket Perceptron)
(]
oL
class -1 [ ) , ®
1 o ® I class -1 ([ ]
[ o®
20 o Of @
@ ‘ 3
1.4/@ ‘ e St r‘ ‘
PY class +1
2 2r class +1
[}
3 3
-4 . . ! -4 . . !
-3 -2 -1 0 1 -3 -2 -1 0 1
X-axis X-axis

Figure 60.6 The plots show 80 training samples and 20 test samples (top row), and
the resulting separation lines by means of the Perceptron classifier (60.26) and the
pocket Perceptron classifier (60.45).

Example 60.3 (Application to the heart disease data) We reconsider the dimensionally-
reduced heart disease dataset from Example 57.4. In particular, we consider the data
samples shown in the bottom scatter plot of Fig. 57.6 where the feature vectors have
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been reduced to dimension 3. We denote these features vectors by the notation {h,} in
this example (as opposed to {h},} used in Example 57.4); we also denote their dimen-
sion by M = 3. The data in that figure have been aggregated into two classes: presence
of heart disease (which we now assign the label +1) and absence of heart disease (which
we now assign the label —1).

training samples (Perceptron) test samples (Perceptron)

Z-axis
z-axis

0
.2 o
X-axis 4 4 X-axis -4 4

training samples (pocket Perceptron) test samples (pocket Perceptron)

Z-axis

b Ao 4o ow
Z-axis

I R e L )

L2
X-axis -4 4

Figure 60.7 The plots show 238 training samples and 59 test samples in
three-dimensional space (top row), and the resulting separation curves by means of
the Perceptron classifier (60.26) and the pocket Perceptron classifier (60.45).

There are a total of 297 data samples; we select 238 samples for training and 59 samples
for testing (that amounts to 20% of the total number of samples). We use the data to
train the traditional Perceptron classifier (60.26) and the pocket Perceptron classifier
(60.45), both under extensions (60.20). In each case, we run 50 passes of the algorithms
over the training data using random reshuflling. The results are shown in Fig. 60.7.
The hyperplanes in the figure show the separating curves obtained in this manner with
parameters

5.2289
w = | 26399 |, 6 =-1.0, (traditional Perceptron) (60.48)
1.0637
and
3.8486
w"=| 0.1409 |, 6*=-1.0, (pocket Perceptron) (60.49)

2.5030
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The resulting empirical error rates on the test data are 33.90% for Perceptron (20
misclassifications in 59 test samples) and 22.03% for Pocket Perceptron (13 misclassifi-
cations in 59 test samples). The empirical error rates over the training data are 20.59%
and 13.45%, respectively.

Table 60.1 Empirical error rates over test and training data for both cases of 13— and
3—dimensional feature vectors.

training | testing
algorithm | M | N Nirain | Niest | error error

Perceptron | 13 | 297 | 238 59 17.23% | 27.12%
pocket Perceptron | 13 | 297 | 238 59 11.34% 17.23%
Perceptron 3| 297 | 238 59 20.59% | 33.90%
pocket Perceptron 3| 297 | 238 59 13.45% 22.03%

We repeat the same procedure and apply Perceptron and pocket Perceptron to the
heart disease dataset without reducing the dimension of the feature space. Recall that
originally each feature consists of M = 13 attributes. We center the feature vectors
around their mean and scale their variance to one, as was described earlier in the
preprocessing steps for PCA in (57.6). We subsequently apply Perceptron and pocket
Perceptron to 238 training samples from this set and test the performance on 59 other
samples. We also test the performance on the training samples. Table 60.1 summarizes
the empirical error rates obtained for both the reduced and full feature vectors. The
symbols Nirain and Niesy refer to the number of samples used for training and testing.

COMMENTARIES AND DISCUSSION

The Perceptron. The word “Perceptron” appears to be a shorthand for the combina-
tion “perception automaton” and is nowadays commonly used to refer to the Percep-
tron structure (60.25). This algorithm corresponds to a linear classification rule that
is guaranteed to converge in a finite number of iterations for linearly separable data,
as explained in Sec. 60.3. The first works establishing bounds similar to (60.31) are
by Block (1961,1962) and Novikoff (1962). More discussion on linear separability is
included in Appendices 60.A and 60.B. The Perceptron rule was introduced and imple-
mented into a hardware unit in 1957 by the American psychologist Frank Rosenblatt
(1928-1971). Rosenblatt (1957,1958) was interested in pattern classification problems
while working at the Cornell Aeronautical Laboratory. He was motivated by the work
performed about a decade earlier in 1949 by the Canadian neuroscientist Donald
Hebb (1904-1985) on a model for the neural activity in the human brain. For addi-
tional information on the Perceptron and its history, the reader may refer to Rosenblatt
(1962), Minsky and Papert (1969), Duda and Hart (1973), Widrow and Lehr (1990),
Peretto (1992), Haykin (1999), Siu, Roychowdhury, and Kailath (1995), and Theodor-
idis (2015).

Hebbian model. In his influential text, Hebb (1949) postulated on how neurons in
the brain adjust their connection strength. He argued that when a neural cell A is
repeatedly involved in firing another neural cell B, then the strength of the synaptic
weight linking A to B should increase so that the role of A in firing B is enhanced.
This postulate motivated the following algorithmic construction — see the diagram on
the left-hand side of Fig. 60.8.
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Figure 60.8 A diagram representation of the Hebbian neural model (left) and
McCulloch-Pitts neural model (right) with binary input signals and a binary output.

Assume there are several neurons connected to B. We assign one scaling weight to
the link between B and each of these neurons. This results in a linear combination
output at B of the form y(n) = hlw. Here, the vector w contains the synaptic weights
and the vector h,, € IRM contains the incoming signals at each of the feeding neurons
into B. The variable «(n) denotes the output signal by neuron B at instant n. The
Hebbian learning rule for adjusting the synaptic weights takes the following form:

:‘;(n) = h-rr/wn—l
{ W = Wn 1 + pA (1) P (60.50)

with a plus sign in the second equation! In this expression, each entry of w,_; is
adjusted in proportion to the corresponding entry in h,. Observe that the Hebbian
rule (60.50) is an unsupervised learning rule; it only relies on knowledge of the feature
data, {hy}. It is instructive to compare this form with the Perceptron update (60.25),
namely,

Wy = wn—1 + py(n)hy,, if y(n)y(n) <0 (60.51)

The Perceptron update is a supervised rule; its structure is similar to the Hebbian rule
except that 4(n) is replaced by the true class variable, 4(n), and the update is only
performed when misclassifications occur. The fact that the Hebbian rule relies on 4(n)
makes it an unstable algorithm since its weights grow unbounded. The Hebbian rule
was motivated heuristically by Hebb (1949), using intuition from biological data. The
history of this rule serves as a good example of how closer bridges between the biological
and mathematical sciences can help avoid unreasonable models. The instability pitfall
in the Hebbian update can be seen from several perspectives. First, note that we can
rewrite the Hebbian rule (60.50) in the equivalent form:

wy, = (IM + uhnhl) - (60.52)

This is a first-order recursion. Assuming independent and identically-distributed feature
vectors {hn} and letting R, = Eh,h} > 0, it follows under expectation that

Ew, = (IM + /J,Rh)E’wnfl (60.53)

This is an unstable recursion since the spectral radius of Iy + Ry, is larger than one.
A second way to explain the instability problem is to observe that the Hebbian rule
(60.50) can be interpreted as a stochastic-gradient iteration for mazimizing (rather than
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minimizing) the variance P(w) = E (h"w)?, which is convex over w. Yet another way
to highlight the instability problem is to note that the maximization of P(w) amounts
to determining a vector w that solves (assuming h has zero mean):

w’ £ argmax {wTRhw} (60.54)
welRM

This is an ill-posed problem since we know from the Rayleigh-Ritz characterization
(1.16) for the largest eigenvalue of Rj that

w' Rpw < Amax(Rn)||w]? (60.55)

and that equality is achieved when w is an eigenvector for Ry corresponding to Amax-.
However, there are infinitely many such eigenvectors since any eigenvector can be scaled
up or down and it continues to be an eigenvector. Therefore, without any constraint on
the norm of w, the bound on the right-hand side of (60.55) can be made arbitrarily large.

Oja rule. It took over three decades until a viable stable variant to the Hebbian rule
was proposed by Oja (1982,1983). The resulting recursion is nowadays known as Oja
rule and it takes the following form:

Wp = Wn-1+ Nﬁ(n)(h" - ’V(H)wn—l) (60'56)

For comparison purposes with the Hebbian rule (60.52), we can rewrite (60.56) in the
equivalent form:

wn = (I + phohl)wn—1 — p(F(n)? wn_y (60.57)

which shows that we now have an additional decay term that is proportional to the
square 3°(n). (J(n))?. For a fixed ¥, the update (60.56) can be “motivated” as a
stochastic-gradient iteration for minimizing P(w) = E|h — FJwl||?>, which is convex
over w. This is not how Oja (1982) motivated the rule. However, by considering this
risk function, the rule can be explained as follows. As n — 0o, we expect the product
Fw to approach h in order to minimize the mean-square-error:

ho 2 FMwns = wiihy X F0)[waar|* = Jwa|® =1 (60.58)
\—Y—/
=Y(n)

In this way, the norm of the weight vector will approach the value one (and remain
bounded). Actually, it can be verified that Oja rule seeks a solution to (60.54) subject
to the constraint ||w||> = 1 — see Prob. 60.10 and also Oja (1992). In this way, Oja
rule converges towards an estimate for the unit-norm eigenvector of Ry corresponding
to its largest eigenvalue. As a result, there is a strong connection between Oja rule and
the principal component analysis (PCA) method studied in Chapter 57. In particular,
Oja rule is in effect approximating the first column of U in (57.20) by solving a problem
similar to (57.19) — recall Prob. 57.5.

McCulloch-Pitts model. Hebb’s (1949) rule was a generalization of an earlier model
for neural activity introduced by McCulloch and Pitts (1943) in a famous article. As
indicated in the diagram on the right-hand side of Fig. 60.8, they considered a simpler
neural model consisting of two neurons feeding into a threshold unit. They limited
the input signals to binary values 0 and 1. If the threshold value is set to 1, then the
input-output mapping of this neural model emulates the behavior of the OR logical
function as illustrated in Table 60.2. If, on the other hand, the threshold value is set to
2, then the input-output mapping emulates the behavior of the AND logical function.
The McCulloch-Pitts model is limited in its capability since it restricts the input signals
to binary values and does not associate weights with the links. Hebb’s (1949) model,
as well as the subsequent work by Rosenblatt (1957,1958) on the Perceptron, allowed
for extensions in both of these domains as well as for the critical insight of adjusting
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the weights over time.

