

Any reproduction or distribution of this document, in whole or in part, is prohibited unless permission is granted by the authors

EE-559

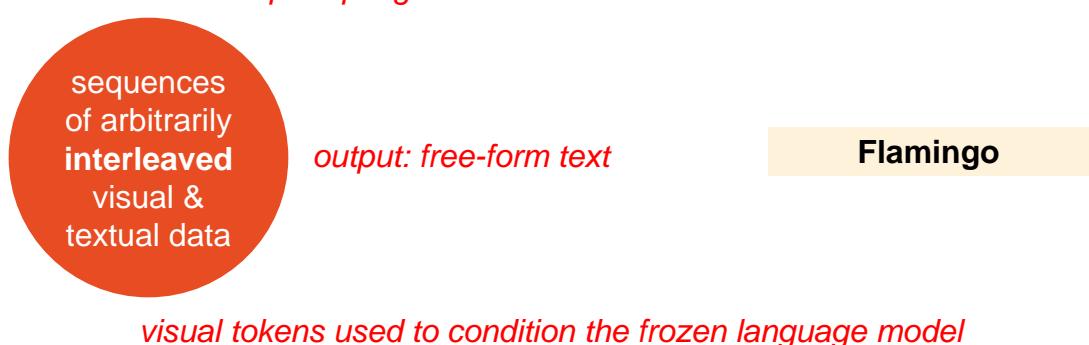
Deep Learning

What's on today?

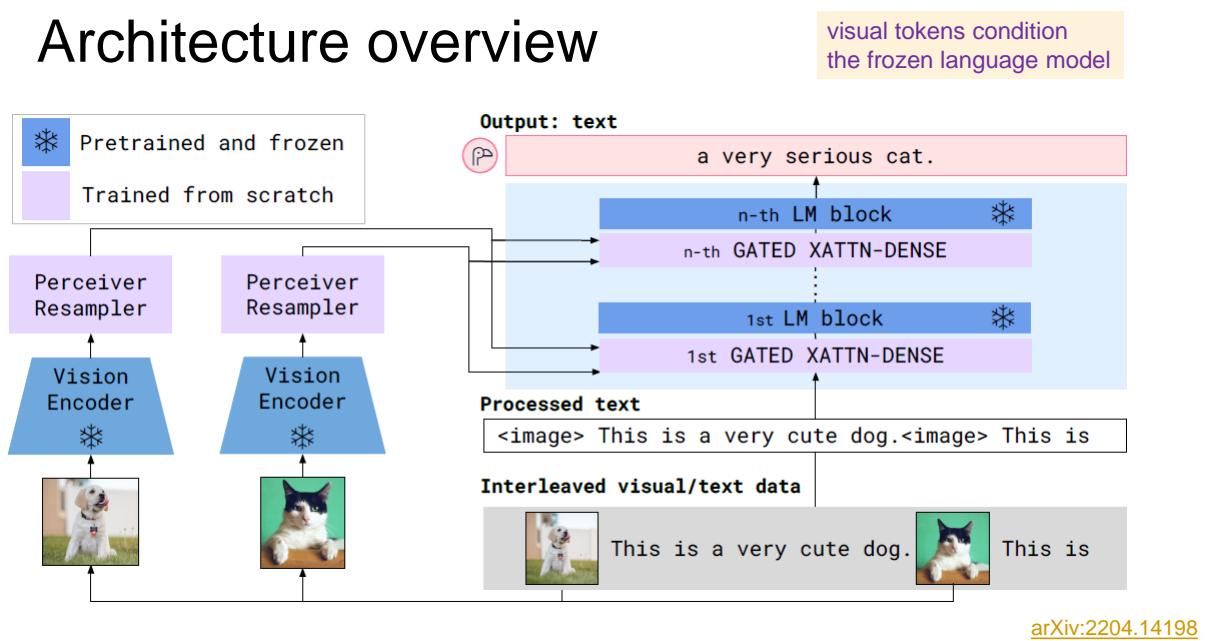
- **Flamingo**: vision and language model example [subset of slides from last week]
- **Vision-Language-Action models**: robots that follow instructions
- **Reinforcement learning from human feedback**: on value alignment
- **Pluralistic alignment**: on AI respecting the values of all

