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55 NAIVE BAYES CLASSIFIER

55.1

The optimal Bayes classifier (52.8) requires knowledge of the conditional prob-
ability distribution P(r» = r|h = h), which is generally unavailable. In this and
the next few chapters, we describe data-based generative methods that approx-
imate the joint probability distribution f, p(r,h), or its components P(r = r)
and fp.(h|r), directly from the data. Once these components are estimated,
they can then used to learn the desired probabilities P(r = r|h = h) by means
of Bayes rule and to perform classification. Among these methods we list the
naive Bayes classifier of this chapter, the linear and Fisher discriminant analysis
(LDA, FDA) methods of the next chapter, and the logistic regression method of
Chapter 59.

The naive classifier is a sub-optimal construction that relies on a certain in-
dependence assumption. Although the assumption rarely holds in practice, the
resulting classifier has become popular and leads to competitive performance in
many applications involving text segmentation, document classification, spam
filtering, or medical diagnosis. The naive Bayes classifier is an example of a su-
pervised learning procedure because its training requires access to a collection of
feature vectors and their respective labels. The training data is used to estimate
the priors P(r = r) and to fit Bernoulli or multinomial distributions to model
the conditional fp,(h|r).

INDEPENDENCE CONDITION

We start by describing the independence assumption that will facilitate the eval-
uation of the Bayes classifier and lead to its naive implementation. Specifically,
we will assume that:

(a) (Discrete attributes) The individual entries (or attributes) of the feature
vector h € RM | denoted by {h(1),h(2),...,h(M)}, assume discrete values
(i.e., they are not continuous random variables). Later, in Secs. 55.4 and 56.2,
we will consider the situation in which the entries of the feature vector are
continuously-distributed.

(b) (Conditionally independent attributes) The individual entries {h(m)} are
conditionally independent of each other given the class variable r, so that
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the joint probability of any two entries decouples into the product of the
individual probabilities:

P@ﬁgz%mazmrzﬂ
- }P’(h(k) — alr = 7’) x P(W) = blr = 7’) (55.1)
for any k # /.
Let 7, represent the prior probability for each class » = r, namely,
m 2 P(r=r), r=1,2,....R (55.2)

Now, given a feature vector h, we would like to determine its most likely label

according to the Bayes classifier construction. Using Bayes rule (3.42c) for dis-

crete random variables, we can express the desired conditional probability in the

form:

P(r=r)P(h =hlr =r)
P(h =h)

Since the quantity in the denominator, P(h = h), is independent of r, we can
ignore its presence and note that in order to maximize P(r = r|h = h) over r
it is sufficient to maximize the numerator so that the label for h can be found
by solving (where we are using the bullet superscript notation to refer to this
optimal construction):

P(r =rlh=h) = (55.3)

r®(h) 2 argmax {m« P(h = hlr = r)} (55.4)
1<r<R
We therefore transformed the problem of determining the label for A into one
that requires evaluation of the reverse conditional probability P(h = hlr = r).
It is at this stage that the independence assumption becomes useful. This is
because it allows us to write the factorization:

M
Ph=hr=r) = [] ]P(h(m) = h(m)|r = 7") (55.5)
m=1

Substituting into (55.4) and transforming the right-hand side into the logarithmic
scale to avoid working with small numbers, we arrive at:

(Bayes classifier under independence assumption) (55.6)
M
r*(h) £ argmax {log(m-) + 3 log(P(h(m) = h(m)|r = r))}
1<r<R me1

Example 55.1 (Document classification) Consider an application in which we are in-
terested in classifying a newspaper document into one of four classes defined as follows:

r =2 — article discusses politics (55.7)

r =1 — article discusses sports
r =3 — article discusses movies
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Assume further, for this contrived example, that we extract four attributes from each
document and collect them into a 4—dimensional feature vector, h € IR*, where each
entry of h counts the total number of times that the words below appear in the article:

h(1) : {football, basketball, baseball} (55.8a)
h(2) : {President, Congress, election} (55.8b)
h(3) : {actor, actress, theater} (55.8¢)
h(4) : {inflation, market, consumer} (55.8d)

In this case, we have R = 3 classes and M = 4 attributes. Obviously, in actual text
classification systems, the construction of the feature space is more comprehensive than
shown here and will take into account several other aspects of the document.