Table 60.2 Input-output mapping of the McCulloch-Pitts neural model with binary
input signals and a threshold value set at 1.

neuron #1 | neuron #2 | output
0 0 0

0 1 1
1 0 1
1 1 1

Pocket Perceptron. We indicated in Sec. 60.3 that the Perceptron recursion terminates
in a finite number of steps for linearly separable data — see, e.g., Block (1961,1962)
and Novikoff (1962). When the data is not linearly separable, the Perceptron recursion
will not terminate and the algorithm may move from a good solution to a bad one as it
updates. The pocket Perceptron algorithm improves performance under these circum-
stances; it was proposed by Gallant (1986,1990).

Separation theorem. There are important results in geometry due to Minkowski (1911)
that ensure the existence of hyperplanes that separate disjoint convex sets in IR™ . These
results are relevant to the concept of linear separability. Consider first a nonempty con-
vex set € C IRM and an arbitrary point z, ¢ C. The so-called supporting hyperplane
theorem affirms the existence of a hyperplane passing through z, with the set € belong-
ing to one of its halfspaces, i.e., there exists w € IR™ and 6 € IR such that

zow—0=0, and sup{cTw — 9} <0 (60.59)
cel

This is also equivalent to stating that there exists a vector w such that

supc'w < zow (60.60)
cel

In the case when C is closed and z, is a point on its boundary, then the hyperplane
would correspond to the tangent at z, — see the illustration in Fig. 60.9.

Next consider two disjoint nonempty convex sets X and Y in IR™ . Then, the separat-
ing hyperplane theorem states that there exists a vector w € IR and a scalar 6 such
that:

Tw—-60<0, YreX (60.61a)
Tw—0>0, Vyey (60.61b)

This is also equivalent to stating that there exists a vector w such that

supz'w < inf y'w (60.62)
zeX yeyY

The inequalities in the above expressions cannot be made strict. Figure 60.10 illustrates
a situation where two disjoint convex sets cannot be strictly separated. However, when
at least one of the sets happens to be closed and bounded (also called compact), then
there exist (w,#) such that

t'w—0>0 VreX (60.63a)
Tw—60<0, Yyey (60.63b)
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Figure 60.9 A supporting hyperplane on the left where the convex set appears on one
side of it, and a separating hyperplane on the right where the convex sets are
separated by it.

Proof of (60.62). Assuming the validity of the supporting hyperplane theorem, we can
establish the separating hyperplane theorem as follows. Introduce the set D = X — Y
where d € D if, and only if, d = z — y for some x € X and y € Y. The origin z = 0 does
not belong to D because otherwise it will require x = y and we know that the sets X
and Y do not share elements. We conclude from (60.60) that a vector w € IR™ should
exist such that

sup d'w <0
deD

which means that z'w < y"w for any (z,y) € X x Y. It follows that (60.62) holds.
|

For further discussion and proofs, the reader is referred to Pettis (1956), Luenberger
(1969), and Boyd and Vandenberghe (2004).

PROBLEMS

60.1 Refer to the Perceptron recursion (60.25). Is the performance of the algorithm
affected if we set p = 17

60.2 Can the Perceptron algorithm learn to implement the AND function? And what
about the XOR function? We define these functions over four feature vectors in IR? as
follows:

h=[-1,-1]" € class -1 h=[-1,-1]" € class -1
h=[-1,+1]" € class -1 h=[-1, +1]T € class +1
AND = h=[+1,-1]" € class -1 XOR = h = [+1,-1]" € class +1
h=[+1,+1]" € class +1 = [+1,+1]" € class -1

60.3 Show that the Perceptron algorithm can learn to implement a NAND function?
Consider then the other logical operations represented by NOT, AND, OR, NOR, XOR
(exclusive OR), and XNOR (exclusive NOR). Show how each of these logical operations
can be implemented by using solely NAND gates.
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Figure 60.10 An example of two disjoint convex sets that cannot be strictly separated.

60.4 Consider a collection of N—linearly separable data pairs {y(n), h, }. Assume the
offset parameter is zero. Show that linear separability is equivalent to the existence of
a vector w € IRM that satisfies Hw > 1y, where H is the N x M data matrix whose
rows are y(n)h,, and > denotes elementwise comparisons.

60.5 Consider two collections of vectors in IR™ denoted by 3 = {hi,h2,...,hn}
and X = {z1,x2,...,2r}. We say that these sets are linearly separable if there exist
w* € R™ and 6* € IR such that hjw* > 6* for all vectors in set 3 and zjw* < 6*
for all vectors in set X. Show more strongly that the two sets H and X are linearly
separable if, and only if, there exist z* € R™ and o* € IR such that hlz* —a* > 1 for
all vectors in K and z!2z* — a* < —1 for all vectors in X.

60.6 Continuing with Prob. 60.5, we show that checking linear separability of two sets
can be reduced to solving a linear program. Show that two sets H and X are linearly
separable if, and only if, the optimal value for the following linear program is zero:

min iIL-IJ:]a—l— l]Lzb, where z € IRM,a €eR, ac ]RN, beR"
{z,a,a,b} N L
a(n)>—-hlz+a+1, n=1,2,...,N
: b(l) > wziz—a+1, £ =1,2,...,L
subject to an) >0, n=1,2,... N
b(¢) >0, £ =1,2,...,L
Show further that if {z*,a*,a*,b*} is an optimal solution, then g(f) = f'z* — a* is

a separating hyperplane for the two sets, where f denotes a generic feature vector.
Remark. The reader may refer to Smith (1968) and Bennett and Mangasarian (1992)
for a related discussion.

60.7 Consider a collection of N linearly separable data pairs {y(n), hn} where y(n) €
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{—1,+1} denotes the label and h, € IRM is the corresponding feature vector. We as-
sume feature vectors have already been extended according to (60.20). We wish to
determine a separating hyperplane w such that v(n)hlw > 0. We motivated the Per-
ceptron recursion in the body of the chapter as one solution method. Here, we motivate
a second relaxzation method based on using the alternating projection algorithm from
Sec. 12.6. Introduce the N halfspaces H, = {w| — y(n)hiw < 0}, one for each data
pair (y(n), hy). We are then faced with the problem of solving N linear inequalities and
finding a point w* in the intersection of these halfspaces. Use the result of Prob. 9.5 to
show that the alternating projecting method motivates the following recursion:

y(n)hn
[l I?

Wy = Wn—1 + max{O, —’y(n)hlwn_l}

How is this method different from the unregularized Perceptron recursion? Remark. The
above recursion is known as a relaxation method for solving a set of linear inequalities;
it was introduced by Agmon (1954) and Motzkin and Schoenberg (1954) in back-to-
back papers in the same journal issue — see also Eremin (1965). A footnote on the first
page of Agmon (1954) acknowledges that the idea of the algorithm was communicated
to the author by the first author of Motzkin and Schoenberg (1954).

60.8 Consider a collection of N data points {y(n), h,} and refer to the Perceptron
recursion (60.25). Let wi denote the separating hyperplane that is obtained by running
the recursion over this data. Now assume we replace each vy(n) by —v(n); that is, we
switch the labeling of the classes: class +1 becomes -1 and vice-versa. We run Perceptron
again on this modified data and obtain w3. How are w] and w3 related to each other?
Is Perceptron sensitive to how we label the classes?

60.9 Refer to the Perceptron recursion (60.25). Introduce the variable d(n) defined
as follows: d(n) = +1 if y(n) = +1 and d(n) = 0 if y(n) = —1. Introduce also the
hard-threshold function:

Show that recursion (60.25) can be re-worked into the following form:

e(n) = d(n) — g(hpwn-1)

Wn = Wn—1 + phne(n)

60.10 Refer to Oja rule (60.56). Explain that this rule is maximizing E (h,,w)? subject
to ||lw||* = 1.

60.11 Let ~ denote a generic binary random variable that assumes the values +£1,
and let h denote an M x 1 random (feature) vector. Consider the following regularized
exponential risk function:

A — Tw
P(w) 2 pllwl® + E {7}

where p > 0 is a regularization parameter. Derive a stochastic-gradient algorithm for
the minimization of P(w). How does the algorithm compare to Perceptron learning?
60.12 Establish the equality to 2V in (60.77).

60.13 Conclude from (60.65) that when N = 2(M + 1), then the number of linearly
separable dichotomies of the feature vectors {h, € IRM} is given by §(M, N) = 22M+1,
In other words, show that in this case only half of the 2V possible dichotomies are
linearly separable.

60.14 Assume the number of feature vectors is fixed at N while their dimension is
allowed to increase from m = 1 up to m = M — 1. Conclude from (60.65) that the
number of linearly separable dichotomies, §(m, N), increases monotonically with m
from the value 8(1, N) = 2N up to the value §(M — 1, N) = 2V,

60.15 Refer to result (60.65).
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(a)  Useit to bound the number of linearly separable Boolean functions in M —dimensions

as follows:
o M oM _ 4
8(M,2 < 2
UESEE) o] (i

Is this bound consistent with future Sauer lemma (64.86)7
(b) Use an argument similar to (64.102) to establish that for any M > L:

(M) <()

(¢) Combine the results of parts (a) and (b) to establish (60.85).
60.16 Refer to the probability expression (60.78), which evaluates the likelihood that

a randomly selected dichotomy of N feature vectors in IR is linearly separable.

(a) Plot P(M, N) against the ratio N/(M + 1).

(b)  What are the values of P(M, N) when N = 2(M + 1) and N < M + 1.
(c) Establish the limits (60.79)—(60.80).

(d) Establish (60.81).

60.17 Consider a unit-edge hypercube in M —dimensions, with one vertex lying at
the origin. The hypercube has 2 edges. Let the feature vectors {h.,} correspond to
the locations of these vertices. Show that no 2M vertices in general position exist.

60.A COUNTING THEOREM

The concept of linearly separable data is paramount in the study of binary classifica-
tion problems. We indicated in (60.2) that a collection of feature vectors {h, € R}
is linearly separable if at least one hyperplane, w* € IRM, can be determined that
separates the data into two classes with one class lying on one side of the plane and
the other class lying on the other side of the plane, namely,

T *x _
{ hpw* < 0, whenever h,, € class —1 (60.64)

hlw* > 0, whenever h,, € class +1

In our discussion in this appendix we will assume that the feature data and the weight
vector for the separating hyperplane have been extended according to (60.20) so that
there is no need to account for the offset parameter separately. Now, given an arbi-
trary collection of N feature vectors h, € IRM, there are 2 possibilities for assigning
each one of them to a class y(n) € {£1}. Each of these possibilities is referred to
as a dichotomy. In general, not all dichotomies will be linearly separable. We refer to
Fig. 60.11 to illustrate this concept.

