
59 LOGISTIC REGRESSION

In this chapter, we describe a popular discriminative approach for classification
problems known as logistic regression. Assuming binary classification with labels
γ ∈ {±1} and features h ∈ IRM , we explained earlier in expression (28.85) that
the optimal Bayes classifier for predicting γ is given by

γ• =

{
+1, when γ̂LR = logit(h) ≥ 0

−1, otherwise
(59.1)

where γ• minimizes the probability of error, and logit(h) denotes the logit func-
tion defined in terms of the true conditional probabilities:

logit(h) = ln

(
P(γ = +1|h = h)

P(γ = −1|h = h)

)
(59.2)

It was shown in Sec. 28.4 that this expression for logit(h) or, equivalently, γ̂LR,
followed from minimizing the logistic risk, namely,

γ̂LR = argmin
γ̂=c(h)

{
E ln

(
1 + e−γγ̂

)}
(59.3)

where the expectation is over the joint distribution of (γ,h). Expression (59.1)
shows that we can deduce the optimal Bayes solution by examining the sign of
logit(h) or γ̂LR. Unfortunately, this is not possible in general because, once again,
the conditional probability P(γ = +1|h = h), which is needed to evaluate the
logit, is not known beforehand. The logistic regression approach of this chapter
addresses this challenge by restricting c(h) to an affine function of the feature
data, i.e., by assuming

c(h) = hTw − θ (59.4)

for some scalar offset θ and vector parameter w ∈ IRM to be determined.

59.1 LOGISTIC MODEL

Under the affine model (59.4), and referring to the earlier expressions (28.82a)–
(28.82b), the logistic formulation models the conditional probabilities in the form
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of logistic functions as follows:

P(γ = +1|h = h) =
1

1 + e−(hTw−θ) (59.5a)

P(γ = −1|h = h) =
1

1 + e+(hTw−θ) (59.5b)

These expressions correspond to composing the sigmoid functions 1/(1+e−z) and
1/(1 + ez) with the affine function hTw− θ. The above relations explain why the
logistic solution is a discriminative approach. This is because it models directly
the conditional probabilities rather than the joint distribution for (γ,h), as was
the case with generative approaches. We can group the above two relations into
a single expression and write

P(γ = γ|h = h) =
1

1 + e−γ(hTw−θ) , since γ ∈ {±1}

=
1

1 + e−γγ̂
, where γ̂

∆
= hTw − θ (59.6)

Figure 59.1 illustrates the behavior of logistic functions of the form 1/(1 + e−z)
and 1/(1+ez). Note that these functions return values between 0 and 1 (as befits
a true probability measure).
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Figure 59.1 Typical behavior of logistic functions for two classes. The figure shows
plots of the functions 1/(1 + e−z) (left) and 1/(1 + ez) (right) assumed to correspond
to classes +1 and −1, respectively.

Using construction (59.4), problem (59.3) is transformed into

(wo, θo) = argmin
(w,θ)

{
E ln

(
1 + e−γ(hTw−θ)

)}
(59.7)

Comparing with (59.5a)–(59.5b), we find that this objective is attempting to
maximize (59.5a) on average when γ = +1 and is attempting to minimize it
when γ = −1. Once (wo, θo) are determined, the prediction for the label variable
is given by (where we are dropping the subscript LR from γ̂LR and writing γ̂
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because, in this chapter, all predictions will be based on the logistic formulation):

γ̂ = hTwo − θo (59.8)

The sign of γ̂ is used to decide on the label for h:
{

if hTwo − θo ≥ 0, assign h to class +1

if hTwo − θo < 0, assign h to class −1
(59.9)

This conclusion can also be deduced by comparing P(γ = +1|h = h) to 1/2, as
is required by the optimal Bayes solution:

P(γ = +1|h = h)
1

1 + e−(hTwo−θo)
≥ 1/2

⇐⇒ hTwo − θo ≥ 0

⇐⇒ γo(h) = +1, (class assigned to h )

where we are denoting the class variable assigned to h under model (wo, θo) by
γo. We therefore arrive at the schematics shown in Fig. 59.2. The figure shows a
collection of feature vectors and a hyperplane whose normal direction is wo. All
points on the hyperplane satisfy the relation hTwo−θo = 0, while points on both
sides of the hyperplane satisfy hTwo − θo < 0 for one side and hTwo − θo > 0

for the other. The logistic regression solution decides on the label for a feature
vector h by verifying on which side h falls relative to the separating hyperplane.

Since the distribution of the data (γ,h) is not known, we will proceed to solve
problem (59.7) by transforming it into an empirical risk minimization problem
and then applying any of the stochastic approximation methods we described
in earlier chapters at some great length. Although we will focus in the body of
the chapter on the binary classification problem, we explain in the comments
at the end of the chapter how logistic regression can be extended to multi-class
classification problems — see, e.g., expression (59.85) and also Prob. 59.14.

Remark 59.1. (Comparing with linear discriminant analysis) Comparing (59.5a)
with expression (56.5) for linear discriminant analysis (LDA), we find that logistic
regression assumes directly that the conditional probability has a logistic form, which
is parameterized in terms of the unknown vector w; there is no Gaussian assumption
on the feature data. In contrast, LDA assumes that the feature distribution is Gaussian
according to (56.3) and arrives at expression (56.5), which is parameterized in terms of
the moment quantities {mr,Σ}. It was seen before in (56.7) that model (56.5) in the
Gaussian case leads to a logit expression that is linear in the feature space.

�

59.2 LOGISTIC EMPIRICAL RISK

We assume the availability of N training samples {γ(n), hn} where γ(n) ∈ {±1}
is the label associated with the n−th feature vector, hn ∈ IRM . Using this data,



2376 Logistic Regression

 
 
 
 
 
 
 
 
 
 
 
 

class +1 

class -1 
separating 
hyperplane 

normal 
direction 

Figure 59.2 Classification of feature vectors into two classes: data with nonnegative
logit values, γ̂ = hTwo − θo ≥ 0, are assigned to one class and data with negative logit
values, γ̂ = hTwo − θo < 0, are assigned to another class. The unknown vector wo

defines the direction that is normal to the separating hyperplane.

we replace the stochastic optimization problem (59.7) by the empirical risk min-
imization problem

(w?, θ?)
∆
= argmin

w∈IRM ,θ∈IR

{
1

N

N−1∑

n=0

ln
(

1 + e−γ(n)(hT
nw−θ)

)}
(59.10)

where the optimizer is now denoted by (w?, θ?). This problem can be solved
by a variety of stochastic optimization methods, already discussed in previous
chapters, such as stochastic gradient algorithms and variations thereof including
mini-batch implementations, ADAM, or accelerated momentum. It is sufficient
to illustrate the solution by considering one method. We focus on stochastic
gradient implementations, with and without regularization, which rely on in-
stantaneous gradient approximations. The sampling of the data in the stochastic
implementation can also be done with or without replacement.

Before describing the recursive algorithm, we clarify that we can motivate the
same empirical risk problem (59.10) from a purely maximum-likelihood perspec-
tive. Indeed, assume the training data {γ(n),hn} are independent and identically
distributed observations arising from some joint distribution, fγ,h(γ, h). Under
the assumed logistic model (59.6), the log-likelihood function of the labels given



59.2 Logistic Empirical Risk 2377

the features is given by the product expression:

`(w)
∆
= ln

{
N−1∏

n=0

P
(
γ(n) = γ(n) | hn = hn;w

)}

=

N−1∑

n=0

ln

(
1

1 + e−γ(n)(hT
nw−θ)

)
(59.11)

so that maximizing `(w) over w leads to the empirical risk minimization problem
(59.10).

In practice, the optimization problem (59.10) is modified to incorporate reg-
ularization for reasons already explained in Chapter 51, such as reducing ill-
conditioning, reducing the possibility of overfitting, and endowing w? with desir-
able properties such as having a small norm or sparse structure. For generality,
we will consider logistic regression under elastic-net regularization and replace
(59.10) by

(w?, θ?)
∆
= (59.12)

argmin
w∈IRM ,θ∈IR

{
P (w)

∆
= α‖w‖1 + ρ‖w‖2 +

1

N

N−1∑

n=0

ln
(

1 + e−γ(n)(hT
nw−θ)

)}

where α and ρ are nonnegative scalars, with one of them or both being set to
zero depending on whether we desire to enforce `1−regularization alone (ρ = 0),
`2−regularization alone (α = 0), or no regularization at all (α = ρ = 0). Using
the result of Example 16.13, we list a stochastic proximal algorithm for solv-
ing (59.12) in (59.14), where the notation Tβ(x) refers to the soft-thresholding
function defined by (11.18), namely,

Tβ(x)
∆
=





x− β, if x ≥ β
0, if − β < x < β

x+ β, if x ≤ −β
(59.13)

When x is vector-valued, the operation Tβ(x) is applied to the individual entries
of x and the result is a vector of soft-thresholded values.
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Stochastic proximal logistic regression for minimizing (59.12)

given dataset {γ(m), hm}N−1
m=0 or streaming data (γ(n), hn);

start from arbitrary initial conditions, {w−1,θ(−1)}.
repeat until convergence over n ≥ 0 :

select at random or receive a sample (γ(n),hn) at iteration n
γ̂(n) = hT

nwn−1 − θ(n− 1)

θ(n) = θ(n− 1)− µγ(n)

1 + eγ(n)γ̂(n)

zn = (1− 2µρ)wn−1 +
µγ(n)hn

1 + eγ(n)γ̂(n)

wn = Tµα(zn)

end
return (w?, θ?)← (wn,θ(n));

classify a feature h by using the sign of γ̂ = hTw? − θ? as in (59.9)

(59.14)

When α = 0 and only `2−regularization is present, the above listing reduces to
the stochastic gradient logistic regression algorithm:





γ̂(n) = hT
nwn−1 − θ(n− 1)

θ(n) = θ(n− 1)− µγ(n)

1 + eγ(n)γ̂(n)

wn = (1− 2µρ)wn−1 +
µγ(n)hn

1 + eγ(n)γ̂(n)
, n ≥ 0

(59.15)