Given r = 2 (the document discusses politics), the independence assumption amounts
to saying that the number of times that the words {President, Congress, election} ap-
pear in the document is, for example, conditionally independent of the number of times
that the words {football, basketbal, baseball} appear in the same document.

MODELING THE CONDITIONAL DISTRIBUTION

Determination of the Bayes classifier by means of (55.6) still requires knowledge
of the reverse conditional probability P(h = h|r = r). Since we are assuming h
to be discrete, we can consider two distributions that are particularly useful to
model such probabilities.

Bernoulli distribution

In one model, we assume each attribute h(m) € {0, 1} follows a Bernoulli distri-
bution and is binary-valued. Situations like this arise, for example, when h(m) is
declaring the presence of a certain attribute or not (such as whether an object is
hot or cold, blue or yellow, and so forth). Let p,,,, denote the success probability,
i.e., the likelihood that h(m) assumes the value one under class r = r:

Prm 2 IP’(h(m) —1)r = r) (55.9)

Note that we are attaching two subscripts to p,.,,: the subscript r indicates that
the value of p,.,, depends on the class variable, and the subscript m is the index
of the attribute. Thus, the value of p,,, is referring to the likelihood that the
m—th attribute is active given that the feature vector belongs to class r. For
this same attribute, but under another class 7/, the value p,,, can be different.
Using (55.9), we can write

IP’(h(m) = h(m)|r = r) = phm) (1 — p )R R(m) € {0,1} (55.10)

m

In this way, we can determine the probabilities P(h = h|r = r) from knowledge
of the {p,m}.
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Multinomial distribution

More generally, we allow each attribute in the feature vector to assume a mul-
titude of discrete levels (e.g., red, blue, green), and we let h(m) measure the
number of times that attribute m has been observed (e.g., how many times the
color red occurred, the color blue, and the color green). In this case, the vari-
ables {h(1),h(2),...,h(M)} follow a multinomial distribution. Let p,.,,, denote
the likelihood of observing attribute m under class r. These probabilities satisfy

M
> prm=1, Vre{l,2,... R} (55.11)

m=1
and, using expression (5.34), we have
M |
<Em:1 h(m))' h(1) h(2) h(M)
h(l)'h(Q)' h(M)!p'rl Pro - Ppar

Observe that this expression provides the conditional probability of h directly
rather than of its individual entries, as was the case with (55.10). This is of

P(h=hlr=r) = (55.12)

course sufficient for use in (55.4).

ESTIMATING THE PRIORS

We are now ready to derive the naive Bayes classifier. One of the main difficulties
in implementing the optimal Bayes solution (55.6) is that it requires knowledge of
the probabilities 7, and P(h = h|r = r). The latter probabilities are determined
once we know the parameters {p,,,} under either the Bernoulli or multinomial
model. The parameters {7, p,m} are rarely known beforehand and need to be
estimated. We now assume that we have access to a collection of N training
data points, {r(n), hn, n=0,1,..., N —1}. In this notation, r(n) is the class for
feature h,,.

Estimating the class priors
Assume that within the N data samples, there are N, examples that belong to
class r. Then, the derivation in Prob. 55.3 shows that m, can, in principle, be

estimated as follows:

~ Ny

which is the fraction of data points that belong to class r within the training
set. However, an adjustment is needed to avoid situations where a particular
class may not be represented in the training data, in which case we will end up
with 7, = 0 for that r. To avoid this situation, it is customary to modify the
above expression for estimating 7, by incorporating a form of smoothing known
as Laplace smoothing — see Probs. 55.4 and 55.5. We extend N to N + sR,
where we assume the presence of sR additional fictitious training samples. Here,
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the parameter s is positive and controls the amount of smoothing. The choice
s = 1 is common and referred to as Laplace smoothing. Choices of s < 1 are
referred to as Lidstone smoothing. Now, assuming the labels r € {1,2,..., R}
are uniformly distributed within the sR virtual samples, then s of these samples
will be expected to belong to each class. We then replace expression (55.13) for
7. by