The figure shows N = 3 feature vectors in IR? and all eight possible dichotomies
(i.e., label assignments). For example, in the leftmost box in the top row, we show two
feature vectors assigned to +1 (represented by the plus sign) and one feature vector
assigned to —1 (represented by the minus sign). In this same box, we show a line that
can be used to separate both classes. Similarly for the other remaining 7 boxes in the
figure. It is seen in this example that all eight dichotomies are linearly separable. In the
rightmost box, we consider another situation involving N = 4 feature vectors in IR? and
show one particular dichotomy with two features assigned to +1 and two other features
assigned to —1. In this case, the dichotomy is not linearly separable. We expand on
this situation in Fig. 60.12, which lists all 16 possible dichotomies for N = 4 feature
vectors. Each circle represents an assignment to class +1 and each square represents
an assignment to class —1. The two boxes marked with background color correspond
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Figure 60.11 The eight squares on the left show all possible assignments of the same
three feature vectors in IR%. In each case, a line exists that separates the classes +1

from each other. We therefore say that the three feature vectors in this example are
separable by linear classifiers. In contrast, the figure on the right shows four feature
vectors in the same space IR? and an assignment of classes that cannot be separated
by a linear classifier.

to dichotomies that are not linearly separable. It is seen from the figure that there are
14 out of 16 dichotomies that are linearly separable.

$3d B DS =
el olal o
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32 R

Figure 60.12 Given four (N = 4) feature vectors, there are 2% = 16 possible
dichotomies shown in the figure. Each circle represents assignment to class +1, while
each square represents assignments to class —1. The marked boxes with background
color correspond to the two dichotomies that are not linearly separable.

One useful question in the study of binary classification problems is the follow-
ing. Given N feature vectors {h,} in M—dimensional space, how many of the 2V
dichotomies can be expected to be linearly separable? This is a classical problem in
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combinatorial geometry and has been answered elegantly by Cover (1965); a couple of
other works from the early 1950s and 1960s with similar conclusions are mentioned in
Cover (1965) including an earlier proof technique by Schlafli (1950, pp. 209-212). The
counting theorem that we describe below can be viewed as an early precursor to a fa-
mous inequality known as Sauer lemma, and which we establish later in Appendix 64.B
— see (64.86). In the terminology of that appendix, the number of linearly separable
dichotomies is also called the shatter coefficient. We denote this number by the no-
tation §(M, N) where N is the number of feature vectors and M is the dimension of
the feature space (and also the size of the parameter space that defines the classifier).
Although we are focusing here on linear classifiers, we hasten to add that the shatter
coefficient can be defined for other classes of classifiers as well; for this reason, in the
future Appendix 64.B we will use instead the more general notation §(C, N) to refer to
the shatter coefficient, where the symbol € refers to the class of classifiers under con-
sideration (linear or otherwise). The counting theorem stated further ahead is specific
to linear classifiers, in which case it is justifiable to replace C by the dimension M of
the parameter space, w. The statement of the counting theorem requires the notion of
points in general position.

(Definition of points in general position). Consider N column vectors {hn} in
M —dimensional space, h, € R™. The N points are said to be in general posi-
tion if no subset of M + 1 vectors lies in an (M — 1)—dimensional hyperplane. We
also say that the points are in general position if every subset of M or fewer vectors
is linearly independent.

This situation is illustrated in Fig. 60.13. The plot on the left shows N = 5 feature
vectors in IR? (for which M = 2). These vectors are not in general position because 3
vectors happen to lie on the same line. This example shows that four points in IR are
in general position if no three of them lie on the same line.

/ not in general position points in general position\

A Ar

2 g
e a3
| e | e
> S (]
7 ()
r—axis r—axis

o /

Figure 60.13 The plot on the left shows N = 5 feature vectors in IR? (for which
M = 2). These vectors are not in general position because 3 vectors happen to lie on
the same line.

We are now ready to state the counting theorem and prove it following Cover (1965).
Observe that the theorem provides an exact count for the number of linearly separable
dichotomies. It is not generally possible to provide such an exact count for other classes
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of classifiers. For these more general cases, the theorem will be replaced by future Sauer
lemma (64.86), which provides an upper bound (rather than an equality) for the number
of separable dichotomies — see future Appendix 64.C on the Vapnik-Chervonenkis
bound.

Counting theorem (Cover (1965)). Consider the class of linear classifiers defined by
€ = {sign(h"w)}, where h € RM denotes feature vectors and the free parameter
w € RM defines the hyperplane. Feature vectors are assigned to classes +1 or —1
depending on the sign of the inner product h'w. Consider a collection of N fea-
ture vectors, {hn}, in general position in IRM. It holds that the number of linearly
separable dichotomies, from among the 2~ possible dichotomies, is given by

M N1
2 E , when N >M+1
§(M,N) = —\ m (60.65)
N when N < M +1

Proof: Starting with the N feature vectors {h,} in IR™, we let §(M, N) denote the
number of linearly separable dichotomies for this set of generally-positioned points.
Next, we enlarge the set to N + 1 points by adding a new feature vector, hyy1, such
that the new expanded feature set continues to have general position. We similarly let
8(M, N + 1) denote the number of linearly separable dichotomies for this new set. The
argument that follows determines a relation between S(M, N) and S(M, N + 1).

Let w be one of the linear classifiers that generates one of the dichotomies for the
initial feature set {h,} of size N. Under this classifier, a feature vector h, would be
mapped to the label:

y(n) = sign(h,w) (60.66)

The value of y(n) is either +1 or —1. Thus, the hyperplane w generates the following
dichotomy for the N feature vectors:

[(v(1),7(2),- v (N) ], ~(n) € {+1, -1} (60.67)

When this same hyperplane is applied to the additional feature A1, its will generate
some label denoted by

(N +1) = sign(h}y 4 w) (60.68)

The value of this label is again either +1 or —1. In this way, the hyperplane w leads to
the following dichotomy over the expanded set:

[0 7(@)s- 7N, 7V +1)] (60.69)

We therefore find that for every linear dichotomy defined over the original N feature
vectors {h, }, we can associate at least one dichotomy over the expanded feature set of
size N + 1. The analysis so far shows that S(M, N + 1) is at least as large as S(M, N):

S(M,N +1) > 8(M,N) (60.70)

Let us verify next that it is actually possible to generate more dichotomies over the
N + 1 feature vectors than the S(M, N) dichotomies generated over the smaller set.
The argument depends on whether we can find a separating hyperplane w from the
original set that passes through hnxy1 or not:

(a) Assume first that there exists a hyperplane w from the set that generates the
dichotomies for the original N feature vectors with the following property: the
hyperplane passes through the added point hny4i. In this case, we can perturb
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Figure 60.14 The plot shows one dichotomy for the N features vectors {h,} with a
separating hyperplane w that passes through the new feature hy4i1. By perturbing
this hyperplane slightly to one side or the other, the feature hy+1 can end up with
label +1 or —1.

this hyperplane by an infinitesimal amount and have hyy1 appear on one side
or the other of the plane, with the plane still separating the original N feature
vectors — see Fig. 60.14. It follows in this case that, for each separating w for the
original feature vectors, we are able to generate two dichotomies for the expanded
(N 4+ 1)—long set (and not just one as above), with the label for hn+1 being either
+1 or —1:

[(v(1),7(2), - v(N), £1], [v(1),7(2), ..., ¥(N), =1] (60.71)
This argument indicates that S(M, N +1) will be larger than (M, N) and we write
S(M,N+1) = 8(M,N) + A (60.72)

for some positive number A to be determined.

(b) Assume, on the other hand, that there is no hyperplane from the §(M,N) di-
chotomies for the original N feature vectors that passes through hyi1. Then, in
this case, the point hy4+1 would always lie on one side of all the hyperplanes for
the original dichotomies. As a result, only one dichotomy over the N + 1 features
is possible, as explained earlier, and not two dichotomies as in part (a).

We therefore need to determine A. By definition, its value is equal to the number of
dichotomies of the original N feature vectors with the constraint that the separating
hyperplanes should pass through hyxy1. By restricting the separating hyperplanes to
pass through a particular point, we are in effect reducing the dimension (or degrees
of freedom) of the problem from M down to M — 1. Therefore, it holds that A =
8(M —1,N) and we arrive at the relation

S(M,N +1) = 8(M,N) + 8(M —1,N) (60.73)

We can now use this relation to establish (60.65) by induction. We assume result (60.65)
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holds for (M, N) and establish a similar form for (M, N + 1). To begin with, note that

the relation holds for N = 1 since it gives 8(M,1) = 2 — see (60.77), and we know

that for a single feature vector in M —dimensional space there are only two possible

dichotomies. Note also that relation (60.65) holds for M = 1 since it gives $(1, N) = 2N,

and we know that there are 2N dichotomies for N generally-positioned points on a line.
Next, using (60.73) and the assumed induction form (60.65) we have

M M-—1
S(M,N+1) =2 (NW_L1> +2)° (Nn: 1)

m=0 m=0
M M
N -1 N -1
—QZ( m>+2z(m’—l>’ m++—m —1
m=0 m’/=1
M
N -1 N -1 ,
:22( m>+2z<m—1)’ m < m
m=0 m=1
M M
(a) N -1 N -1
3 (%) 2 (00)
72i N-1) , (N-1
- = m m—1

)~ (N
=2 60.74
> () o
as expected, where step (a) uses the property

<Nk_ 1) =0, whenk<0 (60.75)

and step (b) uses the equality

()= () () i

Relation (60.65) is valid as long as the value of m within the combinatorial expression
does not exceed N —1. This is satisfied whenever M < N —1 or, equivalently, N > M+1.
On the other hand, when N < M + 1, we can replace the upper limit M in the
summation by N — 1 and write instead

N-1 N_1
S(M,N)=2" ( ) =2 when N<M+1 (60.77)
m=0 m

This concludes the proof.
|

Now, given a collection of N feature vectors h, € IR™ and assuming each of the
2N possible dichotomies are equally likely to occur, we readily conclude from result
(60.65) that the probability that a randomly selected dichotomy is linearly separable
is captured by the expression:

P(M,N) = 8(M,N)/2~ (60.78)

This is a revealing expression and brings forth some useful properties. Problems 60.12—
60.16 explore these properties and are motivated by the exposition and results from
Cover (1965). In particular, the following useful conclusions are established in these
problems:
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(a) When N < M + 1, each one of the 2V possible dichotomies of the feature vectors
hn € RM are linearly separable.

(b) When N = 2(M +1), only half of the 2% possible dichotomies of the feature vectors
hn, € RM is linearly separable.

(c) The value N = 2(M + 1) corresponds to a critical turning point for large dimen-
sional problems. In particular, it holds for any small ¢ > 0 that

lim ]P(M, (1+€)2(M + 1)) =0 (60.79)
N}igloop(M, (1—e)2(M + 1)) =1 (60.80)

Observe how at the cut-off point N = 2(M +1) (i.e., for this many feature vectors),
the probability of linear separation transitions sharply from one down to zero.

(d) These limiting results motivate introducing the notion of the capacity of the class
of linear classifiers in M —dimensional space. The capacity is defined as the largest
number C such that for any N < (1 — €)C, a random dichotomy of size N in IR™
is linearly separable with probability larger than 1 —§, for some small § > 0. It can
be shown that, for M large enough,

C=2(M+1) (60.81)

That is, the capacity corresponds roughly to two random feature vectors per weight
dimension.