We can simplify the notation by extending the feature and weight vectors as
follows:

h←
[

1

h

]
, w ←

[
−θ
w

]
(59.16)

so that (59.15) can be rewritten more compactly in the following manner where
the offset parameter is now implicit:





γ̂(n) = hT
nwn−1

wn = Awn−1 +

(
µ γ(n)

1 + eγ(n)γ̂(n)

)
hn, n ≥ 0

(59.17)

where the diagonal matrix A depends on the regularization parameter:

A
∆
=

[
1

(1− 2µρ)IM

]
(59.18)



59.2 Logistic Empirical Risk 2379

When a mini-batch of size B is used, the above recursion is replaced by




select B data samples {γ(b),hb} at random

γ̂(b) = hT
bwn−1, b = 0, 1, . . . , B − 1

wn = Awn−1 +

B−1∑

b=0

(
µ γ(b)hb

1 + eγ(b)γ̂(b)

)
hb, n ≥ 0

(59.19)

Example 59.1 (Binary classification using logistic regression) In Fig. 59.3 we show a
collection of 150 feature points hn ∈ IR2 whose classes γ(n) ∈ {±1} are known before-
hand. The data arises from the dimensionally reduced iris dataset from Example 57.3.
We denoted the two-dimensional reduced feature vectors in that example by the nota-
tion h′n, but will revert to the notation hn here. We employ the two classes shown in
the bottom plot of Fig. 57.5 and denote them by γ(n) ∈ {±1}.
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Figure 59.3 The plots in the first row show the 120 data samples used for training
(left) and the 30 data samples using for testing (right). The separation line is obtained
by running the stochastic gradient logistic algorithm (59.15). The algorithm performs
five passes over the training data using µ = 0.5. The rightmost plot in the second row
shows the likelihood values for each of the test feature vectors, i.e., the probability
that its classification is correct using (59.6).

The feature vectors are extended according to (59.16). We split the data into two sets:
120 points (80%) are selected randomly and used for training, while the remaining 30
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points (20%) are used for testing. These two sets are exclusive of each other and no
data point from one set appears in the other set. We use the 120 samples to train a
logistic classifier using the stochastic gradient recursion (59.15) without regularization
(ρ = 0) and with step-size µ = 0.5. We also employ random reshuffling. Specifically,
we run 5 epochs with the data reshuffled at the start of each epoch, and the algorithm
runs over the reshuffled data starting from the weight iterate obtained at the end of the
previous pass. The lines in the figure show the resulting separating curve. At the end of
the training phase, we assess the empirical error rate of the classifier on the test data
and find that it leads to zero errors. We also show in the figure the likelihood values
for each of the test feature vectors, i.e., the probability that its classification is correct,
by using expression (59.6) with w replaced by w?. In the bottom row on the left we
show the accuracy rate curve over the first 30 iterations of the first epoch in order to
illustrate how the error rate decreases over time. For each of these initial iterations, the
weight iterate wn is used to classify the data and the resulting accuracy rate is plotted.
It is seen that, for this example, the error rate quickly drops to zero (or the accuracy
rate quickly reaches 100%).

59.3 MULTICLASS CLASSIFICATION

Although the formulation of the logistic regression problem has focused so far
on the binary case, it can nevertheless be extended to multiclass classification
problems by following similar arguments. This is explained in the comments at
the end of the chapter — see, e.g., expression (59.85) and also Prob. 59.14, which
deal with the situation when hn can belong to one of multiple classes.

A second useful way to solve multiclass classification problems in general is to
use binary classifiers as building blocks. The logistic regression classifier is par-
ticularly useful for that purpose because, unlike other learning algorithms to be
described in future chapters, it provides a level of confidence in its classification
decision by means of expression (59.6), namely,





confidence level that γ is the correct label for h is assessed by :

P(γ = γ|h = h) =
1

1 + e−γγ̂
, γ̂ = hTw? − θ?

(59.20)
We describe next two popular techniques that take advantage of this property,
known as the one-versus-all (OvA) and the one-versus-one (OvO) strategies.

59.3.1 OvA Strategy

Assume there are a total of R classes indexed by r ∈ {1, 2, . . . , R}, and that we
are given a collection of training points {r(n), hn}, where r(n) now denotes the
class attached to feature hn. Given a test feature vector h, we would like identify
which class it belongs to. The OvA approach works by designing R separate
binary classifiers, one for each class r. For the first classifier corresponding to
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r = 1, all training points are redefined by setting:

γ(n) =

{
+1, if hn ∈ class r = 1

−1, otherwise
(59.21)

That is, data points belonging to class r = 1 are treated as belonging to the
binary class γ = +1, while all remaining data points are treated as belonging
to the binary class γ = −1. This construction is illustrated in Fig. 59.4. A
logistic classifier is then trained and weight and offset parameters are obtained
at the end of this first training denoted by (w?1 , θ

?
1). The hyperplane separates

features belonging to class r = 1 from all other features. This description already
highlights one of the inconveniences of the OvA approach: during training, the
binary classifier encounters many more misclassified data (those belonging to all
other classes) than positive decisions.

(multiple classes) (two classes)

Figure 59.4 In the one-versus-all (OvA) strategy, a collection of R binary classifiers
are designed for a multiclass classification problem involving R cases.

We repeat the procedure for the second class, r = 2. All training points are
redefined by setting:

γ(n) =

{
+1, if hn ∈ class r = 2

−1, otherwise
(59.22)

A logistic classifier is trained and results in parameters (w?2 , θ
?
2). This hyperplane

separates features belonging to class r = 2 from all other features. We continue
in this manner until a total of R separating hyperplanes are determined:

{
(w?1 , θ

?
1), (w?2 , θ

?
2) . . . , (w?R, θ

?
R)
}

(59.23)

According to this notation, hyperplane (w?r , θ
?
r) separates the features belonging

to class r from all other features.
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During testing, when the classification machine receives a feature vector, h,
and wishes to classify it, the procedure is as follows. Each logistic classifier in
(59.23) generates a classification decision for h (i.e., decides whether it belongs
to class +1 or class −1) along with a likelihood measure, which measures the
level of confidence of the classifier in its decision. The confidence level for each
classifier w?r is obtained from expression (59.20):

P(r = r | h = h;w?r) =
1

1 + e−(hTw?r−θ?r )
(59.24)

We then set the final classification class for h by selecting the classifier from the
set (59.23) with the largest confidence level:

r?(h)
∆
= argmax

1≤r≤R

{
1

1 + e−(hTw?r−θ?r )

}
(59.25)

Alternatively, note that if a classifier w?a has a higher confidence than classifier
w?b , then

1

1 + e−(hTw?a−θ?a)
>

1

1 + e−(hTw?b−θ?b )
(59.26)

which is equivalent to

hTw?a − θ?a > hTw?b − θ?b (59.27)

This suggests that we can also select the class label by solving instead

r?(h)
∆
= argmax

1≤r≤R

{
hTw?r − θ?r

}
(59.28)

Example 59.2 (Applying OvA to the iris dataset) We consider the dimensionally re-
duced iris dataset from the top plot of Fig. 57.5. There are three classes denoted by
r ∈ {0, 1, 2} corresponding to the Setosa (r = 0), Versicolor (r = 1), and Virginica
(r = 2) flower types. There are also a total of N = 150 samples. The plots in Fig. 59.5
show all data samples, along with the groupings that result from considering samples
from one class against the combined samples from the other two classes.

The feature vectors are extended according to (59.16). A collection of 120 samples are
selected for training while the remaining 30 samples are used for testing. We use the
120 samples to train a logistic classifier using the stochastic gradient recursion (59.15)
with µ = 0.01 and ρ = 0.1. Five passes of the algorithm with random reshuffling are
applied to the data resulting in (where, for completeness, we are highlighting the offset
and weight vector parameters): −θ?0,12

w?0,12

 =

 −0.4813
1.1256
−0.3421

 , (to separate class 0 from classes (1,2)) (59.29a)

and  −θ?1,02

w?1,02

 =

 −0.4134
−0.1498

0.5381

 , (to separate class 1 from classes (0,2)) (59.29b)
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Figure 59.5 The top plot (left) shows all data samples from the three classes
r = 0, 1, 2. The other plots show the groupings that result from considering samples
from one class against the combined samples from the other two classes.

and  −θ?2,01

w?2,01

 =

 −0.4931
−0.8530
−0.2329

 , (to separate class 2 from classes (0,1)) (59.29c)

Figure 59.6 shows the training data and the test data. It also shows the resulting sep-
arating lines. It is clear from the plot on the right in the top row of the figure that it
is not possible to separate class r = 1 from the combined classes r ∈ {0, 2} by means
of a linear classifier. The same is true, albeit to a lesser extent, for separating class
r = 2 from the combined classes r ∈ {0, 1}. The empirical error rates obtained over the
training data in each of the three cases shown in the figure are 0% for separating r = 0
from r ∈ {1, 2}, 26.67% for separating r = 1 from r ∈ {0, 2}, and 13.33% for separating
r = 2 from r ∈ {0, 1}.

Next, for each test vector h, we use expression (59.24) to determine the likelihood that
it belongs to class r ∈ {0, 1, 2}. The bottom plot in Fig. 59.7 shows the largest likelihood
value for each test sample. The top plot on the right shows the predicted labels over
the test data. The samples that are misclassified are marked in this plot by red. It
is observed that five samples are misclassified resulting in an empirical error rate of
16.67% over the test data (or 5 errors out of 30 samples).
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Figure 59.6 The right plot (bottom) shows the test data. The other plots show the
logistic regression classifier that is obtained in each case. It is clear that it is possible
to classify without errors the training data in the top plot (left) related to separating
class r = 0 from r ∈ {1, 2}. The same is not true for the other two cases. In
particular, it is not possible to separate class r = 1 from the combined classes
r ∈ {0, 2} by means of a linear classifier.

