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DOUBLY FED INDUCTION MACHINE (1)

Figure 1 Doubly fed induction machine.

» 3-phase wound stator - normally connected to AC grid of frequency - wgiqtor
» 3-phase wound rotor - fed by converter, through slip-rings - wy-otor

» mechanical speed of rotor (electrical equivalent) - Wy, cch
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DOUBLY FED INDUCTION MACHINE (11)

Multiple names are used:

» WRIM (WRIG) - Wound Rotor Induction Motor (Generator)
» DFIM (DFIG) - Doubly Fed Induction Motor (Generator)
» DOIM (DOIG) - Double Output Induction Motor (Generator)

Comparison:

» Stator - Similar to SM and IM stator

» Rotor - Wound with 3 slip rings

)

| DC/AC
Converter

1
=

AC/DC |
Converter

Figure 2 Doubly fed induction machine.
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Figure 3 DFIM is used in: (top) hydro applications, (bottom)
wind applications (less and less now).
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OPERATION REGIONS OF DFIM (1)

Operation possibilities:

Wmech = Wstator T Wrotor Wmech = YmechP

» +sign indicates a subsynchronous operation mode wynech < Wstator

» -signindicates a supersynchronous operation mode wy,cch > Wstator

A Torque
Supersynchronous Subsynchronous
Slip: Motor operation Motor operation
S = Wrotor — Wstator — Wmech
Wstator Wstator :Slip
» S > Oindicates a subsynchronous operation Supersynchronous Subsynchronous
o . Generator operation Generator operation

» S < Oindicates a supersynchronous operation

Figure 4 Four quadrant operation
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OPERATION REGIONS OF DFIM (1)

Power delivery:

L . Slip-rings

» Majority of active power comes from the stator .
Prime D:I WRIG ﬁ:’

» However, in supersynchronous operation a good part comes from the rotor mover | o, Brushes

With limited speed (slip) range of the DFIM: .S, . [P ? [|_'l fo V,—variable
Wmeehmas = Dmmas = Ws (1+|Smaz]) -
mechmaz Mmaz s ma® Bidirectional //
AC-AC static _|—1 ~
converter

Maximum power at maximum speed:

Prao = Twmmam =Tws (1 + |Smaac|) y

Priae = Ps + Py

=P+ |Smaz|Ps 3 ~ f}, V;—constant

max

» DFIM s electrically designed for P at w Figure 5 DFIM setup
» DFIM is mechanically designed for P,,, .. at [ —

» Rotor side converter ratings are reduced - cost effective solution
Typically Sy, = 0.2 -0.3

In hydro or wind application this offer sufficient regulation capabilites
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OPERATION REGIONS OF DFIM (1l1)

Generating Mode

Pmech Pstator
>
>, l >
Ploss
Protor
Pmech Pstator
>
> l >
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Pmech Pstator
>
Ly l »
Ploss
Protor

Figure 6 Various operating modes
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Motoring Mode

Pstator Pmech
> >
S$>0 i
Subsynchronous P,
0SS
Protor
Pstator Pmech
> >
S<0 i
Supersynchronous P,
0SS
Protor
Pstator Pmech
> >
S=0 i
Synchronous P,
0SS
Protor
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MODELING (1)

» Stator voltage:

d¥s ..
Usape = BsapeLsape dt
» Rotor voltage:
Urape = Braperape * %
» Combined:
Al¥sr g

‘USTabc| = |RsrabcHlsrabc| + i

Where:

‘Rsrabcl = DiagIRszszsaR:vR:7R:‘

. T
‘Usrabcl = DzaglUsaa Usba Uscv U:a 5 U:ba U:C|

. T
us'rabc‘ = D/Lagusa:Isb»lsc’l:aylz:bzl:(:'

. T
‘\Ijsrabc‘ = Dlag“ljsav \I/sb:qjscij:av \I/:b,\I/:J

Figure 7 DFIG phase circuits
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DFIM MODELLING (1)

> Relation between flux and current:

> with:
Lls + Los
_Los
_Los
M cos(6.7)
Mcos(Her +2
M cos(@er -
Where:
7% and —
7% and —

EPFL ==

are derived from L, cos ( 2

|\I]5Tabc| = ‘LST‘abc(ae’l‘)HISTQbC'