N, .
Ty = ﬁ—’,—s;’ r=12,...,R (Laplace smoothing) (55.14)

Observe that when s = 0 we get 77, = N,./N, and when s — co we get 7. — 1/R.
Therefore, the smoothing operation ensures that the estimate for 7, lies between
the sample average (N,/N) and the uniform probability (1/R).

Estimating the reverse conditional probabilities

Similarly, we can use the training data to estimate the parameters {p;,, }. Con-
sider first the multinomial case, where p,.,, denotes the likelihood that attribute
m occurs under class r. Given the N training feature vectors {h,}, we isolate
the vectors that belong to class r and count how many times attribute m occurs
in them:

Nem = ) ha(m) (55.15a)

hn€ class 7

Note that m is fixed in this sum and we are adding over all feature vectors from
class 7 in the training set. If we add the {N,.,,} over m, we arrive at the total
number of all attributes observed in the training set under class r:

1>

Ner £ ) Nom (55.15b)

m=1

Then, p,,, is estimated by using the smoothed formula

(multinomial parameters)
Ny, + 5 {m 1,...,M
1,...,

—_ 1
Nor 1+ sM R (55.15¢)

ﬁrm = r=
for some s > 0 since there are M possible attributes. This calculation assumes
that the training data is dense enough so that all classes are observed.

For the Bernoulli model, we again isolate the vectors that belong to class r
and count how many times attribute m is active at the value one within these

vectors:
Nem = ) ha(m) (55.16a)

hn€ class 7

We also let N, denote the total number of feature vectors in class 7:

N,. = number of features h,, in class r (55.16D)
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Then, p;p, is estimated by using the smoothed formula

(Bernoulli parameters)
Ny + 5 {m: 1,...,M

Srm TS 1
N, + 25 r= 1,....R (55.16c)

ﬁrm =
The following listing summarizes the steps involved in the training and classifica-
tion phases of the naive Bayes classifier for multinomial-distributed feature data
using (55.15c¢); for Bernoulli-distributed attributes, we use (55.16¢) instead. The
construction is relatively simple to train. Note that we are denoting the resulting
classifier in the last line of the algorithm by the notation r*(h) (as opposed to
r*(h)) because it is learned directly from the training data.

Naive Bayes classifier for discrete multinomial feature data.

given N training data points {r(n),h,},n =0,1,2,..., N —1;
given R classes, r(n) € {1,2,...,R};

each feature vector, h,,, is M —dimensional with entries {h,(m)};
h,(m) counts how many times attribute m occurs in n—th sample;
select a Laplace smoothing factor s > 0, e.g., s = 1.

(training)

repeatr=1,2,... . R:

N, = number of training samples in class r;
N,+s
N+sR

repeat m=1,2,..., M : (55.17)

(55.15a) . . .
N,,, = ~number of times attribute m occurs in class r;

55.15b . .
N, (55.156) total number of attributes observed in class r;

Npm + 5
NrT + sM

Tp =

Drm =
end
end
(classification)
given a new feature vector, h, with entries {h(m)} :
compute @(h = hlr =r) using (55.12), for r =1,2,..., R;

determine 7*(h) = argmax {%,« @(h = hlr = r)}
1<r<R

end

Example 55.2 (Application to medical diagnosis) We reconsider the earlier Table 54.2
, repeated here, which lists the symptoms for N = 10 patients and whether they had
the flu or not. e The number of classes in this example is R = 2 with:
4 = +1 : patient has the flu (55.18a)
v = —1: patient does not have the flu (55.18b)
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The last column in the table indicates the class that each patient belongs to. Excluding
this last column, each row in the table corresponds to a feature vector with M = 6
attributes. Each entry of h assumes a binary value (Yes/No); i.e., it is Bernoulli dis-
tributed. For example, the first entry of h indicates whether the patient had a headache
or not. Figure 55.1 provides a graphical illustration of the data from Table 55.1, where
the brown color indicates the presence of the relevant symptom. The top row in the
figure lists patients without the flu, while the bottom row lists patients with the flu.