59.3.2 OvO Strategy

The second technique for multiclass classification is the one-versus-one (OvO)
strategy. Starting with a total of R classes, there are R(R−1)/2 pairwise combi-
nations of individual classes that are possible. For example, if R = 3 so that we
have three classes, r ∈ {1, 2, 3}, then we can group the training data according
to the following pairs of classes (1, 2), (1, 3), and (2, 3). In the grouping (1, 2), all
data points belonging to classes r = 1 and r = 2 will be used to train a binary
classifier to separate between these classes. In the second grouping (1, 3), all data
points belonging to classes r = 1 and r = 3 will be used to train a binary clas-
sifier to separate between these classes. And likewise for the data corresponding
to the grouping (2, 3) – see Fig. 59.8.

At the end of this training process, we end up with R(R − 1)/2 classifiers,
one for each pairing of classes. During testing, when the classification machine
receives a new feature vector h and wishes to classify it, the procedure is as
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Figure 59.7 The bottom plot shows the largest likelihood value for each test sample.
The top right plot shows the resulting predicted labels over the test data. It is
observed that five test samples are misclassified.

follows. Each classifier generates a classification decision for h (whether it belongs
to one of its classes or the other). For example, for the case R = 3 described
above, assume that h belongs to class r = 2. Then, classifier (1, 2) will decide
that h belongs to class 2, classifier (2, 3) will also decide that it belongs to class 2,
while classifier (1, 3) will issue some wrong decision. The final decision is to select
the class that received the largest number of votes from the R(R−1)/2 classifiers.
One inconvenience of this procedure is that some classes may receive an equal
number of votes (which can, for example, be decided by randomly selecting one
choice from among the possibilities).

Example 59.3 (Applying OvO to the iris dataset) We consider the same setting from
Example 59.2 except that we now apply the OvO procedure. There are three classes
denoted by r ∈ {0, 1, 2} corresponding to the Setosa (r = 0), Versicolor (r = 1), and
Virginica (r = 2) flower types. There are also a total of N = 150 samples: 120 of them
are selected for training and the remaining 30 samples are used for testing. The plots in
Fig. 59.9 show all training samples, along with the pairings that result from considering
samples from one class against the samples from another class.

We again extend the feature vectors according to (59.16) and apply five passes of the
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Figure 59.8 In the one-versus-one (OvO) strategy, a collection of R(R− 1)/2 binary
classifiers are designed for a multiclass classification problem involving R cases.

`2−regularized logistic regression algorithm (59.15) using µ = 0.01 and ρ = 0.1. Using
random reshuffling, the simulation leads to (where we are showing both the offset and
the weight parameters for completeness): −θ?01

w?01

 =

 −0.2800
0.9675
−0.4310

 , (to separate class 0 from classe 1) (59.30a)

and  −θ?02

w?02

 =

 −0.1095
1.1166
−0.0912

 , (to separate class 0 from class 2) (59.30b)

and  −θ?12

w?12

 =

 0.1993
0.5390
0.3971

 , (to separate class 1 from class 2) (59.30c)

Figure 59.10 shows the training data and the test data. It also shows the resulting sep-
arating lines. It is clear from the plot on the right in the top row that classes r = 1 and
r = 2 are not separable by a linear classifier. The middle plots in the figure show the
original test data and the predicted labels. It is seen that there are 5 misclassifications
(out of 30 test samples) resulting in an empirical error rate of 13.33%.
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Figure 59.9 The top plot (left) shows all training samples from the three classes
r = 0, 1, 2. The other plots show the pairings that result from considering samples
from one class against samples from another class.

59.4 ACTIVE LEARNING

In this section and the next we discuss two important problems in learning where
logistic regression plays a supporting role. The concepts discussed here can be
applied to other supervised classification algorithms as well. We start with the
problem of active learning.

The main objective of active learning is to endow a learning algorithm with the
ability to select which training samples to use and in what order. The expectation
is that by doing so, the classifier will be able to deliver improved performance
with a smaller number of labeled samples. This is particularly helpful in appli-
cations where it is costly to collect labeled data.

59.4.1 Labeled Data

Assume we have a collection ofN labeled data pairs {γ(n), hn}. For simplicity, we
assume two classes, γ(n) ∈ {±1}, although the discussion can be easily extended
to multiclass problems — see Example 59.5. Under active learning, the learner
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Figure 59.10 The top row shows the pairings of classes and the separating lines that
result from logistic regression. It is clear that it is not possible to classify without
errors the training data in the top rightmost plot related to separating class r = 1
from r = 2. The middle plots show the original test data and the predicted labels. It
is seen that there are 5 misclassifications (out of 30 test samples).

selects initially a random subset of N1 training samples, called the seed. We refer
to this set by the letter S, and denote the unused samples by U. The learner uses
the samples in S to train an initial classifier and arrive at its parameters (w?, θ?).
This step can be carried out, for example, by using the stochastic gradient logistic
regression algorithm (59.15) with or without regularization.

To continue, the classifier will now query the other set, U, repeatedly to decide
which of its samples to choose in order to to continue to update the classifier
(w?, θ?). This procedure is known as pool-based sampling, which is one of the
more popular schemes in active learning. The learner follows the following steps
to carry out the query process:

(a) (Compute confidence levels and uncertainties) For each feature hn ∈ U

(i.e., for each sample in the pool of unused samples), the classifier evaluates
the confidence level that it would have in assigning it to class γ = +1. We
denote this confidence level by

p(n)
∆
=

1

1 + e−(hT
nw

?−θ?)
, (confidence level) (59.31)

Obviously, the confidence that the classifier has in assigning the same sample
to the other class γ = −1 is 1 − p(n). We use the probabilities {p(n)} to
assess the level of uncertainty that we will have about the true label for hn.
The uncertainty is computed by using the following entropy measure for the
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n−th sample:

H(n) = −p(n) log2 p(n)− (1− p(n)) log2(1− p(n)), (uncertainty)

(59.32)

If the set U is very large, it may become computationally demanding to
evaluate these uncertainties for all feature vectors in it. Alternatively, we
can sample a random subset of U and only evaluate the confidence levels
and entropy values for the features in this subset.

The following are two popular strategies to select the next sample from
U (or its subset) for use in training. They are referred to as uncertainty
sampling procedures:

(a1) (least confidence) One strategy is to select the sample hno for which
the learner is least confident about its class, i.e., the one for which p(n)

is closet to 0.5:

no = argmin
n∈U

{
|0.5− p(n)|

}
(59.33)

Note that we are not selecting the sample with the smallest likelihood
value, but rather the sample whose likelihood is closest to 0.5.

(a2) (most uncertainty) A related strategy is to select the sample hno with
the highest entropy value (i.e., the sample for which the algorithm is less
certain about its class):

no = argmax
n∈U

H(n) (59.34)

Under binary classification, this criterion is similar to (59.33) because the
entropy measure attains its maximum when p(n) = 1/2. For both cases
of (a1) and (a2), and under mini-batch implementations, the classifier
would query U to select B samples at once by choosing the B samples
with the smallest confidence or largest entropy values.

(b) Once a new training sample (γ(no), hno) has been selected, the learner up-
dates its (w?, θ?) and repeats the procedure by seeking a new point from the
unused set U, updating the classifier, and so forth. Observe that under active
learning, the classifier updates its parameters by repeatedly using data that
it is least confident about (i.e., samples that are most challenging to classify
correctly under the current parameter values).

59.4.2 Unlabeled Data

When all training samples are labeled, active learning helps attain higher ac-
curacy levels with fewer training samples. However, active learning can also be
applied to situations where there is a limited amount of labeled data.

We denote the smaller set of labeled data by S and use it to train an initial
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classifier (w?, θ?) as before. The remaining unlabeled data are collected into the
second set U. For each of the feature vectors in U, the active learner again uses
expression (59.31) to evaluate how confident it will be about its classification.
It then selects the feature vector hno with the least confidence level, according
to steps (a1) or (a2), and requests that its true label γ(no) be provided by
an oracle. The oracle is usually a human annotator. This situation provides an
example of a design system involving a human-in-the-loop. Once (hno , γ(no)) are
known, the active learner uses this data point to update its classifier (w?, θ?),
and the process repeats. Observe that in this implementation, the learner is only
requesting labels for what it believes are the most informative feature vectors
within the unlabeled data set. By doing so, the learner prioritizes the features
and it becomes unnecessary to collect labels for all features in U at once, but
only on demand.

Example 59.4 (Active learning applied to a logistic regression model) We consider the
`2−regularized logistic regression algorithm (59.15) with the offset parameter set to
zero, namely,

wn = (1− 2µρ)wn−1 + µ
γ(n)hn

1 + eγ(n)hT
nwn−1

, n ≥ 0 (59.35)

We generate N = 2000 random pairs of data {γ(n), hn} according to a logistic model.
First, a random parameter wa ∈ IR10 is selected, and a random collection of feature
vectors {hn} are generated with zero-mean unit-variance Gaussian entries. Then, for
each hn, the label γ(n) is set to either +1 or −1 according to the following construction:

γ(n) = +1 if
( 1

1 + e−h
T
nw

a

)
≥ 1/2, otherwise γ(n) = −1 (59.36)

A total of K = 300 epochs are run over the data, with the data randomly reshuffled
prior to each run. We determine the value of the risk function P (w) at the beginning
of each epoch, denoted by P (wk−1). This results in a learning curve showing how the
risk value diminishes with the epoch index. We repeat the experiment 10 times and
average the learning curves to obtain a smoother curve. The learning curves are plotted
in normalized logarithmic scale, namely,

ln

(
P (wk−1)− P (w?)

maxk{P (wk−1)− P (w?)}

)
(59.37)

where the minimizer w? for P (w) is “obtained” by applying a batch gradient-descent
algorithm on the entire set of data points.

The simulation uses ρ = 1, µ = 0.0001, and M = 10. We assume we know the labels
for only 40 data points, while the labels for the remaining 1960 feature vectors will be
requested on demand. We run algorithm (59.35) on the available labeled data points
and obtain an initial classifier model, w40. Subsequently, we follow an active learning
approach. We select 20 random samples from among the remaining 1960 samples. For
each of the samples in this batch, we compute the confidence level p(n) and retain the
sample of least confidence, indexed by no according to (59.33). We request the label for
this feature vector and use the data point (γ(no), hno) to update w40 to w41. We repeat
the procedure 200 times. Figure 59.11 shows the learning curves for this construction,
as well as the resulting weight for the classifier. It is seen that the learner is able to
estimate well the entries of the classifier.
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Figure 59.11 (Top left) A sample learning curve P (wk−1) relative to the minimum risk
value P (w?) in normalized logarithmic scale for the stochastic gradient
implementation (59.35) under random reshuffling. (Top right) Smoothed learning
curve obtained by averaging over 10 experiments. (Bottom) Actual logistic regression
model wa and the estimate for it obtained through active learning.