M cos(0.7)
Mcos(é?er - 2?")
Mcos(@er + 2%)

Liy + Loy
— LO’V‘

2
_Lor
2

)

are the constant mutual inductances on the stator and the rotor

Mcos(Oer + %’)
M cos(0,7)
Mcos(@er - 2{)
N
Ll'r‘ + Lor

or

2

‘Lsrabc(eer” =

Mcos(Oer - 2{)

Mcos(Oer + %’)

M cos(0.r)
_Lor

2
_Lor

2
Ly + Loy
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DFIM MODELLING (1l)

Power balance:
A,
‘UsrabcHIsrabc‘ | srabcHIsrabc' ﬁusrabc‘
T 1 T d db
‘UsrabcHIsrabc‘ | STabcHISTabc' % §|ISTabc‘ |Lsrabc(06'rm[srabc‘ + i‘ISTabc‘ E‘Lsrabc(eerm[srabJ dzr
1 3 3
» Part 1: Winding power losses
» Part 2: Stored magnetic energy variation in time
» Part 3: Electromagnetic power
Electromagnetic power:
1 T d w.
Pelm = D) us'rabc| m'Lsrabc(eermIsrabc ‘wr = Teﬁ
Electromagnetic torque:
dL 6
Te =B, " 753“0“( ST
er
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DFIM MODELLING - DQ FRAME (1)

Using Park transformation:

27 _ 27 .
AT R ) A R I SR )e 90K
J _s2m )\ (g, _
I = fdJrIrq % Ig +Ipe’ 3 + 1.7 3 )e 3(Ok=er)
Reduce rotor to stator variables:
1 Vin
Qrs = Kpo=5—g— 0<|Smaz| <0.3
e |Smam‘ e VSN ‘Smax‘ maw
> a,.: stator to rotor turn ratio
M
» K.. = —
T8 LOS
> |S1nas|: maximum slip (defined by the datasheet)
From rotor to stator variables:
V’I‘
I, =1 K v, Tabe
Tabe Tabe ™ TS Tabe K,
R, L,
Rr = ; L'rl = gl
KTS K’I‘S
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DFIM MODELLING - DQ FRAME (l1)

R(1-9) V:(1-9)

Rs jwsbis jwsbyr R S S

Figure 8 DFIM equivalent model

Choosing the right reference frame:

= Sdq

dt

Qsdq = RSlqu + +jwkg$dq U =R,I + T +j(wk 7“"’”)&%(1

» Stator coordinates: wy, = 0
» Rotor coordinates: wy = wy,

» Synchronous coordinates: w;. = wg
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MODELING - DQ FRAME ()

Stator and rotor fluxes:

Yy = Lalog, + Ly, Yy = Lnlry, + Ll
Where:
Lssz+Lls Lr:Lm+LlT
Power:
dw
P, = 3 ReallU,1,") = SR,I2, + Real(%d—fg + Real(%jwb\psfs*
- = =7
Pepm

Electromagnetic torque:

T, = % = Real (%jwa*)
= %Pl Imag (M*)

= %pl (‘Ilsqlsd - \Ilsdlsq)
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OPERATION AT THE POWER GRID (I)

V,V,increases | 4
av, . ) 8>0
Uy = RyIy + "2 + oo (Lo Ls + L Ly Generator —
¥ N . — 1
AU ) o - ! T A Tr0 ! I‘W"
U,=R,I.+ d—tr + jSw, (LTI,A + Lmls) =U,(cosd +jsind) ~= -2 Wn 45,9 Ea W2 w5459
7 7 7 7 Motor ‘ V,/V, increases]
i i ’ VIV, increases Sl
Steady state equations & assumption R, = 0: SR <2 U
U = jws (Lo + Lyn1y)
Uy = Ryly + jSws (Lydy + Ly Is) = Uy (cos & + jisin ) ., 5<0
— . _ ! 548, —
Eliminating I;: —»—’1@‘ o “-ﬁjﬁ; : L Jew
Motor Gendrator, JEr—") '7\1 W2 m 8+8(S)
L2 L ! ViV, increases
R, +jSwg erL—m I, = Uy (cosé + jsind) - SU, Lm '
s s V,/V, increases
W2 <§Y(S) <m

