

	<i>Author(s) Name(s)</i> Gaia Petrillo, Israel Yepez Lopez	<i>Function</i> Teaching Assistants
	<i>Professor Name</i> Dražen Dujić	<i>Date of Release</i> 08.04.2025
<i>Title</i> EXERCISE 4: INDUCTION MACHINE SCALAR CONTROL		
<i>Course Name</i> EE-565 Industrial Electronics II		

1 GUIDELINES

Consider the induction machine described in Tab. 1 and answer the following questions:

Note: Two sessions are allocated to complete this exercise.

Table 1 Parameters already reported to the stator

P_n	2.2 kW	U_n	Y	230 V	$\Omega_{m,n}$	1 465 rpm	R_s	2.6 Ω	L_{ls}	20 mH	L_m	0.305 H	J	0.014 N m
I_n	7.7 A	U_n	Δ	400 V	f_{sw}	5 kHz	R_r	1.1 Ω	L_{lr}	10.5 mH	p	2	k_F	0.003 64 N m s

2 TASKS DESCRIPTION

Part 1: Offline

- Having the mechanical characteristic of the Induction Machine in mind, discuss the stability of the machine under the working conditions left and right from the maximum torque point.
- Explain the principles of the U/f control of the Induction Machine.
- Explain the necessity of the voltage compensation under the low speed operation of the machine.
- Using PLECS, please demonstrate the open-loop speed control of the Induction Machine under the U/f control strategy. Does the machine follow the reference with or without a static error? Please clarify your answer and add a scope of the results.
- Implement the closed-loop speed control under the U/f strategy using PLECS and show the responses of the speed and torque. How did you tune your regulators? Please clarify your answer, add a scope of the results, and discuss them.
- Does the U/f control allows to operate the machine above rated speed? Please develop your answer.
- With our machine, how could the design be improved to increase the torque capabilities of the machine?

Part 2: HIL and PETS

- Implement and deploy your open-loop scalar control in the provided template for the HIL PETS and PETS. Show your control implementation, and discuss relevant changes with respect to your offline model.
- Show and comment HIL and experimental results for a speed reference step from $-\Omega_n$ to $+\Omega_n$. What are the differences between your offline simulations, HIL simulations, and experimental results?
- Show and comment HIL and experimental results for a load torque step from -5Nm to $+5\text{Nm}$.
- OPTIONAL: Implement closed-loop scalar control on HIL PETS and PETS. Show and comment on your results. Note: It is suggested to tune the PI using the symmetrical optimum method.

Hints:

- Connect the induction machine windings in star connection, you can leave the neutral point floating.
- Supply the MOT DC-Link through the rectifier, adjust the AC1 VARIAC to have a DC-voltage that allows to synthesize the nominal machine voltage at the inverter output.