Example 59.5 (Multiclass learning) The description of the active learning procedure
focused on the binary case. When there are multiple classes, say r ∈ {1, 2, . . . , R}, we
first apply the OvA procedure to design the binary classifiers {(w?1 , θ?1), . . . , (w?R, θ

?
R)}.

Then, for each feature hn ∈ U, expression (59.24) provides the likelihood that it belongs
to class r by classifier w?r :

p′r(n)
∆
= P(r = r | hn = hn;w?r , θ

?
r ) =

1

1 + e−(hT
nw

?
r−θ?r )

(59.38)

We normalize these likelihoods to add up to one and transform them into a probability
distribution as follows:

pr(n) =
p′r(n)∑R
`=1 p

′
`(n)

(59.39)

Using these values, we can assess the uncertainty about the class label for hn by com-
puting its entropy:

H(n) = −
R∑
r=1

pr(n) log2 pr(n) (59.40)

Then, we select the sample no as follows. For each sample hn, we first determine which
label appears to be the most likely for it, denoted by:

r̂(n) = argmax
1≤r≤R

pr(n) (59.41)
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Let p̂(n) denote the corresponding largest likelihood:

p̂(n) = pr̂(n)(n) (59.42)

Subsequently, we choose no by selecting the sample with the least confidence:

no = argmax
n∈U

{
1− p̂(n)

}
(59.43)

Table 59.1 provides an example with 4 samples from U assuming R = 3 classes. From
the entries in the last column we deduce that no = 1 for this example.

Table 59.1 Example showing the likelihood values for four samples from U.
sample p1(n) p2(n) p3(n) r̂(n) p̂(n) 1− p̂(n)

1 0.5 0.3 0.2 1 0.5 0.5
2 0.1 0.2 0.7 3 0.7 0.3
3 0.2 0.2 0.6 3 0.6 0.4
4 0.1 0.8 0.1 2 0.8 0.2

Example 59.6 (Other classifier structures) The description of the active learning pro-
cedure prior to the examples relied on the training of a binary logistic regression clas-
sifier, which allowed us to assess the confidence levels using expression (59.31). Active
learning can be applied to other types of classifiers, which may not have an explicit
expression for evaluating the confidence level associated with their decisions. Two ex-
amples of alternative policies that can be used to select the “least confident” sample
include:
(a) Selecting the sample no from the unused set U (or a subset of it) that is closest to

the separating hyperplane (w?, θ?). We explain in future expression (60.10) that
the distance of a generic feature vector h to the hyperplane is given by

distance from h to hyperplane (w?, θ?) = |hTw? − θ?|/‖w?‖ (59.44)

(b) For each hn ∈ U (or in a subset of U), we predict its label using sign(hT
nw

? − θ?).
We subsequently select a neighborhood of the closest K features to h from the
seed set S and find out how many of them belong to the same class, say, Nh. Then,
the ratio Nh/K is an approximation for the confidence level in assigning h to that
class, from which we can estimate p(n) (the confidence in assigning h to class +1)
and continue from here as before.

59.5 DOMAIN ADAPTATION

We examine next the concept of domain adaptation where logistic regression
again plays a useful supporting role. Domain adaptation deals with the situa-
tion where a learning algorithm is trained on data arising from a particular joint
distribution (e.g., height and weight of female and male individuals from a cer-
tain geographic region A), and then it is desired to adjust the classifier so that
it can operate reliably on data arising from a perturbed distribution (such as
height and weight measurements for female and male individuals from another
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geographic region, B) without the need to carry out a new retraining stage. This
is particularly useful in situations where collecting new training data maybe pro-
hibitive. To formulate the domain adaptation problem, we need to distinguish
between two domains: the source domain and the target domain.

59.5.1 Source Domain

Let γ and h ∈ IRM refer to labels and feature vectors and consider a stochastic
risk optimization problem of the general form:

wo
∆
= argmin

w∈IRM
E Q(w;γ,h) (59.45)

where Q(·; ·) represents some loss function (such as the logistic loss) and the
expectation is over the joint distribution of the data. We have used the notation
fγ,h(γ, h) before to refer to this distribution. For reasons that will become clear
soon, we will instead use the notation fS(γ, h), with a subscript S, and refer to
it as the source distribution.

We already know how to apply stochastic optimization procedures to mini-
mize risk functions of the form (59.45). For instance, assume we have steaming
data {γ(n), hn} arising from the distribution fS(γ, h). Then, we can iterate, for
example, a stochastic gradient recursion to get successive estimates for wo:

wn = wn−1 − µ∇wT Q(wn−1; γ(n), hn), n ≥ 0 (59.46)

The same algorithm is useful for seeking the minimizer of an empirical risk
approximation that solves instead:

w?
∆
= argmin

w∈IRM

{
1

NS

NS−1∑

n=0

Q(w; γ(n), hn)

}
(59.47)

assuming that we have access to a collection of NS data realizations {γ(n), hn}.
We can also incorporate regularization into the empirical risk and solve instead

w?
∆
= argmin

w∈IRM

{
ρ‖w‖2 +

1

NS

NS−1∑

n=0

Q(w; γ(n), hn)

}
(59.48)

in which case we would apply the following stochastic gradient recursion:

wn = (1− 2µρ)wn−1 − µ∇wT Q(wn−1; γ(n), hn), n ≥ 0 (59.49)

Once trained, the resulting classifier w? is expected to perform well on test data
arising from the same source distribution as the training data.

59.5.2 Target Domain

There are, however, important situations in practice where the test data arise
from a different distribution than the training data. For example, it may be
easy to collect feature data from some geographic region A and label the data
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according to whether an individual has one medical condition or another. And
yet we are interested in employing the classifier to discriminate among features
collected from another geographic region B where the distribution of the data
follows a different pattern, and where it is either difficult or expensive to collect
labels for the data. If we simply train the classifier using the available labeled data
from region A, and use it to classify the feature vectors from region B without
proper adjustment, then the accuracy of the classification task will generally be
low.

This situation gives rise to a scenario where a classifier is trained by data
arising from a source distribution and needs to be tested on data arising from
a different target distribution. Domain adaptation provides one solution to this
problem; later in future Example 65.11 we will illustrate another solution method
based on transfer learning in the context of neural networks. The terms “domain
adaptation” and “transfer learning” are often used interchangeably even though
the former refers to a narrower situation where the label and feature spaces are
the same but only their probability distributions can change.

Domain adaptation can be motivated as follows. We denote the joint distri-
bution for the data from the target domain by fT (γ, h), with a subscript T . We
use Bayes rule and factor it as

fT (h, γ) = fT (h) fγ|h(γ|h) (59.50)

where the first component on the right-hand side is the distribution of the feature
data under the target distribution, while the second component continues to
be the conditional distribution of the label over the data. Observe that we are
writing fT (h) instead of fh(h) to emphasize that this data distribution is specific
to the target domain. Likewise, we will write fS(h) to refer to the distribution of
the feature data in the source domain. One of the common situations for domain
adaptation is the case where the feature distribution is different between the
source and target domains, i.e.,

fS(h) 6= fT (h) (59.51)

The difference between these distributions needs to be small for better results. At
the same time, it is assumed that the conditional distributions remain invariant
across both domains:

fγ|h(γ|h) is invariant in the source and target domains (59.52)

This case is referred to as domain adaptation under covariate shift.
Now, if we had access to labeled training data from the target distribution,

we could consider minimizing directly the risk function over the target domain,



59.5 Domain Adaptation 2395

which would be defined by

PT (w)
∆
= E T Q(w;γ,h)

= Eh

{
Eγ|hQ(w;γ,h)

}

=

ˆ
h∈H

fT (h)
{
Eγ|h Q(w;γ,h)

}
dh (59.53)

where in the first line the expectation is over the target distribution fT (γ, h).
Unfortunately, we only have access to labeled data from the source domain and
not from the target domain. Therefore, we cannot employ an iterative procedure,
such as a stochastic gradient algorithm, to minimize PT (w) because the loss
values cannot be evaluated; only realizations for h are available from the target
distribution but not for their labels γ.

59.5.3 Training under Covariate Shift

The main question is whether it is possible to use the available labeled training
data from the source domain to seek the minimizer of (59.53). The answer is in
the affirmative. To show how this can be done, we first rework the risk expression
(59.53) as follows:

PT (w)
(a)
=

ˆ
h∈H

fS(h)

fS(h)
fT (h)

{
Eγ|h Q(w;γ,h)

}
dh

=

ˆ
h∈H

fS(h)

{
Eγ|h

(
fT (h)

fS(h)
Q(w;γ,h)

)}
dh

= ES

{
fT (h)

fS(h)
Q(w;γ,h)

}
(59.54)

where in step (a) we multiplied and divided by the same quantity fS(h). In the
last equality we used the fact that, under covariate shift, the conditional pdf of
γ given h is the same for both source and target domains. The last expectation
is over the joint distribution of the source domain. This derivation assumed that
both the source and target distributions for the feature data share the same
range space, written as h ∈ H.

