EE-559 Deep learning — Practice 3, Students’ questions

A question is denoted by Q; the corresponding answer is denoted by A. The questions-related
exercises are marked by their numbers in Practice 3.pdf and Practice_3.ipynb documents.

Working with data

Q: What is a DatalLoader, can I access the dataset directly from the Dataloader,
why can’t I use counter as in lab 27

A: "PyTorch provides two data primitives: torch.utils.data.Dataloader and torch.utils.data.
Dataset that allow you to use pre-loaded datasets as well as your own data. Dataset stores
the samples and their corresponding labels, and DatalLoader wraps an iterable around the
Dataset to enable easy access to the samples." This information is taken from official PyTorch
documentation — check it for more details.

Dataloader as an iterable structure. Dataloader outputs batches of samples and targets
sampled from the original dataset until the number of outputted samples is equal to the
dataset (£ one batchsize). You can sample from the dataset with different probabilities and
with or without repetitions of samples.

Instead of taking Iterable_loader = iter(dataloader), and then taking next(Iterable_loader) ev-
ery time you want a new batch, you can iterate through the dataloader with a for loop:
for data in dataloader. Here data will be a pair of (input, target), where both input and target
are batches of a few samples from the dataset.

Q: Why we set shuffle=True for train_loader?

A: Shuffling the training data ensures that the model does not learn the order of the data,
which helps in reducing overfitting and improving generalization. This randomization en-
courages the model to learn robust features rather than memorizing the sequence in which
the data is presented.

Q: For plot__class_ distribution_for_dataloader(dataloader) function, why we need
to consider the case when class_name is not in count_dict ?

A: We should note that the count_dict is empty initially. Since the dictionary structure does
not automatically create keys, we must check if the 'key’ is present. If it’s not, we need to
initialize it with a value before incrementing, ensuring all classes are counted correctly.

Q: Do we need to plot the distribution of classes per mini-batch or per train-
ing/test sets?
A: Per training / test sets.

Q: What happens if I change the order of the transformation functions?

A: For this question it is important to account for two factors. Firstly, some transforma-
tions in torchvision are deterministic (i.e., transforms.Grayscale), whereas others are not (i.e.,
transforms.RandomHorizontalFlip).

In general, if we assume that the transformations are deterministic (e.g., when you are work-
ing in image editing software), some of the transformations are commutative, whereas others


https://pytorch.org/tutorials/beginner/basics/data_tutorial.html
https://pytorch.org/tutorials/beginner/basics/data_tutorial.html

are not. For example, it does not matter if you convert an image to grayscale and then resize
it, or vise versa. However, it would matter if you at first rotated an image, and then applied
an affine transformation, or vice versa. More information on transformations is available
here.

Model architecture and losses

Q: In exercise 3.3, where can I find the example of how to freeze the feature
layers?

A: You won't see it directly on Gnoto, but there is a link embedded in the word "here". Just
click on it to access the example.

Q: In exercise 3.3, after loading the AlexNet model, do we need to create new
linear layers, or should we modify the existing ones?

A: As indicated in the code comments with model.classifier[?] = nn.Linear(...), you should
modify the three existing linear layers of the classifier.

Q: How do we define the architecture of the model (e.g., how did we select 128
as the number of hidden units)?

A: Unfortunately, there is no easy answer on how to select a model architecture. Model
architecture could be an output of trial-and-error, or a grid search (which is computationally
expensive). Often you would be relying on models’ complexity used in the prior work of
your domain. Besides this, you could be using models pre-trained on a large corpus of data,
hence you would be adopting their architecture, changing only few layers for finetuning.

Q: How does the F1 score work for multi-class classification?

A: For multi-class classification, the F1 score is calculated using a one-vs-all approach,
where each class is treated as the positive class while the others are considered negative.
This transforms the problem into multiple binary classification tasks, each yielding an F1
score. The final result can be aggregated in different ways, such as micro, macro, or weighted
averaging. For more details, refer to the scikit-learn documentation.

Q: What is the difference between the forward pass and the model predictions
in exercise 3.57

A: When you do the forward pass, out = model(data), you obtain logits, that is, the raw,
unnormalized scores produced by the model. Since we process a batch of 10 images at a time,
out has a shape of 10 x 10, meaning each image is associated with a tensor of 10 values (one
per class). The model’s predictions, however, refer to selecting the class with the highest
logit for each image, giving us the final predicted labels for the given batch.

Q: How to create named modules in the model in PyTorch?

A: Named modules refer to layers or components inside a model with explicitly assigned
names. In PyTorch, named modules are typically created by defining a custom class that
inherits from torch.nn.Module. Each submodule is assigned as an attribute of the main
module, and PyTorch automatically registers them. For more details, see this| link.

Q: I get an error of dimension mismatch in my model, what’s the problem?
A: Dimension mismatch errors in PyTorch usually arise from incorrect tensor shapes being


https://pytorch.org/vision/0.9/transforms.html
https://scikit-learn.org/stable/modules/model_evaluation.html#multiclass-and-multilabel-classification
https://github.com/pytorch/pytorch/blob/v2.6.0/torch/nn/modules/module.py#L634

passed between layers. This could be due to incorrect input size, improper reshaping, or
mismatched dimensions between layers (e.g., incompatible input-output sizes in linear layers
or convolutions). Checking model.forward using print(tensor.shape) at various points can help
diagnose the issue.