BOOLEAN FUNCTIONS

It is useful to comment on how the results from the previous appendix on linear separa-
bility relate to the (more complex) problem of counting the number of linearly separable
dichotomies generated by Boolean functions. One key difference in relation to what we
have discussed so far is that the entries of each h,, will now be restricted to assuming
only the binary values 0 or 1. In this case, the feature vectors {h, } will generally vio-
late the general position requirement, as illustrated by Prob. 60.17. Consequently, result
(60.65) will not be applicable anymore. However, building on arguments from Furedi
(1986), the work by Budinich (1991) shows that the probability expression (60.78) will
continue to hold for M — oo. The expression would then provide the probability that
a collection of N vertices in a large M —dimensional hypercube are linearly separable,
as we proceed to clarify.

Let f(ai,az,...,anm) : {0,1}* — {0,1} denote a Boolean function defined over M
binary arguments denoted by {a.}. Each an can assume one of only two possible
values, 0 or 1, and the function itself can only assume the values 0 or 1. We can
interpret each realization of the M —dimensional vector (a1, az, ..., an) as representing
the coordinates of some vertex of a hypercube in M —dimensions. This coordinate
vector plays the role of a feature vector h,, in our previous notation. The class that this
feature vector belongs to will be the value of the function f(a1,...,an), written more
compactly as f(hy):

f(hn) = {0, 13" — {0,1} (60.82)
Note that we are denoting the classes by {0,1}. Now, an M —dimensional hypercube
will have 2M vertices. Each of these vertices can be assigned to class 0 or 1. There are a
total of 22" possible binary assignments for all vertices of the hypercube, i.e., there are

M
a total of 227 Boolean functions over M arguments. For any particular choice of the
Boolean function, we let Vo denote the collection of vertices it assigns to class 0 and V;
the collection of vertices it assigns to class 1. The Boolean function will then be said to
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be linearly separable if there exists at least one hyperplane in IR that separates the
vertices Vo and V; from each other: one set of vertices would appear on one side of the
hyperplane and the other set would appear on the other side, i.e., if there exists some
w* € RM such that

1, ifhlw* >0, e, hy €Vy
Fhn) = { 0, if hpw* <0, ie., hn €V (60.83)
This situation is illustrated in Fig. 60.15. The figure shows one realization of a Boolean
function; vertices marked in blue are assigned the binary value one and vertices marked
in yellow are assigned the binary value zero. It is seen in this example that the sets Vo
and V; are linearly separable. One example of a Boolean function that is not linearly
separable is the XOR function defined as follows (where M = 2):

(alfa’Q) i (87(1)) — f(alyaQ) i ?
fhw) = @ XORay — 3 (oo 70 g) T O T (608
(alva’Q) = (1v1) — f(alaa&) =0
(0,1,1)
) )

(1,1,1)

AN

(0,0,1) (1,0,1)

(0,0,0) (1,0,0)

Figure 60.15 The figure shows one realization of a Boolean function; vertices marked
in blue are assigned the binary value one and vertices marked in yellow are assigned
the binary value zero. It is seen in this example that the sets Vo and V; are linearly
separable.

The question we would like to examine is to determine how many of the 92" possible
Boolean functions are linearly separable. We already know from the XOR example and
from Fig. 60.12 that not all Boolean functions are linearly separable. For instance,
consider the situation corresponding to M = 2 (Boolean functions with two arguments).
Hypercubes in this space are squares with 22 = 4 vertices. There are a total of 2* = 16
possible assignments for these vertices. We know from the representation in Fig. 60.12
that there are only 14 linearly separable Boolean functions in this case.

More generally, there is no closed-from expression for the number of linearly sepa-
rable Boolean functions for arbitrary values of M; this is in contrast to result (60.65).
In the Boolean context, we have N = 2™ (the number of feature vectors is the number
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of vertices). Therefore, we will denote the number of linearly separable Boolean func-
tions by 8§(M,2M). Although a closed-form expression for (M, 2™) does not exist, the
work by Muroga (1971) provides a useful upper bound — see also the text by Peretto
(1992), the volume edited by Smolensky, Mozer, and Rumelhart (1996), and the proof
in Anthony (2001, pp. 37-38), as well as Prob. 60.15:

S(M,2M) < 2M” (60.85)

The following table provides some known values for the number of linearly separable
Boolean functions up to M = 8 — see Muroga (1971).

Table 60.3 Number of linearly separable Boolean functions in M —dimensional space
(up to M = 8) and the probability that the vertices of the unit-edge hypercube are
linearly separable.

# Boolean functions # linearly separable probability of
M (22M) Boolean functions separation
1 4 4 1
2 16 14 0.875
3 256 104 0.40625
4 65,356 1,882 0.02880
5 4,294,967,296 94,572 ~22x107°
6 | 18,446,744,073,709,551,616 15,028,134 ~81x1071
7 ~ 3.4028 x 1038 8,378,070,864 ~ 2.5 x 1072
8 ~ 1.1579 x 107" 17,561,539,552,946 | ~ 1.5 x 105
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61.1

SUPPORT VECTOR MACHINES

When the training data {y(n), h,, } is linearly separable, there will exist many
separating hyperplanes that can discriminate the data into two classes. Some of
the techniques we described in the previous chapters, such as logistic regression
and Perceptron , are able to find such separating hyperplanes. However, in gen-
eral, there are many others. For example, if we refer to the earlier Fig. 60.1,
we observe that the slopes of the separating lines in the figure can be adjusted,
with the lines tilted further in one direction or the other, and we would still
obtain correct classification for the same training data. For each valid choice of
a separating hyperplane, w*, there will exist some feature vector h in the train-
ing set that is closest to the hyperplane. We indicated in the previous chapter
that the distance of this closest point to the hyperplane is called the margin
and was denoted by m(w*). We illustrate this situation again in Fig. 61.1. In
this chapter, we describe the support vector machine (SVM) technique, whose
purpose is to find the hyperplane w* with the largest possible margin, so that
the training data will be the farthest away from it compared to other separating
hyperplanes. Doing so adds a degree of robustness, as well as a desirable safety
margin, to the operation of the classifier. We will consider two formulations of
SVM: one is referred to as hard-margin SVM and the other is soft-margin SVM.
Both techniques are again examples of deterministic methods, which operate di-
rectly on data realizations {y(n), h,} without assuming explicitly any form for
the underlying conditional or joint pdfs of the random variables (v, h), as was
the case, for example, with logistic regression and linear discriminant analysis
(LDA).

SVM EMPIRICAL RISK

The SVM formulation can be motivated by following geometric arguments. Let
(w*, 6*) denote the parameters (weight vector and scalar offset) of some generic
separating hyperplane for a collection of N linearly separable training points
{7(n), hp}, where vy(n) € {1} is the label associated with feature vector h,, €
RM. Some feature vectors in this set will be closer to the hyperplane (w*,6*)
than other feature vectors. Let (y(n*), hy+), with index n*, denote one of the
data points in the set that is closest to (w*,6*). This situation is illustrated in
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Figure 61.1 The figure shows one separating hyperplane and the two closest points
from the training data to it; the points are highlighted inside a circle. The distance
from these points to the hyperplane is called the margin. Other separating
hyperplanes will have their own margins.

Fig. 61.1; the figure further illustrates the possibility that there can also exist
points in the other class at the same closest distance from the hyperplane. Since
all points are correctly classified by (w*,6*), then using expression (60.10) we
conclude that the margin is given by:

1

m(w*) = y(n*) (hl*w* - 0*) m

(61.1)
We are free to scale (w*,0*) without altering the hyperplane h'w* — 6* = 0.

Thus, assume the parameters (w*, 8*) are scaled by the same value to attain the
normalization:

Y (hYw* —6%) =1 (61.2)

In this case, the margin associated with the scaled (w*,6*) becomes

1

) =

(61.3)

*||. It follows that maximizing m(w*) is

which is inversely proportional to ||w
equivalent to minimizing 1 w*[|? (the scaling by 1/2 is added for convenience).
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Hard-margin version
Motivated by these considerations, we formulate the design problem:

1
(w*,0*) = argmin  —|w|? (61.4a)
welRM HcR 2

subject to y(n)(hJw —60) >1, n=0,1,...,N -1  (61.4b)
This formulation helps enforce three properties:

(a) (Correct classifications) First, it enforces that all training data points are
correctly classified by the resulting classifier (w*,0*). This is because the
predictor H(n) = hJw* — 6* and the true label y(n) will have the same sign
by (61.4b).

(b) (Sufficient distance away from hyperplane) Second, all training points will
be sufficiently away from the separating hyperplane (w*,6*), at a distance
that is at least equal to 1/[|w*||. This is because, using expression (60.10), the
distance from any training feature vector h, to the separating hyperplane
will satisfy

1 (614b) 1

distance = y(n) (hTw* — 0*) W
w

n

(61.5)

[l

(c) (Margin attained) Third, there should exist an index n* that satisfies (61.4b)
with equality. This conclusion can be verified by contradiction. Assume the
solution (w*, 6*) leads to a strict inequality for all training points, namely,
y(n)(hfw* —6*) > 1 for all 0 < n < N — 1. Let n* denote the index with
smallest value for the product v(n)(hlw* — 6%), i.e.,

n* = argmin {'y(n)(hlw* - 0*)} (61.6)
0<n<N-1

and denote the corresponding value by

5 2 W(n*)(hl—*w* - 9*) (61.7)
By assumption, we have §* > 1. We scale (w*,6*) down by 6* and replace
them by

W wt 6%, 0* —— 0% )5 (61.8)

The scaled (w*,0*) continues to be a separating hyperplane that satisfies
the constraint (61.4b) for all n. However, the scaled w* has a smaller norm
than the original w* since §* > 1, which contradicts (61.4a). We conclude
that there must exist an index n* that satisfies y(n*)(hl.w* — 6*) = 1. In
view of expression (61.1), the feature vector h,« attains the margin m(w*) =

1/ [fw]].
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Once a separating hyperplane (w*, 6*) is determined by solving problem (61.4a)—
(61.4b), we may encounter three situations depending on how a training point
(v(n), hy,) is positioned relative to the hyperplane:

v(n) (hfw* — 6*) > 1 — point (y(n), hy,) exceeds the margin
v(n) (hfw* — 6*) =1 — point (y(n), h,) meets the margin (61.9)
v(n) (hfw* — 6*) <1 — point (y(n), hy,) violates the margin

In the first case, the distance from h,, to the separating hyperplane will be larger
than 1/||w*|| and, therefore, the point (y(n),h,) will be farther away from the
separating hyperplane than the margin. In the second case, we say that the
training point (y(n), h,) meets the margin since the distance from h, to the
separating hyperplane (w*, 8*) will be 1/|w*||, which is the value of the margin.
In the third case, the point h,, will be closer to the hyperplane than the margin.
Obviously, as was just proven under items (a)—(c), when problem (61.4a)—(61.4b)
admits a solution (w*, 6*), then all points {y(n), h,,} will either meet the margin
or exceed it and the violation in the third case will not occur; this scenario
will only arise when we study the soft-margin SVM further ahead. The solution
(w*, 0%) to (61.4a)—(61.4b) is called the hard-margin SVM solution because we
are requiring the training data to be linearly separable and to have a distance of
at least 1/||w*|| away from the separating hyperplane (i.e., to exceed the margin).
We will refer to all points (y(n), h,) that meet or violate the margin as support
vectors:

(y(n), hy) is a support vector <= v(n)(h w* — 6*) <1 (61.10)

The presence of these vectors is the reason for the name “support vector machine.”
We will explain in a later section, using duality arguments, that the solution to
the SVM problem is exclusively defined by these support vectors — see future
expression (61.45). In the hard-margin SVM formulation under discussion, sup-
port vectors will only consist of points (y(n),h,) that meet the margin with
equality sign in (61.10). However, as we will see in the sequel, support vectors
(y(n), hy,) will exist under soft-margin SVM for which strict inequality holds in
(61.10).