The scalar α(h) = fT (h)/fS(h) in (59.54) is referred to as the importance
weight. The key observation is that by scaling by α(h) we are able to transform
the risk PT (w) from (59.53), which involves averaging over the target distribu-
tion, fT (h, γ), to an equivalent expression (59.54) that involves averaging over
the source distribution, fS(h, γ). Motivated by expression (59.54), and using the
labeled training data {γ(n), hn)} from the source domain, we introduce a reg-
ularized empirical risk of the form (say, an `2−regularized risk for illustration
purposes):

P (w)
∆
= ρ‖w‖2 +

1

NS

NS−1∑

n=0

fT (hn)

fS(hn)
Q(w; γ(n), hn) (59.55)
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where the ratio fT (hn)/fS(hn) is evaluated at the source feature vector, hn. We
still cannot minimize this empirical risk because the pdfs, fT (h) and fS(h), are
not known. All we have is a collection ofNS labeled feature vectors {h0, . . . , hNS−1

}
from the source domain and a second collection of NT unlabeled feature vectors
{hNS+1, . . . , hNS+NT−1} from the target domain. There are solution methods
that rely on estimating the pdfs fS(h) and fT (h) from the data, which requires
modeling these distributions explicitly, and then applying a stochastic gradient
recursion to seek the minimizer of P (w). We describe another solution that relies
on the use of a logistic regression classifier.

To begin with, let us introduce a second label, denoted by σ, such that σ = +1

if feature h arises from the source domain and σ = −1 if h arises from the target
domain. It can be easily verified that — see Prob. 59.16

α(h)
∆
=

fT (h)

fS(h)
=

P(σ = +1)

P(σ = −1)

P(σ = −1|h)

P(σ = +1|h)
(59.56)

where the first ratio, P(σ = +1)/P(σ = −1), is a measure of the relative fre-
quency of samples arising from the source and target domains. These probabili-
ties can be estimated as follows:

P̂(σ = +1) =
NS

NS +NT
, P̂(σ = −1) =

NT
NS +NT

(59.57)

The rightmost ratio in (59.56) given by P(σ = −1|h)/P(σ = +1|h), can be esti-
mated by introducing a separate classifier to distinguish between features arising
from one domain or the other. For example, we can train a logistic regression clas-
sifier and determine its parameters (wx, θx) to separate between classes σ = +1

and σ = −1; it should be noted that these two classes may not generally be
linearly separable (in which case we can use other classifier structures, such as
kernel-based learning as discussed in a future chapter). We have available a total
of NS+NT feature vectors for this classification task, with NS of them belonging
to class σ = +1 and NT of them belonging to class σ = −1. Let {hn, σ(n)} refer
to all available feature vectors and their labels (source or target features). Then,
we can learn (wx, θx) by iterating the logistic regression algorithm:

σ̂(n) = hTnw
x
n−1 − θx(n− 1) (59.58a)

θx(n) = θx(n− 1)− µσ(n)

1 + eσ(n)σ̂(n)
(59.58b)

wxn = (1− 2µρ)wxn−1 +
µσ(n)hn

1 + eσ(n)σ̂(n)
(59.58c)

Once this classifier is trained, we use its limiting parameters (wx, θx) to estimate
the probabilities that are needed in (59.56). Using expression (59.6), we can write

P(σ = +1|h) =
1

1 + e−(hTwx−θx)
(59.59)

P(σ = −1|h) =
1

1 + e(hTwx−θx)
(59.60)
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Substituting into (59.56) we get

α(h) =
fT (h)

fS(h)

≈ NS
NT

1 + e−(hTwx−θx)

1 + e(hTwx−θx)

=
NS
NT

e−(hTwx−θx)

=
NS
NT

e−σ̂ (59.61)

where we are defining the predicted label:

σ̂
∆
= hTwx − θx (59.62)

A second method to estimate the ratio P(σ = −1|h)/P(σ = +1|h) is to employ
a k−nearest neighbor rule instead of the logistic regression classifier. In this
case, a majority vote from the k−nearest neighbors to h from among all samples
{hn, σ(n)} would determine its predicted label and allow us to estimate P(σ =

σ|h) by counting the number of votes for the label σ divided by k. In this case,
the importance weight α(h) would be given by

α(h) ≈ NS
NT

N−1

N+1
(59.63)

where N−1 is the number of neighbors from class −1 and N+1 is the number
of neighbors from class +1 within the k−size neighborhood around h. Clearly,
N−1 +N+1 = k.

Once the probabilities needed in (59.56) have been estimated, we can apply a
stochastic gradient algorithm to minimize (59.55) using the labeled source data
{γ(n), hn} as follows:

wn = (1− 2µρ)wn−1 − µα(n)∇wT Q(wn−1; γ(n), hn) (59.64)

where α(n) is the scaling factor evaluated at the n−th feature vector from the
source domain:

α(n)
∆
= α(hn) =

NS
NT

e−σ̂(n), σ̂(n) = hTnw
x − θx (59.65)

In summary, we arrive at procedure (59.66) for solving the domain adaptation
problem under covariate shift. This procedure is based on instance-weighting
since each data point (γ(n), hn) from the source domain is weighted by the
scalar α(n).
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Domain adaptation algorithm for minimizing (59.55) under covariate shift

given:
NS labeled data pairs from source domain: {γ(n), hn}, n = 0, 1, . . . , NS − 1.
NT unlabeled features from target domain: {hn+NS}, n = 0, 1, . . . , NT − 1.

logistic classifier
• train a logistic classifier to distinguish between source features (σ = +1)
and target features (σ = −1). Let (wx, θx) denote the resulting classifier.
• for each source vector hn, determine α(n) = (NS/NT )e−(hT

nw
x−θx).

stochastic gradient algorithm
• use the labeled source data {γ(n), hn} to train:
wn = (1− 2µρ)wn−1 − µα(n)∇wT Q(wn−1; γ(n), hn)

• use the resulting classifier w? to determine the labels
for the target domain features {ht}, t = 0, 1, . . . , NT − 1:
γ(t) = +1, if hTt w? ≥ 0

γ(t) = −1, if hTt w? < 0

(59.66)

Example 59.7 (Domain adaptation applied to logistic data) We generate NS = 100
random pairs of source data points {γ(n), hn} according to a logistic model. First,
a random parameter model wS ∈ IR2 is selected, and a random collection of feature
vectors {hn} are generated with zero-mean unit-variance Gaussian entries. Then, for
each hn, the label γ(n) is set to either +1 or −1 according to the following construction:

γ(n) = +1 if
( 1

1 + e−h
T
nwS

)
≥ 1/2, otherwise γ(n) = −1 (59.67)

We generate a second set of NT = 100 random pairs of target data points {γ(n), hn} by
using a similar logistic construction albeit with a different parameter model wT ∈ IR2.

A total of K = 100 epochs are run over the data, with the data randomly reshuffled
prior to each run. Although the source and target features are not linearly separable in
this example, we still train a logistic classifier wx to separate between source and target
data, as explained prior to the example. The result is (where, due to the extension, the
top entry is the offset θx for the classifier):

[ −θx
wx

]
=

 0.0049
−0.0089

0.0069

 (59.68)

We use the result to determine the scalars {α(n)} for the labeled source samples, and
apply the logistic regression recursion to the source data. We again run K = 100 epochs
and perform random reshuffling at the start of each run, leading to the estimate (no
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Figure 59.12 (Top left) Scatter diagram for the labeled source samples. (Top right)
Scatter diagram for the labeled target samples. (Bottom left) Unlabeled target
samples. (Bottom right) Predicted labels for the target samples.

offset was used in this case):

w? =

[
−0.2108
−0.0667

]
(59.69)

We use w? to classify the target samples into classes +1 or -1. The simulation uses
ρ = 1, µ = 0.0001, and M = 2. Figure 59.12 shows the scatter diagrams for the labeled
source and target data in the top row for comparison purposes. In the implementation,
we are actually assuming that the labels for the target data are not known, as shown
in the bottom row of the figure, and employ the above construction to predict their
labels. For this example, the classification error is 19%.

It is not difficult to observe from repeating this experiment that the domain adaptation
procedure can fail more often than desirable. This is because the source and target
samples are not generally linearly separable, which results in poor estimates for {α(n)}.
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59.6 COMMENTARIES AND DISCUSSION

Logistic function, logit, and probit. In general, for any x ∈ IR, the logistic function
σ(x) is defined as the transformation

σ(x)
∆
=

1

1 + e−x
, (logistic function) (59.70)

We showed a plot of this function in Fig. 59.1, where it is seen that σ(x) satisfies the
useful properties:

σ(0) = 1/2, lim
x→+∞

σ(x) = 1, lim
x→−∞

σ(x) = 0 (59.71)

In other words, the function σ(x) assumes increasing values in the range (0, 1) as x varies
from −∞ to +∞. Accordingly, σ(x) can be interpreted as a cumulative distribution of
some underlying probability density function (pdf), which turns out to be the logistic
distribution. To see this, let x denote a random variable with mean x̄ and variance σ2

x.
Let a2 = 3σ2

x/π
2. Then, we say that x has a logistic distribution when its pdf has the

form

fx(x)
∆
=

1

4a
sech2

(
1

2a
(x− x̄)

)
, (logistic pdf) (59.72)

where sech(·) refers to the hyperbolic secant function defined by

sech(t)
∆
= 2/(et + e−t) (59.73)

The cumulative distribution, which measures P(x ≤ x), is given by

Fx(x)
∆
=

1

1 + e−
1
a

(x−x̄)
(59.74)

so that σ(x) corresponds to the cumulative distribution of a logistic pdf with mean zero
and variance σ2

x = π2/3.
Furthermore, for a generic y ∈ (0, 1), we define the logit function

g(y)
∆
= logit(y)

∆
= ln

(
y

1− y

)
, (logit function) (59.75)

This function is closely related to the logistic function (59.70). Indeed, one function is
the inverse of the other. That is,

g(y) = ln

(
y

1− y

)
⇐⇒ y = σ(g(y)) (59.76)

This observation provides one useful interpretation for the logistic regression model
used in (59.6). Indeed, if we make the identifications:

y ← P(γ = γ|h = h;wo), x← γhTwo (59.77)

then relation (59.6) is simply stating that y = σ(x). Consequently, according to (59.76),
it must hold that x = logit(y).