headache

ore
throat

DO NOT HAVE FLU
<P ’, > < ’
fever
vommng

no:
chills fever chills
sore sore sore sore
vomiting [JRASNE Vomiting | [V throat throat

patient #0 patient #3 patient #4 patient #6 patient #7 patient #9

runny unny | dache
nose nose nose nose
chills fever chills fever chills fever
sore sore sore sore
throat throat throat throat

patient #1 patient #2 patient #5 patient #8

vomiting

fun¥ " headache Y headache

HAVE FLU

Figure 55.1 Graphical illustration of the data from Table 55.1, where the blue color
indicates the presence of the relevant symptom. The top row lists patients without
the flu, while the bottom row lists patients with the flu.

Table 55.1 Symptoms felt by 10 patients and whether they had the flu or not.

patient | headache | fever | sore throat | vomiting | chills | runny nose | FLU

0 Yes No No Yes No No NO
1 Yes Yes No No Yes Yes YES
2 No Yes Yes No Yes Yes YES
3 No No No Yes No No NO
4 No Yes No Yes Yes No NO
5 Yes No Yes No Yes Yes YES
6 Yes No No No No No NO
7 No Yes No Yes No No NO
8 Yes Yes No No No Yes YES
9 Yes No No No Yes Yes NO

We set the Laplace smoothing factor to s = 1 and use the data in the table to estimate
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the prior probabilities as follows:

Ny =4
N_1=6
4+1
. 6+1
T—1 = 052 ~ 0.5833

(55.19a)
(55.19b)

(55.19¢)

(55.19d)

where N1 denotes the number of samples in the training set that belong to class v = +1
(has the flu). Similarly for N_;. We also use the data from the table to estimate the
conditional probabilities, first for the patients that had the flu:

P(headache=yes|patient has flu
@(headache:n0|patient has flu
P(fever—yes|patient has flu

@(fever:n0|patient has flu

I@(sore throat=yes|patient has flu) = (2+1)/(4+2) =1/2

) =
)=
) =
)=
)=
P(sore throat=no|patient has flu) =
@(vomiting:yes|patient has flu) =
P(vomiting=no|patient has flu) =
@(Chills:yes|patient has flu) =
P(chills=no|patient has flu) =
@(runny nose=yes|patient has flu) =

@(runny nose=no|patient has flu) =

34+1)/(44+2)=2/3
1+1)/(4+2)=1/3
34+1)/(44+2)=2/3
1+1)/(4+2)=1/3
)/
2+1)/(4+2)=1/2
0+1)/(4+2)=1/6
441)/(44+2)=5/6
3+1)/(4+2)=2/3
1+1)/(44+2)=1/3
44+1)/(4+2)=5/6
O+1)/(4+2)=1/6

and similarly for the patients that did not have the flu:

@(headache:yes|patient does not have flu
P(headache=no|patient does not have flu
@(fever:yes|patient does not have flu
P(fever—no|patient does not have flu

P(sore throat=yes|patient does not have flu

P(vomiting=yes|patient does not have flu) =
@(vomiting:no|patient does not have flu) =
P(chills=yes|patient does not have flu) =

)
)
)
)
)
P(sore throat=no|patient does not have flu) =
)
)
)
P(chills=no|patient does not have flu) =
)

@(runny nose=yes|patient does not have flu

P(runny nose=no|patient does not have flu) =

=B+1)/(6+2)=1/2
=3B+1)/(6+2)=1/2
=(2+1)/(6+2)=3/8
=MA4+1)/(64+2)=5/8
=0+1)/(6+2)=1/8
(6+1)/(6+2)=7/8
(4+1)/(6+2)=6/8
(2+1)/(6+2)=23/8
(2+1)/(6+2)=23/8
(4+1)/(6+2)=5/8
=(1+1)/(64+2)=1/4