Soft-margin version

We formulate next a more relaxed version of problem (61.4a)—(61.4b), leading
to soft-margin SVM, in order to accommodate situations where the data points
are not fully linearly separable or when outliers may be present. Outliers can
perturb the choice of the separating hyperplane in a significant manner and
push it closer to one class or the other if one insists on a hard-margin design.
This scenario is illustrated in Fig. 61.2. An outlier feature vector is highlighted
by the surrounding circle; its presence results in a separating hyperplane (the
solid line) with a smaller margin compared to the original dashed hyperplane (in
dahsed line) obtained in the absence of the outlier.
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Figure 61.2 An outlier is indicated by the surrounding circle; its presence results in a
separating hyperplane with a smaller margin compared to the original (dashed)
hyperplane in the absence of the outlier. Soft-margin SVM reduces the influence of
outliers on the selection of the separating hyperplane and leads to solutions that
approach the dashed line.

Soft-margin SVM helps reduce the influence of outliers on the selection of
the separating hyperplane. It continues to seek a hyperplane with the largest
possible margin but will allow a small number of the data points to violate the
margin (i.e., to be either closer to the separating hyperplane than the margin
or misclassified altogether). This relaxation is achieved by replacing the original
formulation (61.4a)—(61.4b) by the following optimization problem:

* Nk * : 1 2 1 =
(w 0%, {s (n)}) = ar%mm §Hw|| +oly Z s(n) (61.11a)
w,0,s(n n—0

subject to y(n)(hJw — ) > 1 — s(n) (61.11b)
s(n) >0, n=0,1,2,...,N—1 (61.11¢c)

where w € R™, 6 € R, > 0 is a scaling parameter, and the {s(n) > 0} are
newly introduced nonnegative variables, called the slack variables. There is one
slack variable for each data point in the training set. From expression (61.11b),
we see that each slack variable s(n) introduces some tolerance and allows the
quantity y(n)(hfw — ) to be smaller than one. That is, it allows the point
(v(n), hy) to violate the margin since 1 — s(n) can be smaller than one, in which
case h,, ends up being closer to the hyperplane than desired, or perhaps even on
the wrong side of it. Two types of violations are possible:
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(a) (Margin violation) Values of s(n) in the range 0 < s(n) < 1 will correspond
to points (y(n), hy,) that fall on the correct side of the separating hyperplane
but are closer to the hyperplane than the margin.

(b) (Misclassification) Values s(n) > 1 will correspond to points (y(n), h,) that
fall on the wrong side of the separating hyperplane and are therefore mis-
classified.

Compared with (61.4a), the cost function in (61.11a) incorporates an additional
term that penalizes the contribution from the slack variables; the size of this
penalty is controlled by the parameter 7. By minimizing the augmented cost, we
are in effect attempting to reduce the contribution from the slack deviations. Note
that large values for 7 favor solutions (w*,6*) with a small slack contribution
and, hence, with a smaller number of misclassification errors. In particular, as
1 — 00, problem (61.11a)—(61.11c) reduces to the hard-margin SVM formulation
(61.4a)—(61.4b since this situation will force all s(n) — 0. On the other hand,
smaller values for n accommodate some violations of the margin including more
misclassifications.

Empirical risk
By examining the structure of problem (61.11a)—(61.11c) we can readily deduce
the values of the slack variables s(n) for all data points:

(a) (Zero slack variables) To begin with, whenever some data point (y(n,), hn,)
satisfies V(no)(hlaw — @) > 1, then the corresponding slack variable, s(n,),
should be zero. That is, data points than are on the correct side of the
hyperplane and are farther away from it than its margin, will necessarily
have zero slack variables. This is because the objective is to reduce the cost
(61.11a) and, therefore, we can set s(n,) to zero to reduce the sum of the
slack variables without violating (61.11b)—(61.11c).

(b) (Positive slack variables) On the other hand, whenever v(n1)(h), w—6) < 1
for some data point (y(n1), by, ), then the smallest value that can be chosen
for the corresponding slack variable is

s(n1) =1 —~(n1)(hy,w—0) >0 (61.12)

in order to satisfy the nonnegativity constraint (61.11c). We select the small-
est value for s(n;) because the cost (61.11a) penalizes the sum of the slack
variables.

Based on these observations, we are motivated to consider the following alterna-
tive formulation of the optimization problem (61.11a)—(61.11c):

N-1
* [k : A 2 1 T
(w*,0%) = argmin < P(w) = pl|lw||* + —= max{ 0, 1 —v(n) (h,w— 0
welRM cR N 7;) { ( )}
(61.13)

where p = 1/2n. Note that large values for n correspond to small values for p.
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Accordingly, small p will favor solutions with a small number of margin violations
or misclassifications (i.e., solutions with mostly small slack variables). This means
that small values for p are recommended for data that are more or less separable,
with p — 0 corresponding to the hard-margin solution. On the other hand, larger
values for p tolerate a higher level of margin violations and /or misclassifications.
This case is better suited for data that are more challenging to separate.

If we invoke ergodicity on the data {v(n),h,}, we find that P(w) motivates
the following stochastic risk function

N-1
% Z max{(), 1—~(n)(htw — 0)} "2 E max {0, 1—~(h'w— 9)}

n=0

(61.14)

so that the soft-margin SVM construction can also be interpreted as solving the
following Bayesian inference problem

(w®,6°) = argmin < pllw[* + E max {O, 1—~h"w— 9)} (61.15)
welRM geR

where the expectation is over the joint distribution of (v, h).

Online recursion

Problem (61.13) can be solved by a variety of stochastic optimization methods,
already discussed in previous chapters, such as using stochastic subgradient al-
gorithms and variations thereof. It is sufficient to illustrate the construction by
considering one solution method. We will therefore focus on stochastic subgradi-
ent implementations, with or without regularization, that rely on instantaneous
subgradient approximations. The sampling of the data in the stochastic imple-
mentation can also be done with or without replacement. Using the result of
Example 16.8, we list the SVM algorithm for solving (61.13) in (61.22), where
the notation I[z] refers to the indicator function that is equal to one when con-
dition z is true and zero otherwise. Comparing (61.22) with the Perceptron

~

listing (60.19), we find that the condition I[y(n)7(n) < 0] is now replaced by
Ty(m)F(n) < 1]

We can simplify the notation in listing (61.22) by extending the feature and
weight vectors as follows:

h + l%} . w4 [_—6] (61.16)

w

so that the recursions can be rewritten more compactly in the following manner
where the offset parameter is now implicit:

{ ;\)/(TL) = hlwnfl

wy, = Aw,—1 + (N‘Y(n) Iy(n)y(n) < 1])]7,m n>0 (61.17)
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and the diagonal matrix A depends on the regularization parameter:

A |1
A= 61.18
[ (1= 2pp)In ] (61.15)
When a mini-batch of size B is used, the SVM recursion is replaced by
select B data samples {~(b), hy} at random
v(b) = h{w,_1, b=0,1,...,B-1
Y (61.19)
wy = Aw, 1+ Y (YO TYBFE) < 1)y, 0 >0
b=0
On the other hand, in the absence of regularization (p = 0), we obtain:
Wy = Wp—1 + pyM)h, Iy(n)y(n) <1], n>0 (61.20)
which can be rewritten in the equivalent form
Wy, = Wpo1 + py(n)hy,, if y(n)y(n) <1 (61.21)
Support vector machine (SVM) algorithm for minimizing (61.13).
given dataset {y(m), h,, }N 0 or streaming data (y(n), hy,);
start from an arbitrary initial condition, w_;.
repeat until convergence over n > 0 :
select at random or receive a sample (y(n), h,,) at iteration n; (61.22)

(n) = h)w,_, — O(n — 1)

6(n) = O(n — 1) — py(MI [v(n)F(n) < 1]

wy, = (1= 2pp)wy—1 + py(n)h, 1[y(n)3(n) < 1]
end
return w* < w,, 0* < 0(n);
classify a feature h by using the sign of ¥ = hTw* — 6*

Example 61.1 (Binary classification using soft-SVM) We show in Fig. 61.3 a collec-
tion of 150 feature samples h,, € IR? whose classes +1 are known beforehand: 120
samples are selected for training and 30 samples are selected for testing. The data
arises from the dimensionally reduced iris dataset from Example 57.3; we denoted the
two-dimensional reduced feature vectors by the notation A/, in that example. We denote
them by h, here. We employ the two classes shown in the bottom plot of Fig. 57.5 and
denote them by y(n) € {£1}. We will use the data to compare the performance of the
Perceptron and SVM algorithms.

We first use the data to train the Perceptron classifier (60.26), under extensions (60.20),
by running 5 passes over the training data:

~

F(n) = hywn—1 (61.23a)
Wy = Wn—1 + Y(N)hn, if y(n)7(n) <0 (61.23b)
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Figure 61.3 The first row shows the training and test data for the Perceptron
algorithm without regularization and g = 1, while the second row shows the same
data for the soft-margin SVM algorithm under ¢>—regularization with p = 0.01 and
1 = 0.1. The lines show the resulting classifiers.

During each pass, the data {v(n),h,} is randomly reshuffled and the algorithm is re-
run over the data starting from the weight iterate obtained at the end of the previous
pass. The line in the figure shows the separating curve obtained in this manner with
parameters (where we now undo the extension (60.20)):

* 3.4184

w* = { _15104 ] , 0*=1.0, (Perceptron) (61.24)

It is seen that the separation curve is able to classify all test vectors and leads to 0%
empirical error rate.

