

<i>Type of Document</i> Exercise	<i>Document ID</i> EPFL-PEL – EE-565 Report 0	<i>Status</i> Not Graded
	<i>Author(s) Name(s)</i> Name1 Surname1 SCIPER ID <i>Assistant Name</i> Gaia Petrillo Israel Yepez Lopez	<i>Function</i> MSc Student(s) <i>Date of Submission</i> N/A
<i>Title</i>	EXERCISE 0 - INTRODUCTION	
<i>Course Name</i>	EE-565 Industrial Electronics II	
<i>Keywords</i>	Electric Machine Control	

TABLE OF CONTENTS

Exercise 0: Control of DC and AC currents	2
---	---

This exercise will not graded.

EXERCISE 0: CONTROL OF DC AND AC CURRENTS

Consider the PETS connected to a DC load machine described in Tab. 1 and answer the following questions:

Table 1 PETS and Load Specifications

Delta Power Supply		DC Inductors		LCL Filter		Inverter	
Voltage	0 V - 660 V	Inductance	28 mH	Capacitance	2.836 μ F	Power	5.5 kW
Current	0 A - 11 A	Resistance	45 m Ω	Inductance	6.2 mH	Nominal AC Voltage	400 Vac
Power	3.6 kW	Current	8 A	Resistance	17 m Ω	Rated AC Current	12 A
Load						DC Voltage	300 V 800 V
Resistance	45 Ω - 280 Ω					DC Capacitance	705 μ F
						Switching Frequency	1 kHz - 10 kHz

1. Implement a current controller for a DC load connected to one switching leg of the MOT inverter of the PETS. Keep $V_{DC} = 310V$. Demonstrate the operation with a step from 0 A to 3 A.

Suggestions:

- Implement your control in the MOT DSP
- Use a PI control you can use as parameters $kp_current$ and $ki_current$, add saturations to and anti-windup back-calculation. You can fine-tune the control if you want, but this is not the objective of this exercise.
- For the experimental validation, adjust the physical variable load to the desired resistance value (given in the initialization files) - Remember to turn on Resistor ventilation and to connect it to ground

2. Implement a current controller for an AC load connected to the switching legs of the MOT inverter of the PETS. Keep $V_{DC} = 600V$. Demonstrate the operation with a step from 0 A to 3 A with an AC frequency ω of 100π rad/s and then a constant 3 A with a varying frequency from 0π rad/s to 200π rad/s (40π rad/s 2).

Suggestions:

- Use a PI control in the dq-frame you can use as parameters $kp_current$ and $ki_current$, add saturation limits and anti-windup back-calculation. You can fine-tune the control if you want, but this is not the objective of this exercise.
- For the experimental validation, adjust the physical variable load to the desired resistance value (given in the initialization files) - Remember to turn on Resistor ventilation and to connect it to ground