(5+1)/(6+2) =3/4

(55.20a)
(55.20b)
(55.20¢)
(55.20d)
(55.20e)
(55.20f)
(55.20g)
(55.20h)
(55.201)
(55.20;)
(55.20k)
(55.201)
(55.21a)
(55.21b)
(55.21c)
(55.21d)
(55.21e)
(55.21f)
(55.21g)
(55.21h)
(55.211)
(55.21)
(55.21k)
(55.211)

In this example, we would like to employ the naive Bayes classifier to decide whether

a new patient with the following symptoms has the flu or not:

h = {headache=NO, fever=NO, sore throat=YES,
vomiting=NO, chills=NO, runny nose=YES}

(55.22)
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Figure 55.2 Graphical illustration of the symptoms for the new patient. Does the

patient have the flu?

The symptoms for the new patient are represented graphically in Fig. 55.2. To begin
with, using (55.5), we evaluate the following conditional probabilities:

P(h = h|patient has flu)

e
Jac)
=
2

s = V=V =P )] %)ﬁ

~ ' <X

—_

= h(m)|patient has flu)

-

headache=no|patient has flu) x
fever=no|patient has flu) x

sore throat=yes|patient has flu) x
vomiting=no|patient has flu) x
chills=no|patient has flu) x

runny nose=yes|patient has flu)
/3x1/3x1/2x5/6x1/3x5/6

~ 0.01286

and

P(h = h|patient does not have flu)

Il
e
=)

Il
-

Paciga-tia-tile=tige=Y, 93

—_

=
&)

= h(m)|patient does not have flu)

headache=no|patient does not have flu) x
fever=no|patient does not have flu) x

sore throat=yes|patient does not have flu) x
vomiting=no|patient does not have flu) x
chills=no|patient does not have flu) x

runny nose=yes|patient does not have flu)
/2%x5/8x1/8x3/8x5/8x%x1/4

~ 0.002289

(55.23)

(55.24)
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Consequently,
741 P(h = h|patient has flu) ~ 0.4167 x 0.01286 =~ 0.005359 (55.25)
and
7_1 P(h = h|patient does not have flu) ~ 0.5833 x 0.002289 ~ 0.00013352  (55.26)

Since 0.005359 > 0.00013352, we conclude that the patient is likely to have the flu.
This example helps illustrate one main limitation of naive Bayes classifiers, namely,
the assumption that the entries of the feature vector (i.e., the attributes) are condi-
tionally independent of each other. For example, given that a patient has the flu, it is
likely that having a fever and feeling a chill are dependent (rather than independent)
events. Still, naive Bayes classification is a popular learning scheme due to its compu-
tational simplicity and the fact that it performs surprisingly well (although it can be
outperformed by other more elaborate learning methods).

Example 55.3 (Application to spam filtering) We apply the naive Bayes classifier to
another situation with R = 2 classes v € {£1} (such as checking whether an email
message is spam or not), with v = +1 corresponding to spam messages. In this example,
each entry of the feature vector, h € IRM | is binary-valued and its value is either one
or zero depending on whether a particular word is present in the message or not. Using
Laplace smoothing, with s = 1, we first estimate the probabilities for the two classes:

~ Nii+1 ~ __]V—l‘Fl

o= s A= (55.27)

where Nii (similarly, N_1) denotes the number of samples in the training set that
belong to class v = +1 (similarly, v = —1). Likewise, for each m = 1,2,..., M, we
used Laplace smoothing again to estimate the Bernoulli parameters:

Prim SE=P(h(m) =1y =+1) = (Ny1m + 1)/(Ny1 +2)  (55.280)
Porm 2 Ph(m) =1y = 1) = (No1m + 1)/(N_1 +2)  (55.28b)
where
Niim £ number of observations in class +1 having h(m)=1  (55.29a)
N_im £ number of observations in class —1 having h(m) =1  (55.29b)
Using the above parameters we can write , for any v € {£1}:
B(R(m) = h(m)ly =) = 7 (1= o) "0 (55.30a)