We also use the same data to run 5 passes of the soft-SVM classifier (61.22) by using
p = 0.01 and p = 0.1. The data is randomly reshuffled at the start of each pass. The
line in the figure shows the separating curve obtained in this manner with parameters

" [ 1.2253
w =

03805 ] , 6" =10, (soft-SVM) (61.25)

It is also seen that the separation curve is able to classify all test vectors and leads to
0% empirical error rate.
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Example 61.2 (Application to breast cancer dataset) We apply the soft-SVM classi-
fier (61.22) to the breast cancer dataset encountered earlier in Example 53.3. The data
consists of N = 569 samples, with each sample corresponding to a benign or malig-
nant cancer classification. We use v(n) = —1 for benign samples and v(n) = +1 for
malignant samples. Each feature vector in the data contains M = 30 attributes corre-
sponding to measurements extracted from a digitized image of a fine needle aspirate
(FNA) of a breast mass. The attributes describe characteristics of the cell nuclei present
in the image; examples of these attributes were listed earlier in Table 53.1.

All feature vectors are centered around the sample mean and their variances scaled to
unity according to the preprocessing step described earlier under PCA in (57.6). We
select 456 samples (80%) randomly from these processed vectors for training and keep
the remaining 113 samples (20%) for testing. We use p = 0.01 and p = 0.01. We run
the algorithm 20 passes over the training data using random reshuffling. The resulting
empirical error rate on the test data is 12.39%, resulting from 14 misclassified samples
out of 113 test samples.

For comparison purposes, we use the PCA procedure (57.34) to reduce the dimension
of the feature space down to M = 2 and run again the same soft-SVM procedure over
this reduced data. Figure 61.2 shows the 456 training samples and 113 test samples,
along with the resulting classifier whose parameters are determined to be

. [ —1.1022
wo= 0.6507

} , 0 =-0.07, (soft-SVM) (61.26)

The resulting empirical error on the test data is found to be 5.31%, which amounts to
6 misclassified decisions out of 113 test samples.

training points (soft-SVM) test points (soft-SVM)
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o o0 o
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Figure 61.4 The plots show the training and test samples for 2—dimensional reduced
feature vectors from a breast cancer dataset, along with the separating line that arises
from training a soft-SVM classifier.

Example 61.3 (Support vectors and misclassification errors) The number of support
vectors in an SVM implementation conveys useful information about the learning ability
of the SVM solution. Specifically, consider repeated experiments involving training data
{7(n), hn} of size N each. Then, it holds that the average number of support vectors
over these experiments provides an indication of the expected empirical error rate over
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the training data for the SVM classifier, denoted generically by ¢*, namely,

1
E Remp(c®) < NE [# support vectors] (61.27)

where the expectation is over experiments (or over the distribution of the data (v, h)).
The empirical error rate is denoted in boldface because it is treated as a random vari-
able whose value varies from one experiment to another; recall from definition (52.11)
that Remp(c*) counts the fraction of errors over the training data. Observe that the
bound on the right-hand side is independent of the dimension M of the feature space
h € RM, which is a useful property of SVM solutions. Observe also that an SVM solu-
tion is expected to yield very few support vectors; otherwise, the SVM classifier would
not be effective.

Proof of (61.27) Note that, for any set of training data of size N, the number of support
vectors satisfies:

[# support vectors] = [# training data that meet or violate the margin]
> [# misclassified training data] (61.28)

Therefore, the empirical error rate over the training data in each experiment satisfies:

>

1 1
Remp(c”) N[# misclassified data] < N[# support vectors| (61.29)

Taking expectations of both sides, we arrive at (61.27).
|

Example 61.4 (SVM for regression problems) We refer to the empirical risk (61.13)
used by SVM for binary classification, namely,

J(n) = hpw — 0 (61.30a)

N-1

* * A . 2 1 ~

(w*,0*) = argmin plw||”+ = E max1 0,1 —vy(n)y(n) (61.30b)
welRM 9cR N n=0 { }

This formulation relies on the non-differentiable hinge function g(z) = max{0,1 — z},
which ignores all values z > 1. We can motivate a similar construction for the solution
of regression (as opposed to classification) problems, where the purpose is to estimate
the target variables «v(n) (rather than their signs). For this purpose, we consider the
following regularized formulation:

F(n) = hiw —0 (61.31a)

N-1

1

(w*,0%) 2 argmin pllwl* + — max4 0, [y(n) —J(n)| — € (61.31b)
welRM 9clR N ,;) { }

for some small € > 0. This description continues to rely on a non-differentiable function
albeit one of the form g(z) = max{0, |z| — €} so that only values z € (—¢, €) are ignored.
This is illustrated schematically in the diagram of Fig. 61.5, where the vertical axis is
denoted by y. The function has two points of discontinuity at « = Fe. The slope of the
function is +1 for x > €, —1 for < —¢, and zero for z € (—e,€). At © = € we select
the subgradient as +1 and at * = —e as —1. We therefore construct a subgradient for
g(z) as follows:

0g(z) =1z > ¢ — Iz < —¢ (61.32)
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y = max{0, |z[ — €}

|
)
o C
8

Figure 61.5 Plot of the function y = max{0, |z| — €}.

Applying this construction to (61.31b) we can write down the following stochastic
subgradient implementation:

J(n) =hiw, 1 —O(n—1) (61.33a)
a(n) = H['?(n) <(n) — e] - H[fy(n) > ~y(n) + e] (61.33b)
6(n) =0(n—1) — pa(n) (61.33c)
wy = (1 —2pp)wn—1 + po(n)hy (61.33d)

CONVEX QUADRATIC PROGRAM

There are several ways by which the hard and soft-margin SVM formulations can
be solved. In listing (61.22) we pursued an online solution based on a stochastic
subgradient implementation, which is one of the simplest and most commonly
used methods for solving SVM problems. In this section, we describe another
solution method that is based on transforming the SVM problem into a convex
quadratic program (i.e., into an optimization problem with a quadratic cost func-
tion subject to a convex constraint — see future Eqs. (61.42a)—(61.42b)). Such
quadratic programs can be solved efficiently by means of convex optimization
packages. The main motivation for the derivation that follows is to highlight the
role played by support vectors; the derivation will also be useful later when we
develop a kernel-based SVM version for classifying data that are not necessarily
linearly separable. The details of the convex program formulation are as follows.
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Optimization by duality

We focus initially on the hard-margin SVM problem (61.4a)—(61.4b). We call
upon the KKT conditions (9.28a)—(9.28¢) to transform the constrained prob-
lem into an unconstrained version. Specifically, we start by introducing the La-
grangian function:

N-1

loll? = >~ An) (v(n) (hjw — 6) = 1) (61.34)

n=0

L(w,0,\(n)) 2 %
where the {\(n) > 0} denote Lagrange multipliers; they are non-negative because
of the direction of the inequalities in the constraints (61.4b). To determine the
solution (w*, 6*), we need to perform two tasks. First, we minimize £(w, 8, A(n))
over (w,#) and determine the minimum value, which we denote by the dual
function D(A(n)); it is a function of the multipliers {A(n)} alone. Second, we
maximize the dual function over the {A(n)}. From the solutions to these two
steps, and in view of the KKT conditions, we will be able to recover the desired
(w*,0*), as we proceed to explain.
Computing the gradients of £(w,, A(n)) relative to w and 6 we get

Vo L(w, 0, \(n)) = w — Z An (61.35a)

(w,0,A(n)) /90 = Z An (61.35b)

n=0

Setting these gradients to zero at (w*, 8*), we find that the variables {w*, A(n)}
must satisfy:

N-1 N—-1
w* = AmY(M)hn, > An)y(n) =0 (61.36)
n=0 n=0

Using these conditions, we substitute into the Lagrangian function and determine
the dual function as follows:

D(A(n))
= L(w", 0%, A(n ))

= Sl - ZA Twt %) 1)
1 N-1 N-1
L Y A - (Z A<n>v<n>h1> W+ (Z A(n)’y(n)> 0
n=0 n=0

(61.36) 1 =
= §||w*||2 + > Am) — Jwr)?
n=0

N-1
23 Am) - 5 2 2 MA@ (61.37)
n=0
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The resulting dual function is dependent on the {A(n)} alone and is given by:

A N-1 1 N-1N-1 .
DOM) 2 Y Am) — 5 30 3 A AR (61.38)
n=0 n=0 m=0

which we now need to maximize subject to the constraints

N—-1
A(n) >0, Y An)y(n) =0 (61.39)
n=0

We can express the dual function in vector form by introducing the vector and
matrix quantities:

A(0) 7(0)
A1 1
A 2 ( ! V= 7(; ) AL, = () (m)h e,
AN —1) (N -1)

(61.40)
The vector A is N x 1 and the matrix A (also called the Gramian matrix) is
N x N. Then, we can rewrite (61.38) as:

1
D) = 17X — §ATA)\ (61.41)

We wish to maximize D(\), which can be achieved by minimizing —D()). Hence,
the problem of determining the {\(n)} is formulated as follows:

A* = argmin 1)\TA)\ — 1™ (61.42a)
AeRN
subject to A =0, ATy =0 (61.42b)

where the notation a > b means element-wise comparison. The above problem
is a convex quadratic programming problem: it involves a cost (61.42a) that is
quadratic in A, with coefficients {%A7 —1}. Tt also involves the linear constraint
ATy = 0 and the condition A > 0. A quadratic program solver can be used to
return a vector \*.

Support vectors

The solution A* will exhibit a useful property, namely, most of its entries will be
zero. This is because of the KKT complementary condition (9.28d), which needs
to hold. That condition translates into the requirement:

N (n) (v(n)(hlw* — ) — 1) —0, n=012. ., N-1 (61.43)

Now, consider any data point (y(n), h,) that exceeds the margin, i.e., for which
v(n)(hfw* —6*) > 1; these points are correctly classified. Then, from (61.43), it
must hold for these points that A*(n) = 0. On the other hand, if A*(n) # 0, then
it must hold that v(n)(hJw* —6*) = 1 so that nonzero values for \*(n) will only
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occur for data points that meet the margin. There are generally only a few of
these points and they are examples of support vectors. More generally, support
vectors were defined in (61.10) as any points (y(n), h,,) that meet or violate the
margin. In the hard-margin SVM formulation under discussion, support vectors
will only consist of points (y(n), h,) that meet the margin with equality sign in
(61.10).

Observe further from condition (61.39) that there should exist at least one
support vector from each class {£1}. This is because if A*(n;) is some nonzero
entry of the vector A* corresponding to label y(n1), then there should exist
another entry of similar value A(ns) in the vector A* albeit with label v(ng) =
—~v(n1). When this happens, the two terms A*(n1)vy(n1) and A*(ng)y(ng) cancel
each other and it becomes possible for the sum in (61.39) to evaluate to zero, as
required.

Using the solution A* we can determine w* by using relation (61.36):

N-1
c= ST X))y (61.44)
n=0

But since most of the {\*(n)} will be zero, this expression actually provides a
sparse representation for w* in terms of the support vectors; it shows that w* is
a linear combination of the support vectors. We can therefore write

=) N (5)7(s)hs (61.45)

sES

where the sum is limited to the set 8§ of support vectors.