The logistic function (59.70) was introduced by the Belgian mathematician Pierre
Verhulst (1804-1849) in his studies of models for population growth. Verhulst’s
work was motivated by his observation that the rate of population growth should
be dependent on the population size, which led him to propose a continuous-time
differential equation in the paper by Verhulst (1845) of the following form:

dy(t)

dt
= αy(t)

(
1− y(t)

P

)
, y(0) = Po, t > 0 (59.78)
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Here, the symbol y(t) denotes the population size at time t, α denotes the growth rate,
and P is the maximum population size. The solution that corresponds to the special
case Po = 1/2, P = 1, and α = 1 leads to the logistic function:

y(t) =
1

1 + e−t
(59.79)

The designation “logit” for the function (59.75) was introduced by Berkson (1944,1951),
whose work was motivated by the earlier introduction of the “probit” function by Gad-
dum (1933) and Bliss (1934a,b); the term “probit” was used in the references by Bliss
(1934a,b). For any y ∈ (0, 1), the probit function is defined as (compare with (59.75)):

g(y)
∆
= probit(y)

∆
= Φ−1(y), (probit function) (59.80)

where Φ(x) denotes the cumulative function of the standard Gaussian distribution with
zero mean and unit variance, i.e.,

Φ(x)
∆
=

1√
2π

ˆ x

−∞
e−τ

2/2dτ (59.81)

and Φ−1(y) is the inverse transformation. The probit is closely related to theQ−function
for Gaussian distributions since one function is the inverse of the other:

g(y) = probit(y) ⇐⇒ y = Φ(g(y)) (59.82)

For further details on the history of the logistic function and the logit and probit func-
tions, the reader may refer to the treatment given by Cramer (2003).

Logistic regression. The technique is of broad appeal and has found applications in
a wide range of fields, besides machine learning and pattern classification, such as in
the life and social sciences. The driving force behind its appeal is that the indepen-
dent variable γ is not continuous but discrete and can only assume a finite number
of possibilities. For example, in the life sciences where logistic regression formulations
are popular, it is customary for the variable γ to represent the state of a patient (e.g.,
whether the patient has a certain condition or not), while h collects measurements of
biological variables. Likewise, in the social and political sciences, the variable γ may
represent whether an individual leans towards one political affiliation or another based
on observations of certain attributes.

The concept of logistic regression in statistical analysis was originally introduced by
Cox (1958), who focused on the binary case — see also the texts by Cox (1969,2006).
There is a strong connection with the probit regression concept introduced earlier by
Bliss (1934a,b). In the logistic formulation, the conditional probability was modeled
in (59.6) by the cumulative function of a logistic pdf, written here more compactly in
terms of σ(x) = 1/(1 + e−x) as

P(γ = +1 | h = h;wo, θo) = σ(hTwo − θo) (59.83)

In comparison, the probit model employs the cumulative distribution of the Gaussian
distribution:

P(γ = +1 | h = h; ;wo, θo) = Φ(hTwo − θo) (59.84)

where Φ(x) is defined by (59.81). The logit and probit models for binary classification
lead generally to similar results, although the logit formulation is more popular — see,
e.g., the discussion in Chapter 33.

Multinomial logistic regression. We focused mostly on the case of binary classification
problems in the body of the chapter where γ assumes one of two possible values,
γ ∈ {±1}. Variations of logistic regression that handle more than two states are of
course possible; these formulations are referred to as multinomial or multiclass logistic
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regression problems, and also as softmax regression problems — see Prob. 59.14. In
this case, it is assumed that there are R classes, labeled r ∈ {1, 2, . . . , R}. Separate
parameters (wr, θr) are associated with each class. The conditional distribution of r
given the feature h is modeled as the following softmax function:

P(r = r|h = h) = eh
Twr−θr

(
R∑

r′=1

eh
Twr′−θr′

)−1

, 1 ≤ r ≤ R (59.85)

An application of multinomial logistic regression in the context of classification prob-
lems appears in Bohning (1992). More detailed treatments on logistic regression, along
with examples of applications in several fields, can be found in the texts by Harrell
(2001), Cramer (2003), Cox (2006), Hale, Yin, and Zhang (2008), Freedman (2009),
Hilbe (2009), Bolstad (2010), Shi et al. (2010), and Hosmer and Lemeshow (2013).
Further discussions in the context of machine learning, involving the consideration of
regularized versions of logistic regression and other methods of solution, appear in sev-
eral works, e.g., Figueiredo (2003), Ng (2004), Krishnapuram et al. (2005), Koh, Kim,
and Boyd (2007), and in the texts by McCullagh and Nelder (1989), Bishop (2007),
and Theodoridis and Koutroumbas (2008).

Multiclass classification problems. We have already encountered, and will continue to
encounter, in our treatment several classification algorithms that can handle multi-
class classification problems, such as naïve Bayes classifiers, k−nearest neighbor classi-
fiers, self-organizing maps, decision trees, random forests, linear discriminant algorithms
(LDA), and neural networks. There have also been works in the literature on extending
the support vector machine (SVM) formulation of future Chapter 61 to multiclass
problems — see, e.g., Vapnik (1998) and the articles by Joachims (1998), Platt (1998),
Weston and Watkins (1999), Bredensteiner and Bennett (1999), Crammer and Singer
(2001), and Lee, Lin, and Wahba (2004).

In Secs. 59.3.1 and 59.3.2 we discussed a different approach to multiclass classifi-
cation, in the form of the OvO and OvA techniques, which rely on transforming the
problem into a sequence of binary classification problems. While OvO involves training
more classifiers than OvA (O(R2) vs. O(R)), it nevertheless uses less training data.
It has been observed in the literature, based on extensive experimentation, that if the
underlying binary classifiers are tuned well, then using the OvO or OvA strategies
works rather well, even in comparison to more sophisticated multiclass classification
techniques. The work by Rifkin and Klautau (2004) provides arguments in support of
this performance, especially for the OvA method. The OvO and OvA strategies are
intuitive and simple and perhaps, for this reason, they have been re-discovered multi-
ple times. For further discussion, the reader may refer to the texts by Bishop (2007)
and Hastie, Tibshirani, and Friedman (2009), as well as the articles by Hastie and Tib-
shirani (1998), Allwein, Shapire, and Singer (2000), Hsu and Lin (2002), Aly (2005),
Garcia-Pedrajas and Ortiz-Boyer (2006), and Rocha and Goldenstein (2013).

A third method for transforming a multiclass classification problem into the solution
of a sequence of binary classifiers is the error-correcting output code (ECOC) method,
proposed in the works by Sejnowski and Rosenberg (1987) and Dietterich and Bakiri
(1995) — see also the treatments in Allwein, Shapire, and Singer (2000), Hsu and Lin
(2002), and Furnkranz (2002). The method relies on using ideas from coding theory to
select between a collection of binary classifiers as follows. Assume we are faced with a
multiclass classification problem involving R classes. Let B denote the number of base
classifiers that we are going to use to attain multiclass classification. We introduce a
coding matrix, denoted by C, of size R × B and whose entries are ±1. Each row of
C is associated with one class, r = 1, 2 . . . , R, and the ±1 entries on the r−th row
of C constitute a “codeword” that we are using to represent that particular class. For
example, assume R = 4 and B = 6. Then, one choice for the coding matrix C could
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be:

C =


r b1 b2 b3 b4 b5 b6
1 +1 −1 +1 +1 −1 −1
2 +1 +1 −1 +1 +1 +1
3 −1 −1 −1 −1 +1 +1
4 −1 −1 +1 −1 −1 −1

 (59.86)

We are labeling the columns by {b`} and these columns have a meaningful interpreta-
tion. For example, assume we are classifying images into four classes: cars, fruits, flowers,
and airplanes. The value of b1 could be indicating whether an image has wheels in it
(b1 = +1) or not (b1 = −1). If you examine the values appearing in the b1 column in
the above example for C, we find that classes r = 1 and r = 2 have wheels in them
while classes r = 3 and r = 4 do not. We say that the matrix C provides R codewords
(rows); one for each class r. Moreover, each column of C (i.e., each base classifier)
divides the training data into two groupings, regardless of their class r. For example,
under column b1, all training data that belong to classes r = 1 or r = 2 are assigned to
class γ = +1, while the remaining training data that belong to classes r = 3 or r = 4
are assigned to class γ = −1. A binary classifier can then be trained on this grouping;
this step results in a classifier with parameter vector w?1 . We repeat for column b2. In
this case, all training data that belong to class r = 2 are assigned to γ = +1, while the
remaining training data that belong to classes r = 1, 3, 4 are assigned to class γ = −1.
A binary classifier can then be trained on this grouping; this step results in a classifier
with parameter vector w?2 . We repeat for columns {b3, b4, . . . , b6}. By the end of this
training process, we end up with six trained binary classifiers, {w?` }.

Next, during normal operation, when a new feature vector h is received, we employ
the classifiers {w?` } to determine a codeword representation for h. For example, assume
we find that the codeword corresponding to a particular h is

codeword(h) =
[

+1 −1 −1 +1 −1 −1
]

(59.87)

We then determine the “closest” row in C to this codeword, where closeness can be
measured either in terms of the Euclidean norm or in terms of the Hamming distance;
the Hamming distance between two vectors is the number of entries at which the vectors
differ from each other:

r̂
∆
= argmin

1≤r≤R

{
Hamming (codeword(h), C(r, :))

}
(59.88)

For the above example, we find that r̂ = 1 so that feature h is assigned to class r = 1.
One of the weaknesses of this approach is that it disregards the correlations that may
exist between different classes.

Active learning. We described some features of active learning in Sec. 59.4. Under this
approach, the learner seeks to improve its performance by being proactive about which
training samples to use. Active sampling can be employed for both cases of labeled and
unlabeled data. In the latter case, it reduces the amount of labeling that needs to be
provided by prioritizing samples for training. Although we illustrated the operation of
active learning under the logistic regression classifier, the same methodology can be
applied to other classifiers, including neural network structures, using other variations
to identify the “least confident” samples as illustrated in Example 59.6 — see, e.g.,
Cortes and Vapnik (1995), Fujii et al. (1998), Tong and Koller (2000), Lindenbaum,
Markovitch, and Rusakov (2004), and Settles (2010). The last reference provides a use-
ful survey on active learning. Further useful reading includes the works by MacKay
(1992), Cohn, Atlas, and Ladner (1994), Cohn, Ghahramani, and Jordan (1996), Das-
gupta (2004), Baram, El-Yaniv, and Luz (2004), Schein and Ungar (2007), Dasgupta
and Hsu (2008), and Dasgupta, Hsu, and Monteleoni (2008).