L2
i = — mo .
Witho = 1 - 727

(Ur cosd + U, siné - SU L ) (R, — jSweoLy)
R2 + (Sw,oL, )

I, =

E P F L EE-565 Power Electronics Laboratory



OPERATION AT THE POWER GRID (ll) - §,,(.5)

cos 0 (S) = __ Swsolr sin §y(S) = S S tan 0g(S) =
R2 + (SwyoL,)? R2 + (SwyoL,)?
The angle §;, depends on the Slip .S and the rotor resistance R,.:
0 =0 for |SwsoL,|> R,
O = g for S=0
0< 0 < g for S>0
% < 6k: <7 fOT’ S<0
Operationat .S = 0
. s
-3U UTR L. sm(5+ 5)
3U?2 Lo T
Qe= 1 —3UUn g i cos (3 + %)
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Swgo L,
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OPERATION AT THE POWER GRID (lll) - STATOR POWER

Py +jQy =3U,I = 3Ly, g—( ﬂém _1:)

Inserting the expression for I,.:

172 U, cosd — jU,sind — SU, (R, +jSwgoL,)
Ps+st:3UsI::3JUS mU ( )
wsLs L Ra (S(.«)SO'LT)
Dividing into active and reactive power:
. 2
P, - -3U, Ur L sin (6 + dx(S)) +3U52(LL ) . RS .
+ (SWSJL,,.)Q S R'r + (S(.USG'L,,.)
Pss Pas
2 2
0. = 3% 14 (SwsLpy,) O'LZT 30,0, LLm cos (8 + 8,(9))
wsls | ™ (R2 + (SwyoL,)?) L s \[R2 4 (Sweo L, )?
Qas QSS
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OPERATION AT THE POWER GRID (IV) - ROTOR POWER

Py +jQy = 3U, I

Inserting the expression for I,.:

P} +3jQy =3(U,cosd + jU, sin §)

Dividing into active and reactive power:

2
- 3UR,
T
Ploss

Qr =

"
Qubsorbed

EPFL ==

(UT cosd — jU,.sind — SU;, LL”: )(RT +jSwsoL,)

" RZ+ (Sw.ol,
Ri+(SwsoLy)”

E’»UT2 SwsoL,
R? + (SwsoL,
o st

R2 + (SwyoL,)?

L,, Ssin(6+84(S)
Ls \[R2 { (SwyoL,)?
Pgs
L 30U, LLm S cos (6 + 0k (S))
s JR2 + (Swyo L, )?
Q5

)2 +3U,U,

)
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DFIG CONTROL GRID SIDE CONVERTER (I)

Main purpose:

R L DC Link
» Keep the DC-link voltage constant -:EO%‘——’VW—”W‘ LN :"
Voltage equations across the inductor: vO [ AN ﬂ ST ® .B ‘ e
_O_._r\N\,_nrvn
T I, s Back-to-back
Val Vo Vo1 PWM
g(ls _ I(ls d? [E s [[:]/va B ’ Converters
bo | = B oo 4L M Figure 9 GSC control schemati
UCS ICS dd,;S []c1 igure control schematics

In dq reference frame, the voltage equations become:

dlg,
dt

Uds = RIdS +L *weLIqS +Ud1

The supply flux angle is calculated:

0. :/wedt =tan

Aligning the d-axis along the stator-voltage angle leads to:

Uy, =0
3
Py = 35Va,la,

=

L EE-565

dl,,
Ug, =RIg, + L dtb twelLlg, +Ug,
1 Up
Ua
3
Qs = —3Ua, I,
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DFIG CONTROL GRID SIDE CONVERTER (lI)

The DC-link equations:

mi
El,s =3Uq4l, U, =—L1p
os did d 2\/§
3 dE
Ips = ﬁmlld C—dt =1, — I, OC link
Ve v
The DC-link voltage can be controlled by 4 o | ] w8 ‘_]' Siona
g-’ o To % PWM i
81 V.
The voltage equations become: Fol, ABC Vo |
Stator-side
dlg 6, [Voltage Converter
[
Ua, = = (Rla, + L—z=)+ws LIy, +Uq, adle ~‘ I
o4 %
=Uy =Ugy™” e % Yo Vs AE,C YarVh
aff
dlg,
Uy =—(RIg, +L )-wsLlg, I
‘—vi’ — Giid
=Uy :U;fmp {
1.1 ABC !
e—,’b\- > j to a>'y
aff

