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DOUBLY FED INDUCTIONMACHINE (I)

Figure 1 Doubly fed inductionmachine.

▶ 3-phasewound stator - normally connected to AC grid of frequency -ωstator

▶ 3-phasewound rotor - fed by converter, through slip-rings -ωrotor

▶ mechanical speed of rotor (electrical equivalent) -ωmech
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DOUBLY FED INDUCTIONMACHINE (II)

Multiple names are used:
▶ WRIM (WRIG) -Wound Rotor InductionMotor (Generator)
▶ DFIM (DFIG) - Doubly Fed InductionMotor (Generator)
▶ DOIM (DOIG) - Double Output InductionMotor (Generator)

Comparison:
▶ Stator - Similar to SM and IM stator
▶ Rotor -Woundwith 3 slip rings

DC/AC
Converter

AC/DC
Converter

DFIM

GRID

Figure 2 Doubly fed inductionmachine.
Figure 3 DFIM is used in: (top) hydro applications, (bottom)
wind applications (less and less now).
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OPERATION REGIONS OF DFIM (I)

Operation possibilities:

ωmech = ωstator ± ωrotor ωmech = Ωmechp

▶ + sign indicates a subsynchronous operationmodeωmech < ωstator

▶ - sign indicates a supersynchronous operationmodeωmech > ωstator

Slip:

S = ωrotor
ωstator

= ωstator − ωmech
ωstator

▶ S > 0 indicates a subsynchronous operation
▶ S < 0 indicates a supersynchronous operation

Slip

Torque

Subsynchronous
Motor operation

Supersynchronous
Motor operation

Subsynchronous
Generator operation

Supersynchronous
Generator operation

Figure 4 Four quadrant operation
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OPERATION REGIONS OF DFIM (II)

Power delivery:
▶ Majority of active power comes from the stator
▶ However, in supersynchronous operation a good part comes from the rotor

With limited speed (slip) range of the DFIM:Smax

ωmechmax
= ωmmax

= ωs (1 + ∣Smax∣)
Maximumpower at maximum speed:

Pmax = Tωmmax
= Tωs (1 + ∣Smax∣)

Pmax = Ps + Prmax
= Ps + ∣Smax∣Ps

▶ DFIM is electrically designed forPs atωs

▶ DFIM ismechanically designed forPmax atωmmax

▶ Rotor side converter ratings are reduced - cost effective solution

TypicallySmax ≅ 0.2 − 0.3

In hydro or wind application this offer sufficient regulation capabilites

Figure 5 DFIM setup
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OPERATION REGIONS OF DFIM (III)

Pstator

Protor

Pmech

Ploss

S > 0 
Subsynchronous

S < 0 
Supersynchronous

S = 0 
Synchronous
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Pmech

Pmech
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Protor
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Pmech
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Pstator
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Pstator
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Ploss
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Figure 6 Various operatingmodes
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MODELING (I)

▶ Stator voltage:

Usabc
= Rsabc

Isabc
+
dΨsabc

dt

▶ Rotor voltage:

Urabc
= Rrabc

Irabc
+
dΨrabc

dt

▶ Combined:

∣Usrabc
∣ = ∣Rsrabc

∣∣Israbc
∣ + d∣Ψsrabc

∣
dt

Where:∣Rsrabc
∣ = Diag∣Rs, Rs, Rs, R

r
r , R

r
r , R

r
r ∣∣Usrabc

∣ = Diag∣Usa , Usb , Usc , U
r
ra , U

r
rb , U

r
rc ∣T∣Israbc

∣ = Diag∣Isa , Isb , Isc , Irra , Irrb , Irrc ∣T∣Ψsrabc
∣ = Diag∣Ψsa ,Ψsb ,Ψsc ,Ψ

r
ra ,Ψ

r
rb ,Ψ

r
rc ∣T Figure 7 DFIG phase circuits
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DFIMMODELLING (II)

▶ Relation between flux and current:

∣Ψsrabc
∣ = ∣Lsrabc

(θer )∣∣Israbc
∣

▶ with:

∣Lsrabc
(θer )∣ =

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Lls + Los −Los
2 −Los

2 M cos(θer) M cos(θer + 2π
3 ) M cos(θer − 2π

3 )
−Los

2 Lls + Los −Los
2 M cos(θer − 2π

3 ) M cos(θer) M cos(θer + 2π
3 )