Accordingly, given a new message with feature vector h, we can decide its class (whether
spam or not) by seeking the value of v € {£1} that maximizes:

~*(h) = argmax {%w P(h = hly = 'y)} (55.31)
ye{£1}
where
Blh=hly =) = ] B(h(m) = nm)ly =) (55.32)

m=1
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55.4 GAUSSIAN NAIVE CLASSIFIER

We have restricted so far the entries of the feature vector h to discrete values.
The naive Bayes construction can be extended to the case in which the entries
of h are continuous in IR. In this section, we describe the situation in which
these entries continue to be conditionally independent of each other. Later, in
Sec. 56.2, we will consider the more general scenario where the entries of h can be
correlated and derive linear discriminant methods for approximating the Bayes
classifier.

Let {h(m)} denote the individual entries of h € IR™. Assume that, condi-
tioned on the class variable » = r, each h(m) is Gaussian distributed with mean

Ly and variance o2 . written as

rm?

fh(m)|r(h<m)|r) ~ N (trm, U?m)

Note that we are using two subscripts to characterize the mean and variance
parameters of the Gaussian distribution: the subscript r indicates that these
parameters depend on the class label, and the subscript m refers to the m—th
attribute. We are also denoting the Gaussian distribution for h(m) by the com-
pact notation N,,, with a subscript m. The independence assumption on the
entries of h implies that

m=1

M 1 1
= expl — m) — fem)? 55.34
1 p{ ) >} (55.31)

Repeating the argument that led to (55.4) using Bayes rule, we find that, given
a feature vector h, the class selection r*(h) can be determined by solving:

r*(h) = argmax 7, fu,(h|r) (55.35)
1<r<R
1 & 1
= argmax < In(m,.) — = 1n27rafm+—hmf m)?
15@{() 2;(( )+ o (hm) u))}

The mean and variance parameters {fi,,, 2, } can be estimated from the train-

ing data {r(n), hy, }. If we let N,. denote the number of feature vectors that belong
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to class r, then we set

_ 1

firm = - > ha(m) (55.36a)
r(n)=r

52 = 1 3 (h (m) — i )2 (55.36b)

O-rm_NT*].()i n T Mrm .

The resulting algorithm is listed in (55.37).

Naive Bayes classifier for Gaussian feature data

given N training data points {r(n),h,},n =0,1,2,..., N — 1;
given R classes, r(n) € {1,2,...,R};

each feature vector, hy,, is M —dimensional with entries {h,,(m)};
hn(m) is Gaussian-distributed;

select a Laplace smoothing factor s > 0, e.g., s = 1.

(training)

repeatr=1,2,... . R:

N, = number of training samples in class r;
7/_(\_ _ Ny+s

r = N+sR
repeat m=1,2,..., M :

Frm = NL Z by (m)

" r(n)=r
1 2
/\2 _ ~
Orm = N, —1 ‘(Z)_ l<hn(m) - Nrm)
end
end
(classification)

given a new feature vector, h, with entries {h(m)} :

1 1
r*(h) = argmax {ln(%r) -5 Z (1n(27r83m) + =5—(h(m) — ﬁrm)Q)}

1<r<R m

m=1
end

(55.37)

COMMENTARIES AND DISCUSSION

Laplace smoothing. The Laplace smoothing formula (55.14) is attributed to the French
mathematician Pierre-Simon Laplace (1749-1827). He derived it in the work by
Laplace (1814) in his study of the rule of succession, which deals with the following
question. Assume an experiment with only two possible outcomes (success or failure)
is repeated a total of IV independent times, and that N, successes have been observed
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during these trials. Assume we only know that the experiment has two possible out-
comes but have no information about the likelihood of each outcome. Consider now
the question of determining the probability that the outcome will be a success in the
(N +1)—th trial. This probability is given by — see, e.g., the textbooks by Doob (1953)
and Jaynes (2003) and Probs. 55.4 and 55.5:

Ns+1
N +2
This result can be extended to the case in which each trial has a total of R possible

outcomes, say, r € {1,2,..., R}. In this case, the probability that the outcome is in
class r in the (N + 1)—th trial will be given by:

P(success in trial N + 1|given N successes so far) = (55.38)

P(outcome is class r in trial N + 1|given N, observations of r so far)
N +1
~ N+R

More generally, we can resort to expression (55.14) where s > 0. The choice s = 1
leads to Laplace smoothing, while choices s < 1 lead to Lidstone smoothing. Some of
the earlier references on smoothing techniques include the works by Lidstone (1920),
Johnson (1932), and Jeffreys (1948).

(55.39)

Naive Bayes classifier. According to Duda, Hart, and Stork (2000) and Russel and
Norvig (2009), some of the earliest applications of the algorithm were in the context of
pattern recognition, text classification, and medical diagnosis in the late 1950s and early
1960s. For example, the early work by Maron (1961) examines the task of automatically
classifying documents into various categories; the author motivates the work in the
abstract of the article by writing that ‘the task, in essence, is to have a computing
machine read a document and on the basis of the occurrence of selected clue words
decide to which of many subject categories the document in question belongs.” The
author motivates the naive Bayes construction by using the Shannon entropy measure
to quantify the uncertainty about which category a document belongs to.

We indicated in the body of the chapter that although the naive Bayes classifier
assumes the entries of the feature vector to be conditionally independent of each other,
the classifier still performs competitively in practice even when the independence con-
dition is violated. There have been several studies in the literature to illustrate and
explain this behavior, most notably by Clark and Niblett (1989), Langley, Iba, and
Thompson (1992), Kononenko (1993), Pazzani (1996), Domingos and Pazzani (1996,
1997), Frank et al. (2000), Garg and Roth (2001), Hand and Yu (2001), and Zhang
(2004). The main conclusion from these works is that while the estimates of the con-
ditional probabilities, @(7‘ = r|h = h), can generally be poor (i.e., not close enough to
their true values), the naive classifier is still able to deliver performance because the
predicted class, r*, is decided not based on the estimated values of the probabilities
but rather on comparing these values against each other, i.e., on selecting the class r*

that leads to the largest value for P(r = r|h = h).

Naive Bayes classifiers can be outperformed by other learners as shown, for exam-
ple, in the works by Ng and Jordan (2001) and Caruana and Niculescu-Mizil (2006).
The first work compared logistic regression and naive Bayes, while the second work
compared several learning algorithms against each other including logistic regression,
support vector machines, and naive Bayes. Nevertheless, motivated by the extensive
empirical and analytical evidence in support of the good performance of naive Bayes
classifiers in many situations of interest, these classifiers continue to serve as good start-
ing points for the design of more elaborate learning machines.
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PROBLEMS

55.1 Repeat the derivation of Example 55.2 to verify whether a patient with the
following symptoms has the flu:

h = {headache=YES, fever=YES, sore throat=NO,
vomiting=NO, chills=NO, runny nose=NO}

55.2 Continuing with the same patient from the previous problem, assume the feature
vector is missing information about whether the patient has a sore throat or not (marked
by the question mark below):

h = {headache=YES, fever=YES, sore throat=7?,
vomiting=NO, chills=NO, runny nose=NO}

How would you apply the naive Bayes classifier to decide on whether the patient has

the flu or not? Assuming the patient had a 60% chance of having a sore throat, how

likely is it that the decision based on ignoring this information will be different from

the decision that takes this additional piece of information into consideration?

55.3 Consider a multiclass classification problem consisting of R classes, say, r €

{1,2,..., R}. The prior probability of observing features from class r is denoted by .

A collection of N independent realizations {r(n), h,} are observed, with r(n) denoting

the class variable and h,, the corresponding feature vector for the n—th sample. It is

observed that each class r occurs N, times in the sample of N data points.

(a) Determine the likelihood probability P(N1, Na, ..., Nr|m1,72,...,7Rr), where the
{m} are treated as deterministic parameters.