Domain adaptation. The weighted solution (59.66) for the domain adaptation problem
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was proposed by Bickel, Brueckner, and Scheffer (2007); in the same article they propose
a second variant that determines {wx, w?} simultaneously by means of a Newton-type
algorithm. The conclusion in (59.54) that weighting by the ratio of pdfs, fT (h)/fS(h),
helps transform expectation over the target distribution fT (h) to expectation over the
source distribution fS(h) is due to Shimodaira (2000). A similar construction arises
in the study of off-policy reinforcement learning algorithms — see Sec. 46.7. There
are many other variations of domain adaptation, which differ by the manner by which
they estimate the importance weight fT (h)/fS(h). In the chapter we discussed two
solutions; one based on training a logistic regressor to discriminate between source
and target samples, and the other based on using the k−nearest neighbor rule. Other
approaches that rely on parametric and non-parametric approaches to estimating the
distributions {fT (h), fS(h)} or their ratio are also possible. For example, following Shi-
modaira (2000), one could assume Gaussian forms for these distributions and estimate
their sample means and covariances from the data:

µ̂T =
1

NT

NT−1∑
t=0

ht, µ̂S =
1

NS

NS−1∑
s=0

hs

R̂T =
1

NT − 1

NT−1∑
t=0

(ht − µ̂T )(ht − µ̂T )T

R̂S =
1

NS − 1

NS−1∑
s=0

(hs − µ̂S)(hs − µ̂S)T

fT (h) ∼ Nh(µ̂T , R̂T ), fS(h) ∼ Nh(µ̂S , R̂S)

(59.89)

Another approach to domain adaptation is based on the methodology of optimal trans-
port — see, e.g., Courty et al. (2016,2017) and Redko, Habrard, and Sebban (2017).
In this case, the conditional distributions fγ|h(γ|h) are allowed to be different over the
source and target domains. We denote them by fT (γ|h) and fS(γ|h). One then seeks a
mapping t(h) operating on the source feature vectors such that, after the transforma-
tion, the distributions match each other:

fS(γ|h) = fT (γ|t(h)), ∀ h ∈ source domain (59.90)

In this approach, after the mapping t(·) is determined, one applies it to the source
data and subsequently trains the classifier directly in the target domain using these
transformed vectors. The main intuition is that after the transformation, the source
data will behave similarly to the target data.

Good surveys on domain adaptation and transfer learning, including discussions on
other approaches, are given by Weiss, Khoshgoftaar, and Wang (2016) and Kouw and
Loog (2019). Useful performance results are given by Crammer, Kearns, and Wortman
(2008), Mansour, Mohri, and Rostamizadeh (2009), Ben-David et al. (2010a,b) Cortes,
Mansour, and Mohri (2010), and Germain et al. (2013).

PROBLEMS

59.1 Consider the logistic function σ(x) = 1/(1 + e−x). Verify that
(a) σ(−x) = 1− σ(x).
(b) dσ/dx = σ(x)σ(−x).
(c) dσ/dx = σ(x)(1− σ(x)).
59.2 Consider the `2−regularized logistic risk

P (w)
∆
= ρ‖w‖2 + E

{
ln
(

1 + e−γγ̂(w)
)}

, γ̂(w) = hTw
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and denote its minimizer by wo. Prove that
(a) ‖wo‖ ≤ E ‖h‖/2ρ.
(b) ‖wo‖2 ≤ Tr(Rh)/4ρ2, where h is zero-mean and Rh = EhhT.
59.3 Consider the logistic regression algorithm (59.15) without the offset parameter
θ (i.e., set it to zero). Introduce the auxiliary variable d(n) = +1 ifγ(n) = +1 and
d(n) = 0 ifγ(n) = −1. Let further σ(x) = 1/(1 + e−x) denote the logistic function.
Show that the logistic regression algorithm can be equivalently re-worked into the
following form:

e(n) = d(n)− σ(hT
nwn−1)

wn = (1− 2µρ)wn−1 + µhne(n)

59.4 Consider the `2−regularized empirical logistic risk problem:

w?
∆
= argmin

w∈IRM

{
1

2
wTR−1

w w +
1

N

N−1∑
n=0

ln
(

1 + e−γ(n)hT
nw
)}

where Rw > 0. Let σ(z) = 1/(1 + e−z). Show that w? can be written in the form

w? =
1

N

N−1∑
n=0

λ(n)γ(n)Rwhn

where the coefficients {λ(n)} are the derivatives of σ(z) evaluated at z = γ(n)γ̂(n), i.e.,

λ
∆
=

dσ(z)

dz

∣∣∣
z=γγ̂

, γ̂ = hTw?

59.5 We continue with Prob. 59.4. Using model w?, show that the conditional prob-
ability of the label variable given the feature vector can be written in the form

P(γ = γ |h;w?) =
1

1 + e−γγ̂

for the following function of the feature vector h:

γ̂(h)
∆
=

1

N

N−1∑
n=0

λ(n)γ(n)hTRwhn

Conclude that the label γ that maximizes P(γ = γ |h;w?) is the one that matches
sign(γ̂(h)). Remark. For additional discussion on the material in this problem and the
previous one, the reader may refer to the work by Jaakkola and Haussler (1999).
59.6 Consider N independent and identically-distributed observations {γ(n),hn}.
For each individual feature {γ,h}, the conditional probability of the label given the
feature is modeled according to (59.6). Assume zero offsets in this problem. Verify that
the log-likelihood function for the observations, denoted by `(w), can be written in the
form — compare with (59.11):

`(w) =

N−1∑
n=0

{(
1 + γ(n)

2

)
ln

(
1

1 + e−h
T
nw

)
+

(
1− γ(n)

2

)
ln

(
1

1 + eh
T
nw

)}
Redefine the labels from {−1,+1} to {0, 1} by using the transformation γ ← (1+γ)/2.
Using the new labels, verify that the same log-likelihood function can be written in
the following form (which is the negative of the so-called cross-entropy risk function
encountered later in Sec. 65.7 in the context of neural networks):

`(w) =

N∑
n=0

{
γ(n) lnP(γ(n) = 1) + (1− γ(n)) lnP(γ(n) = 0)

}
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where P(γ = 1) = 1/(1 + e−h
Tw) and P(γ = 0) = 1/(1 + eh

Tw).
59.7 Show that the log-likelihood function `(w) in Prob. 59.6 is concave. In particular,
verify that its Hessian matrix relative to w is nonpositive-definite.
59.8 Consider the same setting of Prob. 59.6 with γ(n) ∈ {±1} but assume now
that we attach a Gaussian prior to the model w, say, w ∼ Nw(0, σ2

wIM ). Verify that
the MAP estimator that maximizes the joint pdf of {w,γ(0), . . . ,γ(N − 1)} given the
feature vectors {hn} leads to the `2−regularized logistic regression solution.
59.9 Consider the same setting of Prob. 59.6 with γ(n) ∈ {±1} but assume now that
we attach a Laplacian prior to the model w. Specifically, the entries {wm} of w ∈ IRM
are assumed to be independent of each other and follow a Laplace distribution with
zero mean and variance σ2

w:

fwm(wm) =
1√

2σw
exp
{
−
√

2|wm|/σw
}

Verify that the MAP estimator that maximizes the joint pdf of {w,γ(1), . . . ,γ(N−1)}
given the feature vectors {hn} leads to an `1−regularized logistic regression solution.
59.10 Let σ(x) = 1/(1 + e−x) refer to the logistic (or sigmoid) function. Consider the
second log-likelihood function defined in Prob. 59.6 for labels {0, 1}, namely,

`(w) =

N∑
n=0

{
γ(n) lnσ(hT

nw) + (1− γ(n)) ln(1− σ(hT
nw))

}
Construct the data matrix H whose rows are {hT

n}, the column vector d whose entries
are {γ(n)}, and the column vector s(w) whose entries are {σ(hT

nw)}, i.e.,

H
∆
=


hT

0

hT
1

...
hT
N−1

 , d
∆
=


γ(0)
γ(1)
...

γ(N − 1)

 , s(w)
∆
=


σ(hT

0w)
σ(hT

1w)
...

σ(hT
N−1w)


Construct also the N ×N diagonal matrix

D(w)
∆
= diag

{
σ(hT

nw)
(

1− σ(hT
nw)

)}
Verify that
(a) ∇wT `(w) = HT(d− s(w)).
(b) ∇2

w `(w) = −HTD(w)H.
59.11 Continuing with Prob. 59.10, we wish to write down Newton recursion (12.197)
for maximizing the log-likelihood function `(w) using a unit-value step-size. Verify that
the recursion in this case reduces to the following form over m ≥ 0:

Dm−1
∆
= D(wm−1)

zm−1
∆
= Hwm−1 +D−1

m−1(d− s(wm−1))

wm = (HTDm−1H)−1HTDm−1zm−1

59.12 Conclude from Prob. 59.11 that them−th iterate is the solution of the weighted
least-squares problem

w?
∆
= argmin

w∈IRM
(zm−1 −Hw)TDm−1(zm−1 −Hw)

How is this conclusion related to the iterative reweighted least-squares problem (50.167)?
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59.13 Consider a binary classification problem where γ = ±1 and the following risk
functions:

P (c) = E (γ − γ̂)2, (mean-square-error risk)

P (c) = E max{0, 1− γγ̂}, (hinge risk)

where γ̂ = c(h) denotes the prediction that is generated by the classifier, c(h); we are
not limiting the problem statement to linear classifiers. Show that the minima of the
above risks over γ̂ are given by:

γ̂ = 2P(γ = +1|h = h)− 1, (mean-square-error risk)

γ̂ = sign
(
P(γ = +1|h = h)− 1/2

)
, (hinge risk)

Derive in each case expressions for the confidence level P(γ = +1|h = h).
59.14 Refer to the multiclass logistic regression model (59.85) and assume zero offset
parameters. Consider a collection of N independent data realizations {hn, r(n)}, where
hn ∈ IRM is a feature vector and r(n) is its class. Let W collect all models {wr} into
its columns and introduce the notation