−Los
2 −Los

2 Lls + Los M cos(θer + 2π
3 ) M cos(θer − 2π

3 ) M cos(θer)
M cos(θer) M cos(θer − 2π

3 ) M cos(θer + 2π
3 ) Llr + Lor −Lor

2 −Lor
2

M cos(θer + 2π
3 ) M cos(θer) M cos(θer − 2π

3 ) −Lor
2 Llr + Lor −Lor

2

M cos(θer − 2π
3 ) M cos(θer + 2π

3 ) M cos(θer) −Lor
2 −Lor

2 Llr + Lor

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Where:

−Los
2 and−Lor

2 are derived fromLos cos ( 2π3 ) andLor cos ( 2π3 )
−Los

2 and−Lor
2 are the constant mutual inductances on the stator and the rotor
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DFIMMODELLING (III)

Power balance:

∣Usrabc
∣∣Israbc

∣ = ∣Rsrabc
∣∣Israbc

∣2 +
d∣Ψsrabc

∣
dt

∣Israbc
∣

∣Usrabc
∣∣Israbc

∣ = ∣Rsrabc
∣∣Israbc

∣2ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
1

+
d
dt

(1
2
∣Israbc

∣T ∣Lsrabc
(θer )∣∣Israbc

∣)ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
2

+
1
2
∣Israbc

∣T d
dθer

∣Lsrabc
(θer )∣∣Israbc

∣dθer
dtÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

3

▶ Part 1: Winding power losses
▶ Part 2: Storedmagnetic energy variation in time
▶ Part 3: Electromagnetic power

Electromagnetic power:

Pelm = 1
2
∣Israbc

∣T d
dθer

∣Lsrabc
(θer )∣∣Israbc

∣ωr = Te
ωr
p1

Electromagnetic torque:

Te = p1
2
∣Israbc

∣T »»»»»»»»dLsrabc
(θer )

dθer

»»»»»»»»∣Israbc
∣
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DFIMMODELLING - DQ FRAME (I)

Using Park transformation:

I
k
s = I

k
sd + I

k
sq = 2

3
(Isa + Isbe

j 2π
3 + Isce

−j 2π
3 ) e−jθk

I
k
r = I

k
rd + I

k
rq = 2

3
(Ira + Irbe

j 2π
3 + Irce

−j 2π
3 ) e−j(θk−θer )

Reduce rotor to stator variables:

ars ≅ 1∣Smax∣ Krs =
VrN

VsN ∣Smax∣ 0 < ∣Smax∣ < 0.3

▶ ars : stator to rotor turn ratio

▶ Krs = M
Los

▶ ∣Smax∣: maximum slip (defined by the datasheet)

From rotor to stator variables:

Irabc
= I

r
rabc

Krs Vrabc
=
V

r
rabc

Krs

Rr = R
r
r

K2
rs

Lrl =
L
r
rl

K2
rs
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DFIMMODELLING - DQ FRAME (II)

Rs jωsLls

jωsLm

jωsLlr Rr
Rr(1 - S)

S
Vr(1 - S)

S

VrVs

IrIs

Im

Figure 8 DFIM equivalent model

Choosing the right reference frame:

Usdq
= RsIsdq +

dΨsdq

dt
+ jωkΨsdq

Urdq
= RrIrdq +

dΨrdq

dt
+ j(ωk − ωm)Ψrdq

▶ Stator coordinates: ωk = 0

▶ Rotor coordinates: ωk = ωm

▶ Synchronous coordinates: ωk = ωs
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MODELING - DQ FRAME (I)

Stator and rotor fluxes:

Ψsdq
= LsIsdq + LmIrdq Ψrdq

= LrIrdq + LmIsdq

Where:

Ls = Lm + Lls Lr = Lm + Llr

Power:

Ps = 3
2
Real(UsIs

∗) = 3
2
RsI

2
sd +Real (3

2

dΨs

dt
Is

∗) +Real (3
2
jωbΨsIs

∗)ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
Pelm

Electromagnetic torque:

Te = p1
ωb

= Real (3
2
jωbΨsIs

∗)
= 3
2
p1Imag (ΨsIs

∗)
= 3
2
p1 (Ψsq Isd −ΨsdIsq )
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OPERATION AT THE POWERGRID (I)

Us = RsIs +
dΨs

dt
+ jωs (LsIs + LmIr)

Ur = RrIr +
dΨr

dt
+ jSωs (LrIr + LmIs) = Ur (cos δ + j sin δ)

Steady state equations & assumptionRs = 0:

Us = jωs (LsIs + LmIr)
Ur = RrIr + jSωs (LrIr + LmIs) = Ur (cos δ + j sin δ)

Eliminating Is :

(Rr + jSωs (Lr −
L
2
m

Ls
)) Ir = Ur (cos δ + j sin δ) − SUs

Lm

Ls

Withσ = 1 − L
2
m

LsLr
:

Ir =
(Ur cos δ + jUr sin δ − SUs

Lm
Ls

) (Rr − jSωsσLr )
R2

r + (SωsσLr )2
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OPERATION AT THE POWERGRID (II) - δk(S)
cos δk(S) = SωsσLr√

R2
r + (SωsσLr )2 sin δk(S) = Rr√

R2
r + (SωsσLr )2 tan δk(S) = Rr

SωsσLr

The angle δk depends on the SlipS and the rotor resistanceRr :

δk = 0 for ∣SωsσLr ∣ ≫ Rr

δk = π
2

for S = 0

0 < δk < π
2

for S > 0

π
2

< δk < π for S < 0

Operation atS = 0

Ps = −3UsUr
Lm

RrLs
sin (δ + π

2
)

Qs = 3U
2
s

ωsLs
− 3UsUr

Lm

RrLs
cos (δ + π

2
)
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OPERATION AT THE POWERGRID (III) - STATOR POWER

Ps + jQs = 3UsI
∗
s = 3Lm

Us

Ls
( jUs

ωsLm
− I

∗
r )

Inserting the expression for Ir :

Ps + jQs = 3UsI
∗
s = 3

jU
2
s

ωsLs
− 3Lm

Us

Ls

(Ur cos δ − jUr sin δ − SUs
Lm
Ls

) (Rr + jSωsσLr )
R2

r + (SωsσLr )2
Dividing into active and reactive power:

Ps = −3UsUr
Lm

Ls

sin (δ + δk(S))√
R2

r + (SωsσLr )2ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï
Pss

+ 3U
2
s (Lm

Ls
)2 RrS

R2
r + (SωsσLr )2ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï

Pas

Qs = 3U
2
s

ωsLs

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝1 +
(SωsLm)2σLr(R2
r + (SωsσLr )2)LsÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

Qas

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ − 3UsUr
Lm

Ls

cos (δ + δk(S))√
R2

r + (SωsσLr )2ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï
Qss
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OPERATION AT THE POWERGRID (IV) - ROTOR POWER

P
r
r + jQ

r
r = 3UrI

∗
r

Inserting the expression for Ir :

P
r
r + jQ

r
r = 3 (Ur cos δ + jUr sin δ) (Ur cos δ − jUr sin δ − SUs

Lm
Ls

) (Rr + jSωsσLr )
R2

r + (SωsσLr )2
Dividing into active and reactive power:

P
r
r = 3U

2
rRr

R2
r + (SωsσLr )2ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï

Pr
loss

+ 3UsUr
Lm

Ls

S sin (δ + δk(S))√
R2

r + (SωsσLr )2ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï
Pr
as

Q
r
r = 3U

2
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Qr

s
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DFIG CONTROL GRID SIDE CONVERTER (I)

Main purpose:
▶ Keep the DC-link voltage constant

Voltage equations across the inductor:

⎡⎢⎢⎢⎢⎢⎢⎢⎣
Uas

Ubs
Ucs

⎤⎥⎥⎥⎥⎥⎥⎥⎦ = R

⎡⎢⎢⎢⎢⎢⎢⎢⎣
Ias

Ibs
Ics

⎤⎥⎥⎥⎥⎥⎥⎥⎦ + L

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
dIas
dt

dIbs
dt

dIcs
dt

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ +
⎡⎢⎢⎢⎢⎢⎢⎢⎣
Ua1

Ub1
Uc1

⎤⎥⎥⎥⎥⎥⎥⎥⎦ Figure 9 GSC control schematics

In dq reference frame, the voltage equations become:

Uds = RIds + L
dIds
dt

− ωeLIqs + Ud1 Uqs = RIqs + L
dIqs
dt

+ ωeLIds + Uq1

The supply flux angle is calculated:

θe = ∫ ωedt = tan
−1 Uβ

Uα

Aligning the d-axis along the stator-voltage angle leads to:

Uqs = 0

Ps = 3
2
VdsIds Qs = −

3
2
UdsIqs
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DFIG CONTROL GRID SIDE CONVERTER (II)

The DC-link equations:

EIos = 3UdId Ud = m1

2
√
2
E

Ios = 3

2
√
2
m1Id C

dE
dt

= Ios − Ior

The DC-link voltage can be controlled by Id

The voltage equations become:

Ud1 = − (RIds + L
dIds
dt

)ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
=U ′

d

+ωsLIqs + UdsÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
=Ucomp

d1

Uq1 = − (RIqs + L
dIqs
dt

)ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
=U ′

q

−ωsLIdsÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï
=Ucomp

q1

Figure 10 GSC control schematics
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DFIG CONTROL ROTOR SIDE CONVERTER (I)

Main purpose:
▶ Control speed
▶ Control active & reactive power on the rotor

Aligning the stator flux on the d-axis the equations become:
▶ Flux equations:

Ψsd = LsIsd + LmIrd 0 = Ψsq = LsIsq + LmIrq

Ψrd = LrIrd + LmIsd Ψrq = LrIrq + LmIsq

▶ from these equations:

Irq = −
Ls

Lm
Isq Ψrq = LrIrq − Lm

Ls

Lm
Irq = (1 −

L
2
m

LsLr
)LrIrq

▶ Stator voltage equations:

Usdq
= RsIsdq +

dΨsdq

dt
+ jωbΨsdq

Usd = RsIsd +
dΨsd

dt
= RsIsd + Ls

dIsd
dt

+ Lm
dIrd
dt

Usq = RsIsq + ωsΨsd = RsIsq + ωs (LsIsd + LmIrd )
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DFIG CONTROL ROTOR SIDE CONVERTER (II)

Starting from:

Urdq
= RrIrdq +

dΨrdq

dt
+ j(ωb − ωm)Ψrdq

The rotor voltage equations become:

Urd = RrIrd +
dΨrd

dt
− (ωs − ωm)Ψrq = RrIrd + Lr

dIrd
dt

+ Lm
dIsd
dt

− ωslipσLrIrq

= RrIrd + Lr
dIrd
dt

+ Lm ( 1
Ls

(Usd − IsdRs − Lm
dIrd
dt

)) − ωslipσLrIrq

= RrIrd + (Lr −
L
2
m

Ls
) dIrd

dt
+
Lm

Ls
(Usd − ( 1

Ls
(Ψsd − LmIrd ))Rs) − ωslipσLrIrq

= (Rr +
L
2
m

L2
s
Rs) Ird + (Lr −

L
2
m

Ls
)ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

σLr

dIrd
dt
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U ′

rd

+
Lm

Ls
(Usd −

Rs

Ls
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U
comp
rd

Finally:
Urd = U

′
rd + U

comp
rd
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DFIG CONTROL ROTOR SIDE CONVERTER (III)

Transforming the q component of the rotor voltage:

Urq = RrIrq +
dΨrq

dt
+ (ωs − ωm)Ψrd = RrIrq + σLr

dIrq
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U ′
rq

+ωslip (LrIrd + LmIsd )
= U

′
rq + ωslip (LrIrd + Lm ( 1

Ls
(Ψsd − LmIrd )))

= U
′
rq + ωslip ((Lr −

L
2
m

Ls
) Ird +

Lm

Ls
Ψsd )

= U
′
rq + ωslipσLrIrd + ωslip

Lm

Ls
ΨsdÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

U
comp
rq

Finally:
Urq = U

′
rq + U

comp
rq
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DFIG CONTROL ROTOR SIDE CONVERTER (IV)

Figure 11 GSC control schematics
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SYNCHRONISATION TO THE GRID

Synchronisation is done in 3 Phases:

Phase 1: Acceleration toωmech > ωs(1 − ∣Smax∣)
▶ Stator is short-circuited
▶ Operation principle as for a rotor fed inductionmachine

Phase 2: Open stator short-circuit
▶ Machine decelerates slowly
▶ Start synchronisation process

Phase 3: Close connection to the grid
▶ Frequency, Phase and Amplitudemustmatch
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COMPARISON

Disadvantages of DFIM
▶ Rotor slip rings requiremoremaintenance
▶ Complex control for the RSC
▶ Limited current rating in case of grid fault

Advantages of DFIM

Grid Synchronisation:
▶ Fast grid synchronisation
▶ Flexible grid synchronisation
▶ Fast de- and reconnection to the Grid

Flexibility:
▶ Speed variation allows better tracking of optimal power point
▶ Variable speed pumping for optimized efficiency

Reduced rotor side converter rating
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