(b)  Show that the optimal estimate for 7, that is obtained by maximizing the loga-
rithm of the above probability expression is given by 7, = N;/N.

55.4 One way to motivate expression (55.14) for Laplace smoothing is as follows.

We continue with the setting of Prob. 55.3 except that we now model the unknown

priors {m,} as random variables whose individual pdfs follow a symmetric Dirichlet

distribution with parameter s > 0. Since the {7} should add up to one, this means

that one of the variables is fully determined from knowledge of the remaining R — 1

variables. A joint Dirichlet pdf with positive parameters {s1, s2,...,sr} has the form:
R
fri o, wp (T, T2, ..., TR) X Hﬂ'STfl
r=1

where the symbol « denotes proportionality. It is known that the mean of each entry
7, under this distribution is given by Ew, = s,/ Zil sy. When s, = s, for all
r € {1,2,..., R}, the distribution is said to be symmetric.

(a)  Verify that P(Ny,..., Ngr|mw =7) Hil .

(b)  Assuming a symmetric distribution, verify that

R
fﬂ17ﬂ2,4.4,7rR(7T1,7r27 AR 77TR‘N17 A '7NR) X H 71—7‘ et
r=1

(¢) Conclude that the optimal mean-square-error estimate for 7, given the observa-
tions {N1, Na,..., Ng}, which is equal to the expectation of the conditional pdf
of part (b), is given by:

Ny +s

N+ sR

T, =
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55.5 Derive Laplace formula (55.38). Using this formula, what would the probability
of the sun rising tomorrow be? Any controversy in the answer? Remark. This sun
problem was used by Laplace (1814) to illustrate his calculation.

55.6 Refer to expression (55.12) when the entries of h follow a multinomial distribu-
tion. Show that the Bayes classifier (55.6) reduces to the following equivalent problem
involving an affine function of the feature data:

r®(h) = argmax {log(wr)—&—hT'wr}
re{1,2,...,R}

where w, € RM collects the log values of the attribute probabilities:

Wi e [log(p“) log(pr2) ... log(pra) ]

55.7 Refer again to expression (55.12) when the entries of h follow a multinomial
distribution. Assume there are two classes, R = 2, denoted by v € {£1}. Show that the
Bayes classifier (55.6) reduces to checking the sign of an affine function of the feature
data as follows:

r*(h) = sign(h'w® — 6°)
where the parameters are given by

0° =In(r_1/my), w®= col{ln(p+1,m/p_1,m)} e RM

55.8 For the naive Bayes classifier, how many conditional probabilities of the form
(55.15¢) need to be estimated from the training data?

55.9 Refer to expression (52.8) for the Bayes classifier. Assume the j—th entry of the
feature vector h is missing at random, denoted by h;. Let h_; denote the remaining
entries of h; it is a vector of size M — 1. Let r*(h—;) denote the optimal class label
based on knowledge of h_; alone. Under the independence assumption, argue that

r®(h—;) = argmax {m X HIP’(hi = hi|r = r)}

1<r<R oy

so that classification can proceed by ignoring h;.

55.10 Refer to expressions (55.36a)—(55.36b) for estimating the parameters of a Gaus-
sian naive classifier. How may parameters {fi.m,0zm } need to be estimated in total?
55.11 Assume the variances {agm} in the Gaussian naive implementation are inde-
pendent of the class label r and can be replaced by the notation {¢2,}. How would you
estimate the {o2,}?

55.12  Refer to expression (55.34) for the conditional pdf of h given the class variable
in the Gaussian naive classifier. Assume there are two classes denoted by v € {£1}
with priors {m1,7_1}. Assume further that the variances o2, are independent of r
and denote them by ¢2,. Show that the conditional probability P( = v|h = h) can be
written in the following sigmoidal form

1

Ply=nlh=h) = =)

for some parameters (w,#). Determine expressions for these parameters in terms of
{/L+17m,/j,71’m7O'm,7T+1,7T71}.
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