σnr
∆
= P(r = r|hn;W ) = eh

Twr

(
R∑

r′=1

eh
Twr′

)−1

, 1 ≤ r ≤ R

Introduce further the R−dimensional vectors:

σn
∆
=


σn1

σn2

...
σnR

 , γn =


I[r(n) = 1]
I[r(n) = 2]

...
I[r(n) = R]


where I[x] is the indicator function assuming the value one when the statement x is
true and zero otherwise.
(a) Argue that the log-likelihood function is given by

`(W ) =

N−1∑
n=0

R∑
r=1

I[r(n) = r]hT
nwr −

N−1∑
n=0

ln

(
R∑

r′=1

exp
{
hT
nw
′
r

})

(b) For any model wr, show that

∇wT
r
`(W ) =

N−1∑
n=0

(
I[r(n) = r]− σnr

)
hn

(c) Collect the column gradient vectors from part (b) into a matrix and conclude
that

∇W `(W ) =

N−1∑
n=0

(γn − σn)T ⊗ hn

(d) Write down a gradient-ascent iteration for maximizing `(W ).
Remark. For a related discussion, the reader can refer to Murphy (2012).
59.15 Refer to the probit regression formulation (59.84) for binary classification. For-
mulate a maximum likelihood (ML) estimation problem for recovering the weight vector
and use the ML formulation to motivate an `2−regularized stochastic gradient probit
solution.
59.16 Establish relation (59.56). Remark. For additional motivation, see Bickel, Brueck-
ner, and Scheffer (2007).



2408 Logistic Regression

59.17 Refer to the Poison distribution (5.47). Argue that the canonical link function
is given by g(µ) = ln(µ). Show that the empirical risk optimization problem (59.118)
reduces to the following Poisson regression problem:

w? = argmax
w∈IRM

{
1

N

N−1∑
n=0

(
γ(n)hT

nw − exp{hT
nw}

)}

59.A GENERALIZED LINEAR MODELS

Linear and logistic regression problems are special cases of the family of generalized
linear models (GLMs). We revisit these two cases and introduce the generalization.
For more details on such models, the reader may refer to the text by McCullagh and
Nelder (1989). GLMs were introduced earlier in the work by Nelder and Wedderburn
(1972) as a generalization of various regression models. The main intuition is that linear
predictors are used to estimate transformations of the conditional mean.

Linear regression
Assume a random variable γ ∈ IR arises from a linear model of the form:

γ = hTw + v (59.91)

where v is a zero-mean Gaussian random variable that is independent of the random
variable h ∈ IRM . Then, clearly, given h, the conditional pdf of γ is Gaussian as well:

γ|h ∼ Nγ (hTw, σ2
v) (59.92)

We denote the mean of this conditional distribution by µ = E (γ|h). In this case, µ
depends linearly on the observation h through the model parameter w ∈ IRM :

µ = hTw (59.93)

In linear regression, we estimate γ from h by using a similar structure for the linear
predictor:

γ̂ = hTw (59.94)

The way we estimate the unknown w is by maximizing the log-likelihood function over
a collection of N independent data pairs {γ(n), hn}:

w? = argmax
w∈IRM

ln

{
N−1∏
n=0

1√
2πσ2

v

exp
{
− 1

2σ2
v

(γ(n)− hT
nw)2

}}
(59.95)

which in this case reduces to solving the least-squares problem:

w? = argmin
w∈IRM

{
1

N

N−1∑
n=0

(γ(n)− hT
nw)2

}
(59.96)
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Logistic regression
Consider next a situation where the random variable γ is binary-valued as in γ ∈ {±1},
where γ assumes its values according to a Bernoulli distribution:

γ|h ∼ Bernoulli(p) (59.97)

The success probability (i.e., the probability of getting γ = +1) is modeled by means
of a logistic function:

p = P(γ = +1|h = h) =
1

1 + e−hTw
(59.98)

The mean of the conditional distribution, µ = E (γ|h), is now given by

µ = 2p− 1 (59.99)

In logistic regression, we estimate γ from h by again using a linear predictor of the
form

γ̂ = hTw (59.100)

In this case, the predictor does not have the same form as µ. However, they can be
related to each other. Using (59.98) and the expressions for {µ, γ̂} it is easy to verify
that

γ̂ = ln
(1 + µ

1− µ
)

(59.101)

That is, γ̂ is obtained by means of some logarithmic transformation applied to the
conditional mean. The way we estimate w is by maximizing the log-likelihood function
over a collection of N independent data pairs {γ(n), hn}:

w? = argmax
w∈IRM

ln

{
N−1∏
n=0

1

1 + e−γ(n)hT
nw

}
(59.102)

which reduces to minimizing the logistic empirical risk:

w? = argmin
w∈IRM

{
1

N

N−1∑
n=0

ln
(

1 + e−γ(n)hT
nw
)}

(59.103)

Generalization
The previous two examples share some common elements:

(a) Each case assumes a particular model for the conditional pdf of the target variable
γ given the observation h, namely, for the distribution of γ|h. The nature of the
variables can be different. For example, in one case, γ is real-valued but in the
other case it is discrete and binary-valued.

(b) Each case assumes a linear predictor for the target variable in the form γ̂ = hTw,
for some model parameter w. This linear construction will be common for all gen-
eralized linear models (which explains the qualification “ linear” in the name).

(c) The predictor γ̂ is estimating some transformation of the conditional mean µ =
E (γ|h). In the linear regression case, the predictor is estimating µ itself, while in
the logistic regression case the predictor is estimating ln((1 +µ)/(1−µ)). We refer
to the function that maps the mean to the predictor as the link function and denote
it by the notation γ̂ = g(µ). Thus, we have

g(µ) = µ, (for linear regression) (59.104a)

g(µ) = ln
(1 + µ

1− µ
)
, (for logistic regression) (59.104b)
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Clearly, under item (a), there are many possible choices for the conditional pdf model
of γ|h. We will allow the model to belong to the family of exponential distributions.
But first, we introduce canonical exponential distributions, which take the following
form for scalar random variables y ∈ IR:

fy(y) = exp

{
1

d(φ)

(
θy − b(θ)

)
+ c(y, φ)

}
(59.105)

where θ is a scalar parameter, and φ is the dispersion parameter. Several of the ex-
ponential distributions we considered in Chapter 5 can be written in this alternative
form. Two examples are as follows.

Gaussian case. For Gaussian random variables, we showed in (5.12) that

fy(y) = exp
{

1

σ2

(
µy − µ2

2

)
− 1

2

(
ln(2πσ2) +

1

σ2
y2
)}

(59.106)

We can therefore make the identifications

θ = µ (59.107a)

φ = σ2 (59.107b)
d(φ) = φ (59.107c)

b(θ) = µ2/2 (59.107d)

c(y, φ) = −1

2

(
ln(2πφ) +

1

φ
y2
)

(59.107e)

Observe that the mean of the distribution is represented by the parameter θ.

Bernoulli case. For Bernoulli random variables assuming values {0, 1}, we showed in
(5.19) that

fy(y) = exp
{
y ln

(
p

1− p

)
+ ln(1− p)

}
(59.108)

and we can make the identifications

θ = ln
( p

1− p
)

(59.109a)

φ = 1 (59.109b)
d(φ) = 1 (59.109c)
b(θ) = − ln(1− p) (59.109d)

c(y, φ) = 0 (59.109e)

Observe that the mean of the distribution is related to the parameter θ since Ey = p
and, therefore,

θ = ln
( µ

1− µ
)

(59.110)

Canonical exponential case. For distributions of the general form (59.105), it is custom-
ary to select the parameter θ to play the role of the predictor, which ends up defining
a canonical choice for the link function. Let us illustrate this construction by reconsid-
ering the logistic regression problem albeit with the classes set to {0, 1} for illustration
purposes. We therefore have that the conditional pdf of γ given h is described by the
Bernoulli distribution:

γ|h ∼ Bernoulli(p) (59.111)
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where the success probability is modeled as

p = P(γ = +1|h = h) =
1

1 + e−hTw
(59.112)

The mean of the conditional distribution, µ = E (γ|h), is now given by

µ = p (59.113)

and it is easy to verify that

γ̂ = ln
( µ

1− µ
)

(59.114)

which is the same conclusion that would have resulted from setting γ̂ = θ directly in
view of (59.110).

Thus, we will assume canonical exponential distributions of the form (59.105) for the
conditional distribution γ|h, namely,

fγ|h(γ|h) ∝ exp
{ 1

d(φ)

(
θγ − b(θ)

)}
(59.115)

and use the linear predictor γ̂ = hTw to replace θ, i.e., we parameterize θ in the linear
form θ = hTw. This step implicitly defines a link function that maps µ = E (γ|h) to γ̂.
The qualification “generalized” in GLM refers to the use of the more general exponen-
tial distribution (59.115) in modeling the conditional pdf γ|h, while the qualification
“linear” in GLM refers to the linear model used for θ = hTw. In this way, the conditional
pdf takes the form:

fγ|h(γ|h) ∝ exp
{ 1

d(φ)

(
γhTw − b(hTw)

)}
(59.116)

Once w is estimated, we end up with an approximation for the conditional pdf of
γ|h, from which inference about γ can be performed. The way we estimate w is by
maximizing the log-likelihood function over a collection of N independent realizations
{γ(n), hn}:

w? = argmax
w∈IRM

ln

{
N−1∏
n=0

exp
( 1

d(φ)

(
γhTw − b(hTw)

))}
(59.117)

which reduces to maximizing the following empirical risk — see Prob. 59.17:

w? = argmax
w∈IRM

{
1

N

N−1∑
n=0

(
γ(n)hT

nw − b(hT
nw)

)}
(59.118)

By doing so, and assuming ergodicity, we are in effect seeking predictions γ̂ = hTw that
solve the Bayesian inference problem

wo = argmin
w∈IRM

{
E
(
b(γ̂)− γγ̂

)}
, s.t. γ̂ = hTw (59.119)
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