We still need to determine 6*. For that purpose, we pick any point (v(n), hy,)
that meets the margin (i.e., any support vector in the hard-margin SVM imple-
mentation) and use it to solve for 6*:

1
y(n)(hJw* —0*) =1 = 0* = hJw* — — (61.46)

We can enhance the accuracy of this construction for 8* by averaging estimates
over all support vectors that meet the margin (or several of them), say, as:

|3|Z( hlw* — )> (61.47)

SES

where |§| denotes the cardinality of 8. Obviously, under hard-margin SVM it
holds that 8; = 8 since all support vectors meet the margin. Combining (61.45)
and (61.47) we estimate the label of a test vector h by using the following ex-
pression (which is written in terms of the support vectors)

7 =hTw* —0* (61.48)
1
= N(s)y(s)h"hs N () y(s I hg — ——
= SO~ 3 (S )
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and making the classification decision:

e .
{ if ¥ > 0, assign h to class +1 (61.49)

if ¥ < 0, assign h to class —1

We summarize the solution method of this section in the following listing.

Convex program solution of hard-margin SVM (61.4a)—(61.4b)

(training)

compute :

given N data points {y(n),h,},n=0,1,...,N —1;
form the vector v and matrix A defined by (61.40);
solve (61.42a)—(61.42b) and determine A*;

8 2 set of support vectors defined by (61.10):

these are the points (v(s), hs) with A*(s) # 0. (61.50)
wr = Z X(s)y(s)hs

sES

1 1
S e 1)

5P )

end
return (w*, 6*)

(classification)
classify feature vector h using (61.49) where 5 = hTw* — 6*.

Soft-margin adjustment

Following similar arguments, we can verify that the soft-margin SVM problem
(61.11a)—(61.11c) reduces to a convex quadratic programming problem of the
following form, where the main modification is the upper bound on the entries
of A — see Prob. 61.9:

1
\* = argmin {/\TAA - llTA} (61.51a)
AERN 2
subject to 0 < \ < %1, ATy =0 (61.51b)

In this case, it turns out that the solution vector A* will have nonzero entries at
data points that meet the margin and also at data points that violate the margin.
As explained earlier in (61.10), these points constitute the support vectors. The
same listing (61.50) will continue to hold with one adjustment to the expression
for 0*. Let 81 C 8 denote the subset of support vectors that meet the margin.
Then, we estimate 6* by averaging over these vectors (or a subset of them), say,

as:
o L
"= 2

SESy

(hSTw* — 7(18)> (61.52)
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and, therefore, the expression for 4 becomes:

7 =hTw* —0* (61.53)
1 1
= N (s)y(s)hThy — — N(s)y(shI hg — —

CROSS VALIDATION

The material in this section is not specific to support vector machines but is
applicable more broadly. We present it here because at this stage of our de-
velopment, we are in a good position to motivate the useful technique of cross
validation for selecting hyperparameters for learning algorithms. We have en-
countered several such algorithms so far, such as the nearest-neighbor rule, the
K —means algorithm, logistic regression, Perceptron, support vector machines,
recursive least-squares, and various other stochastic optimization methods with
and without regularization. We will encounter additional algorithms in subse-
quent chapters such as AdaBoost, kernel methods, neural networks, and so forth.
In most of these implementations, certain parameters, also called hyperparame-
ters, need to be set by the designer such as regularization parameters, forgetting
factors, step-sizes, number of clusters, etc. Two important questions arise:

(a) How do we pick a good learning algorithm for an application from among
multiple possibilities? And how do we set the hyperparameters for the algo-
rithm in a guided manner?

(b) How do we assess the performance of the algorithm, such as its empirical
error rate in order to estimate its generalization ability?

One useful technique to answer these questions is cross validation. While there
are several variations of cross validation, we describe one construction that is
common in practice.

We denote the learning algorithm that is under study generically by the no-
tation A,, where the letter A refers to the algorithm and the letter p refers to
some hyperparameter that influences its performance. For example, A could be
the logistic regression algorithm and p could be the regularization parameter, p.

We start with a total of Nrotar, = N +7T data points, {v(n), h, }, where v(n)
is the label corresponding to feature vector h,, € IR*. The set is split into two
disjoint groups: a training group consisting of N data points and a test group
consisting of T data points:

{y(n),hn}, n=0,1,2,...,N —1, (training data)  (61.54a)
{v(#),hs}, t=0,1,2,..., T —1, (test data) (61.54b)
N +T = NtoTaL (61.540)
Usually, the split is about 70 —80% of NtoTaL used for training and 20 — 30% of
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Nrtorar used for testing. If Nrorar, = 1000, then we will have N = 800 training
data points and T' = 200 test data points. The test data should be separated
completely from the training data and only used for testing purposes later after
the classifier has been trained.

Training is performed as follows. We start from the IV training data points and
split them K —fold, where K is some integer normally between 5 and 10, though
the value K = 10 is common. Let us select K = 5 for illustration purposes.
Then, the N training points are split into K segments, with N/K data points
in each segment. For the example with N = 800 and K = 5, we end up with
5 segments with Ny = 160 samples per segment. We index these segments by
s=1,2,3,..., K — see Fig. 61.6. During each iteration of the cross-validation
procedure described below, one of the segments (also called a validation set) is
left-out and used for cross validation purposes while the remaining K — 1 seg-
ments are used for training. This procedure, known as K —fold cross-validation,
operates as follows:

repeat for s=1,2,... K:

(1) Exclude the data from the segment indexed by s, and use all data from the
remaining K —1 segments to train the learning algorithm. For example, when
s =1 and K =5, we use the data from segments 2,3,4, and 5 for training.
In the N = 800 example, this would amount to using a total of 4 x 160 = 640
data points for training. Note that we started from Ntorar, = 1000 data
points but are only using 640 for training algorithm A,. We can run multiple
passes of the algorithm over the training data. Once training is completed,
we test the performance of the resulting classifier using the data from the
cross-validation segment, s, that was left out to measure its empirical error
rate. If we let the set N, denote the indexes of the data points within the
cross validation segment, then this error is given by

Rem(9) = 37 32 TMy () #9(0) (61.55)
s neN,

This calculation counts the average number of erroneous classifications over
the cross validation segment.

(2) We repeat the construction in step (1) for each of the segments: use one
segment for cross validation and the remaining segments for training. In
each run, we compute the resulting empirical error rate. By the time we
have scanned over all K segments, we would have available K error values,
Remp(s), one for each segment s = 1,2,..., K. We average these values to
obtain an estimate for the error rate of the algorithm:

1 K
Remp(Ap) = ?Z Remp (s) (61.56)

(3) The important fact to recognize is that Remp(Ap) estimates the performance
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Figure 61.6 The data is divided into two parts, N and T with about 80% of the data
points in the first set for training and 20% in the second set for testing. This first set
is subsequently divided into K segments of width N, each. During each iteration of

the cross validation procedure, one of the segments is used for cross validation while

the remaining segments are used for training.

of algorithm A for a particular parameter value p. We repeat steps (1)—(2)
for different values of p, which would then allow us to arrive at a curve that
shows how the error, Remp(Ap), varies with p and subsequently pick the
value of p that leads to the smallest error value.

(4) In another scenario, we may be interested in repeating steps (1)—(2) for
different algorithms, while keeping the parameters fixed, in order to select
the algorithm that results in the smallest value for Remp(A,).
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end

Sometimes, the size of N may not be large enough for meaningful training. An
alternative implementation is to employ a variation known as leave-one-out cross
validation. In this case, we set K = NN so that each segment consists of a single
data point. During cross validation, training will be performed by using N — 1
points and the empirical error will be evaluated on the single point that is left
out.

At the end of the cross validation phase, we arrive at an answer to our first
question about how to select the “best” algorithm or how to set “hyperparame-
ters” in a guided manner. Once the algorithm and/or its hyperparameter(s) have
been selected, we return to the full collection of N training data points, without
excluding any segment for cross validation, and retrain the selected algorithm
on this entire data set of N points, i.e., on the 800 points in our example. The
resulting classifier is denoted by A*.

We still need to answer the second question about how to test the performance
of the “optimized” algorithm, A*. To do so, we resort to the testing data (the T
points) that we set aside and did not use during the cross validation procedure
or training. We measure the empirical error rate on this test data:

Remp(A*) = *i [A* (he) # v(1)] (61.57)
t=0

’ﬂ

This calculation computes the average number of erroneous classifications over
the test data for the learning algorithm and serves as its performance measure.

Example 61.5 (Selecting the regularization parameter) We apply the cross validation
procedure to the selection of the regularization parameter p and the step-size parameter
1 in an fo—regularized logistic regression implementation. We consider the same data
from Example 59.2 except that we now examine the problem of separating class r = 1
from class » = 2. There are a total of Nrorar. = 100 samples, with 50 samples from
each class. We separate T' = 20 samples for testing (that is 20% of the total number of
samples) and use the remaining N = 80 samples for training. We extend the feature
vectors according to (59.16) and apply 100 passes of the £>—regularized logistic regres-
sion algorithm (59.15).

We generate two plots for the empirical error rate of the logistic learner. In one case, we
fix the step-size parameter at ;. = 0.01 and vary the regularization parameter p in steps
of one in the range p € [0,20]. In the second case, we fix the regularization parameter
at p = 5 and vary the step-size p in steps of 0.005 in the range p € [0.001,0.1]. We
implement a 10—fold cross validation scheme. That is, we set K = 10 and divide the
training data into 10 segments of 8 samples each. We fix p at one particular value, and
run the logistic regression on 9 segments while keeping the tenth segment for testing;
this tenth segment generates an empirical error value. While running the algorithm on
the nine segments we run it multiple times over the data using 100 passes. We repeat
this procedure 10 times, using nine segments for training and one segment for testing,
and subsequently average the empirical errors to determine the error rate that corre-
sponds to the fixed value of p. We repeat the construction for other values of p and
arrive at the curve shown on the left in Fig. 61.7. From this figure, it is evident that
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Figure 61.7 The plot on the left shows how the empirical error rate for the
ly—regularized logistic regression algorithm varies with the selection of p. A 10—fold
cross-validation implementation is used to generate this curve. The plot on the right
shows the same curve as a function of the step-size parameter.

smaller values of p are preferred.

We repeat the same construction for the step-size parameter. We fix p at one particular
value, and run (59.15) on 9 of the segments while keeping the tenth segment for testing;
this tenth segment generates an empirical error value. While running the algorithm on
the nine segments we run it multiple times over the data using 100 passes. We repeat the
procedure 10 times, using nine segments for training and one segment for testing, and
subsequently average the empirical errors to determine the error rate that corresponds
to the fixed value of u. We repeat the construction for other values of u and arrive at
the curve shown on the right in the same Fig. 61.7.