Figure 10 GSC control schematics
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DFIG CONTROL ROTOR SIDE CONVERTER (l)

Main purpose:
» Control speed

» Control active & reactive power on the rotor

Aligning the stator flux on the d-axis the equations become:

» Flux equations:

W, = Lol + LIy,
Wy, = Lol + LIy,

» from these equations:

— s
Irq - Isq
» Stator voltage equations:
a¥,,
Qqu = Rslsdq + T +]0Jb‘1/sdq

EPFL ==

0=0,
v,

L.
L
Us, = Raly, sy
= Y@

Us, = Rol,, +ws¥

= Lol + Ly,

= LIy, + Linls,

2
— Lm
= 1—LSLT LTITQ
dl, dl,,
d - R, gt Ls—* pn d 4L, a

0 = Rols, +ws(Lolsy + Lynly,)
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DFIG CONTROL ROTOR SIDE CONVERTER (II)

Starting from:

The rotor voltage equations become:

v,
dt - (ws

Ur, =RpI, + — W)U

Tq

Finally:

EPFL ==

+TS(USd—

dI, dl,

=R.I,,+L + Ly, 4 —Wslipo Ly I,

T dt modt
dr

1
— % +L, (f (Usd — I, Rs = Ly — g )) - wstipo Ly I,

1
4: (Us.i - (fs (W, - Lmlm)) RS) - Wslipo Ly I,

Lo R

f:wsd ) - WslipULTI'rq

! comp
0 =Ury +Ury

com
Urg™?
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DFIG CONTROL ROTOR SIDE CONVERTER (lll)

Transforming the g component of the rotor voltage:

dI
= Rplpy + 0Ly —% twsip (Lelrg + Linls,)
e Tdb
Urq

av,,
Urq = errq tg (ws — W )T

rd

1

= Uy, +Wstip | Lrdry + L (f (s, - Lml,nd)))

[

L
I, + LZ‘

L
L. Ysa

2
717 m
= Uy, + watip|| Ln = " v,

'
= Urq + wslipo'L'rIrd + Wslip

comp

Urq

Finally:
! com
Upy = Uy, + U™
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DFIG CONTROL ROTOR SIDE CONVERTER (IV)

SFomp
v dr

DG link

Yo HH
v
a Gate
aB [ Signal
To | s PWM
ABC [V
Rotor-side
Converter
=g ABC F
Fw * Fﬁr to irn‘r » rb\r
aB
5 6
?4 - \l Encoder
3
@ |
r IU;’UI I- k L)—_,IBF
. i f,ﬁs TaeThs
LCF . N2 — 8, Flux Stator ABC
dfdt Angle Flux |v__.¥v to PR,
el B Calc | PasPes | cac [«<Z1 ap Vs Vs

Figure 11 GSC control schematics
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SYNCHRONISATION TO THE GRID

Synchronisation is done in 3 Phases:

i Power
Phase 1: Acceleration to Wy ech > Ws(1 = [Smaz|) grid I3
v
» Stator is short-circuited V=0 :
» Operation principle as for a rotor fed induction machine POl

Phase 2: Open stator short-circuit
» Machine decelerates slowly

» Start synchronisation process - I WRIG
Y P *.——-—‘ lﬁ 4 P \Xl/1M stator
machine

Phase 3: Close connection to the grid - 1;, side-

converter

» Frequency, Phase and Amplitude must match
=

PWM
grid-side
converter
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COMPARISON

Disadvantages of DFIM
» Rotor slip rings require more maintenance
» Complex control for the RSC

» Limited current rating in case of grid fault

Advantages of DFIM

Grid Synchronisation:
» Fast grid synchronisation
» Flexible grid synchronisation

» Fast de- and reconnection to the Grid

Flexibility:
» Speed variation allows better tracking of optimal power point

» Variable speed pumping for optimized efficiency

Reduced rotor side converter rating
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