Example 61.6 (Structural risk minimization) The cross-validation approach of this
section can be seen as a form of structural risk minimization. Consider, for instance,
the ¢;—regularized empirical risk formulation:

w* 2 argmin {P(w) = q(w)+Punreg(w)} (61.58)
welRM

where we are expressing the risk P(w) as the sum of two components: g(w) denotes
the convex regularization factor, and Punreg(w) denotes the remaining unregularized
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component. For example, for the logistic regression problem:

N-1
* . 1 —y(n)hTw
w* = argmin < pllw|® + = In (1 +e 7in ) (61.59)
iy (oot + 5
we would have
| Nl .
q(w) = p||’w||27 Punreg(w) = N Z In (1 + e_v(n)hnw> (61.60)
n=0

Now, we know from the earlier result (51.94) that, under some reasonable technical
conditions that are usually satisfied for our problems of interest, solving a regularized
problem of the form (61.58) is equivalent to solving

w* £ argmin Punreg(w), subject to g(w) < 7 (61.61)
welRM

for some 7 > 0 dependent on p, written as 7(p). In other words, problem (61.61) is
effectively searching for the classifier w* within the set:

W, £ {weRM| g(w) < (p)} (61.62)

which is parameterized by p. By solving (61.58) for different values of p, as happens
during a cross-validation procedure to select an optimal p, we are then searching for
the solution w* over successive sets {W,,, W,,,...} defined by successive values for
the hyperparameter p. This sequence of nested optimization problems to determine an
optimal classifier (i.e., the w* corresponding to the optimal choice of p) is an example
of “structural risk minimization.”

COMMENTARIES AND DISCUSSION

Support vector machines. It is mentioned in the text by Vapnik (1979), and also in
the article by Cortes and Vapnik (1995, p. 275), that the original idea of the hard-
margin SVM formulation (61.4a)—(61.4b) was developed by Vapnik and Chervonenkis
back in 1965, although the modern form of SVM and its kernel version first appeared
in the publication by Boser, Guyon, and Vapnik (1992). The soft-margin formulation
(61.11a)—(61.11c) appeared in Cortes and Vapnik (1995). Hard-margin SVM can be
viewed as a nonlinear extension of the Generalized Portrait algorithm introduced by
Vapnik and Lerner (1963) and further developed by Vapnik and Chervonenkis (1964).
All these algorithms are based on the idea of seeking separating surfaces that maximize
the margin from the training data, and have found applications in a range of areas in-
cluding bioinformatics, image recognition, face detection, text processing, and others —
see the overview by Burges (1998). Mentions of classifier designs that use large-margin
hyperplanes also appear in the works by Cover (1965) and Duda and Hart (1973).
For more information on SVM classifiers, their history, properties, and variations, the
reader may refer to the texts by Vapnik (1995,1998), Scholkopf (1997), Cristianini and
Shawe-Taylor (2000), Scholkopf and Smola (2001), Herbrich (2002), and Steinwart and
Christmann (2008), as well as the articles by Burges (1998), Lin (2002), Lin, Lee, and
Wahba (2002), and Smola and Scholkopf (2004).

Quadratic program. We explained in Sec. 61.2 that SVM problems can be recast as con-
vex quadratic programs whose solutions can be pursued by duality arguments. These
quadratic programs are extensions of a body of work from the early and mid sixties by
Minnick (1961), Singleton (1962), Charnes (1964), and more broadly by Mangasarian
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(1965,1968), who posed the binary classification problem as the solution to linear (as
opposed to quadratic) programming problems. In linear programs, the objective func-
tion and the constraint function are all linear (affine) in the unknown w.

Slack variables. The soft-margin framework relies on introducing slack variables to en-
hance the robustness of the SVM solution. The idea of using slack variables is due to
Smith (1968), whose work was motivated by the linear programming approach of Man-
gasarian (1965). The application of slack variables to separating hyperplanes appears
in the article by Bennett and Mangasarian (1992). Result (61.27) relating the average
number of support vectors to the expected empirical error rate for SVM classifiers ap-
pears in Boser, Guyon, and Vapnik (1992) and Cortes and Vapnik (1995).

Cross validation. One of the advantages of the cross validation procedure is that, by
alternating over training and validation segments, it becomes possible to investigate
the generalization performance of a learning algorithm without the need to collect ad-
ditional training data. The technique performs generally well in practice although some
difficulties may arise. For example, we discussed two versions of cross validation: the
leave-one-out model and the K —fold model. In the leave-one-out procedure, one sam-
ple is left aside while training is performed on the remaining N — 1 samples. When
this is repeated a second time, a second sample is set aside and training is performed
on the other N — 1 samples, and so on. Note that the training data used during the
successive training steps share N — 2 data points. This means that the models that
result from these training steps are highly correlated, which affects the quality of the
estimate for the empirical risk in (61.56) since it is obtained by averaging strongly
correlated quantities. This is one reason why it is preferred to employ the K—fold
construction to reduce correlation between successive runs of the procedure. Neverthe-
less, the leave-one-out procedure is simpler and computationally less demanding than
K —fold implementations.

The idea of setting aside some random subset of the data for subsequent testing is
widely used in statistical analysis and correlation studies. Some of the earlier works
involve, for example, contributions by Larson (1931) and Quenouille (1949,1957). Ac-
cording to Stone (1974), the method of cross validation in the form described in this
chapter appears to have been originally developed by Lachenbruch (1965) who was
motivated by the work of Mosteller and Wallace (1963). Useful early accounts, includ-
ing discussion of K—fold cross validation, appear in Lachenbruch and Mickey (1968),
Mosteller and Tukey (1968), and Luntz and Brailovsky (1969). Other earlier works deal-
ing with cross validation techniques and their properties appear in Hills (1966), Cochran
(1968), Allen (1974), Stone (1974,1977,1978), and Cox (1975). Further treatment on the
subject, including more modern accounts and analysis of bias and variance properties,
can be found in Devijver and Kittler (1982), Picard and Cook (1984), Breiman et al.
(1984), Geisser (1993), Breiman (1996¢), Holden (1996), Efron and Tibshirani (1997),
Anthony and Holden (1998), Dietterich (1999), Nadeau and Bengio (2003), McLachlan
(2004), Bengio and Grandvalet (2005), and Hastie, Tibshirani, and Friedman (2009).
The results by Holden (1996) and Anthony and Holden (1998), in particular, provide a
useful characterization of the quality of the empirical error rate estimated according to
(61.56) in a K —fold implementation. They derived a bound on the probability that this
empirical estimate is close enough to the true error rate of the classifier ¢ by showing
that, for any 0 < § < 1, N > K > 3, and N§? > 2K:

2VC

N1+ &
P (sup Remp (Ap) — R(c)’ > 5) < 2K (%) g No/2K (61.63)
cel

where Remp(Ap) refers to the estimated empirical error rate the algorithm under con-
sideration, R(c) is the actual probability of error of classifier ¢, C is the class of classifiers
over which the design is performed (such as limiting ¢ to affine classifiers), and VC is a
constant that measures the complexity of the set C; for example, it is M — 1 for affine
classifiers in IRM. We will define the VC dimension in a future chapter. The bound
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on the right-hand side depends on §, the size of the training data, N, the number
of segments, K, and the VC dimension. The result is similar in form to the Vapnik-
Chervonenkis bound, which we will derive in future expression (64.111).

PROBLEMS

61.1 Consider two feature vectors {ha,hy} where h, belongs to class +1 and hy
belongs to class —1. Assume that these two vectors meet the margin in an SVM imple-
mentation, that is, they satisfy hlw* —0* = +1 and hjw* — 6* = —1. The parameters
(w*,0*) describe the separating hyperplane with maximal margin. Project the vec-
tor difference h, — hy along the unit-norm normal to the separating hyperplane and
determine the size of the margin, m(w*), associated with w* from this calculation.
61.2 Is the solution to the hard-margin SVM problem (61.4a)—(61.4b) unique?

61.3 Is the solution to the soft-margin SVM problem (61.11a)—(61.11c) unique?
61.4  Justify recursions (61.33a)—(61.33d) for the solution of an ¢;—regularized SVM
risk for regression purposes. Remark. For more discussion on the use of the e—insensitive
loss function max{0, |z| — €} in (61.31b), the reader may refer to Vapnik (1995,1998).
61.5 How would recursions (61.33a)-(61.33d) be modified if the empirical risk is
{1 —regularized and changed to

(w*,0%) 2 argmin {a|w|1 + % T;) max{O, (v(n) —F(n))* — e}}

welRM 9cR

where (n) = hiw — 67?

61.6 Refer to the statement of Prob. 60.7, except that now we wish to determine a
separating hyperplane w such that ’y(n)hlw > 1. We motivated the SVM recursion in
the body of the chapter as one solution method. Here, we motivate a second relazation
method based on using the alternating projection algorithm from Sec. 12.6. Introduce
the N halfspaces 3, = {w|1 — y(n)h w < 0}, one for each data pair (y(n), hy). We
are then faced with the problem of solving NN linear inequalities and finding a point
w” in the intersection of these halfspaces. Use the result of Prob. 9.5 to show that the
alternating projecting method motivates the following recursion:

y(n)hy,
[l l?

ma.x{(), 1-— 'y(n)hlwn_l}

Wy, = Wn—1 +

How is this method different from the hard-margin SVM recursion?

61.7 Consider a collection of N—data points {y(m), h.,} where v(m) € {£1} and
hm € RM. Assume the data is linearly separable with zero offset, meaning that there
exists some vector w such that kl,w > 0 for features in class +1 and Al w < 0 for
features in class —1. We know that such separating hyperplanes are highly non-unique.
Consider the logistic regression formulation

Assume we apply the gradient-descent recursion repeatedly to minimize P(w), namely,
Wn = Wn—1 — pV 1 P(Wn-1), n >0
Show that, for small p, the iterate w, converges to a limit satisfying

lim wy /[lwn | = ™ /™|
n—o0
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where w®"™ is the solution to the hard-margin SVM problem:
. 1
w™™ = argmin = |lw|?, subject to y(m)h,w >1, m=0,1,2,...,N —1
welRM 2

Remark. The result of this problem provides another example of the implicit bias prob-
lem discussed in the comments of Chapter 29. The data is linearly separable and there
exist infinitely many choices for the separating hyperplane. The gradient-descent al-
gorithm chooses one particular solution from among these; namely, the one with the
largest margin. See Soudry et al. (2018) for more discussion.

61.8 Verify that the Gramian matrix A defined by (61.40) is non-negative definite
and conclude that the cost function in the minimization problem (61.42a) is convex.
61.9 Repeat the derivation given in Sec. 61.2 to show that the soft-margin SVM
problem (61.11a)—(61.11c) can be rewritten as in (61.51a)—(61.51b). Explain that the
solution A(n) will be nonzero at data points that meet or violate the margin. In par-
ticular, verify that:

M (n) =0, wheny(n)(hiw* —0*) >1
M (n) =n/N, when v(n)(hjw* —0*) <1
0< X(n) <n/N.  when A(n)(hlw* —6%) = 1
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