Flamingo

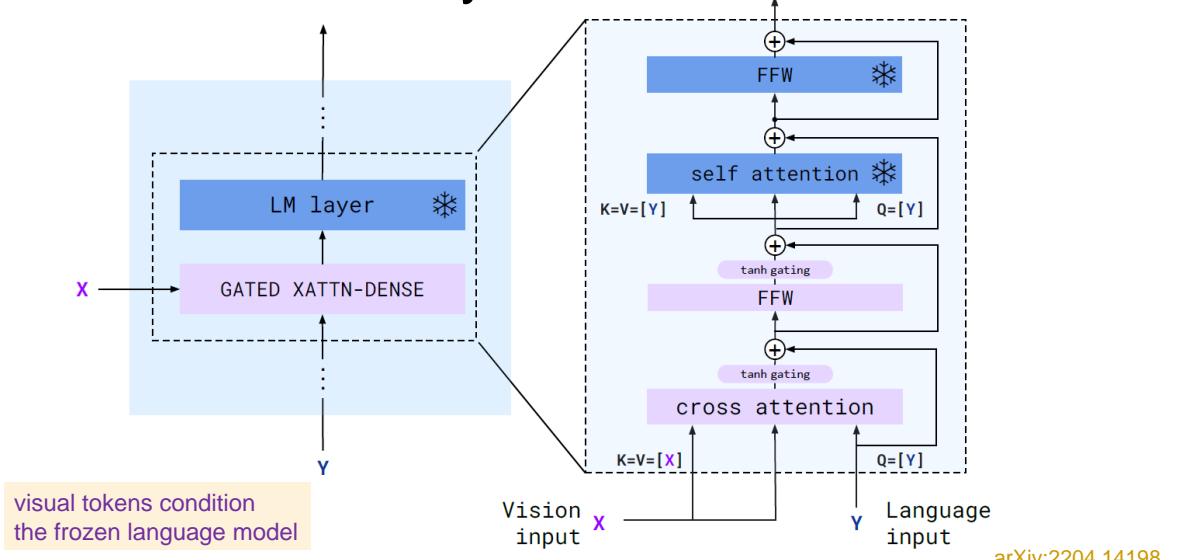
VLM for few-shot learning

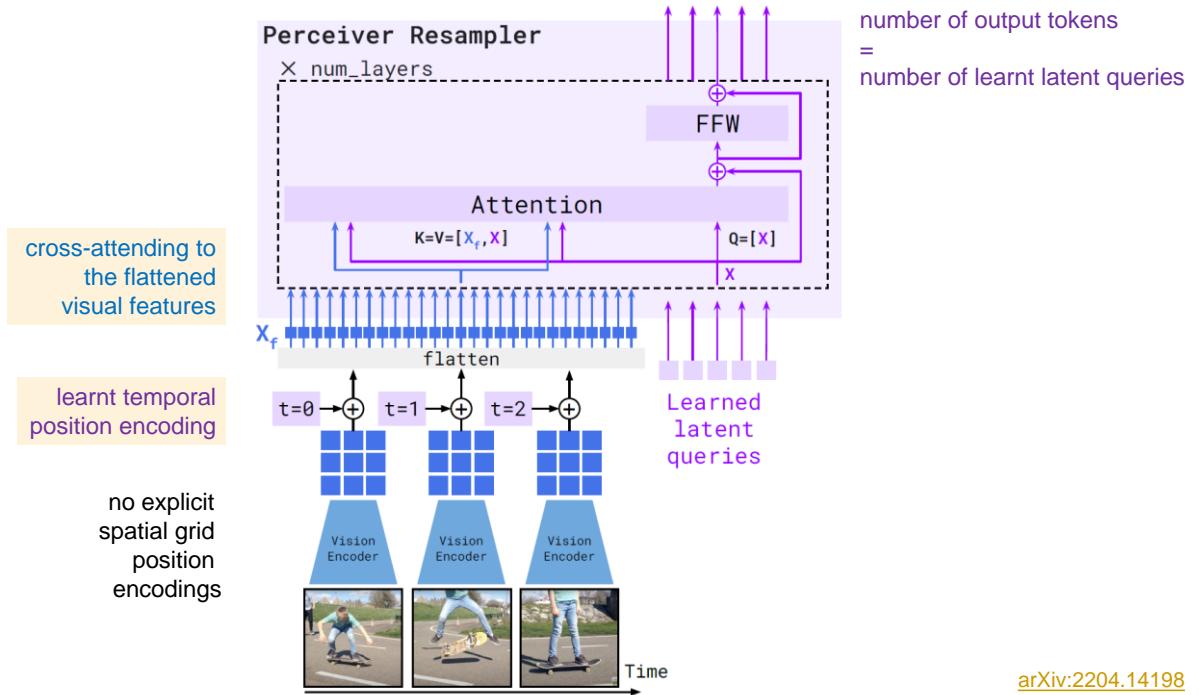


Architecture overview

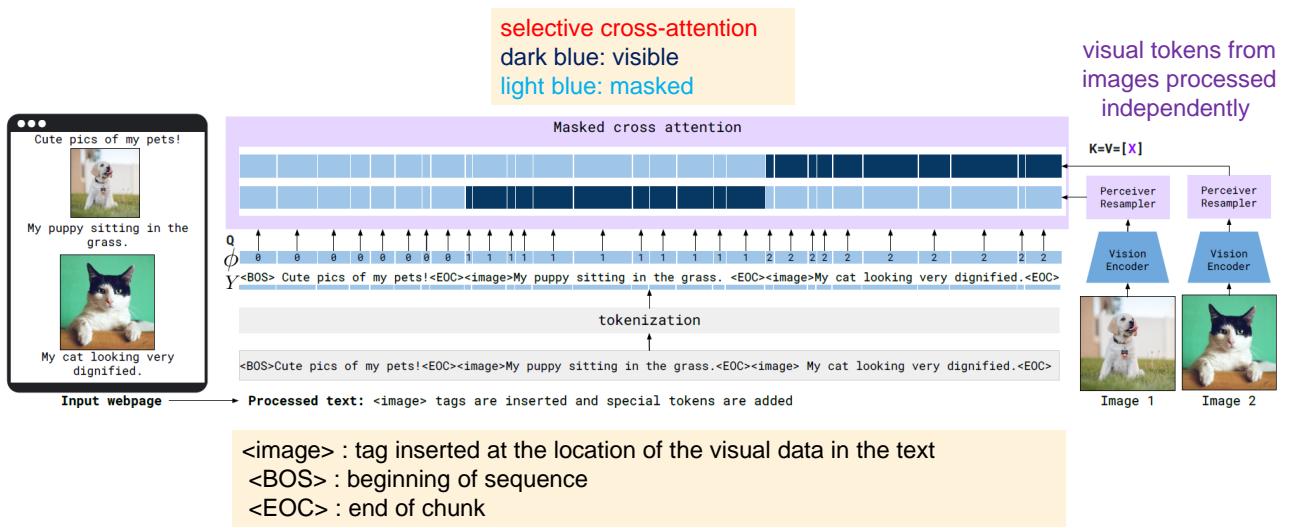


Cross-attention layers





Text interleaved with images/videos



Vision-to-text task

input: vision
output: text

task-specific few-shot examples
(support examples)

query

A cat wearing sunglasses.

Elephants walking in the savanna.

<BOS><image>Output: A cat wearing sunglasses.<EOC><image>Output: Elephants walking in the savanna.<EOC><image>Output:

processed prompt

prepend `Output:` to the expected response

[arXiv:2204.14198](https://arxiv.org/abs/2204.14198)

Visual question answering task

input: vision + text
output: text

task-specific few-shot examples
(support examples)

query

What's the cat wearing?

How many animals?

What is on the water?

<BOS><image>Question: What's the cat wearing? Answer: sunglasses<EOC><image>Question: How many animals? Answer: 3<EOC><image>Question: What is on the water? Answer:

processed prompt

prompting in the format “`Question: {question} Answer: {answer}`”

[arXiv:2204.14198](https://arxiv.org/abs/2204.14198)

Simple form of interaction

<p>Question: What nutrients is the fruit in the image rich in? Answer:</p>	<p>Question: What is the purpose of this? Answer:</p>	<p>Question: What season is this? Explain why. Answer:</p>
Vitamin C, potassium, and fiber.	To keep the mosquitoes out of the bed.	This is winter season. The Christmas tree and the presents are the main reasons why it is winter.

input: single image + text prompt
(question or start of a caption)

output: text

input prompt

completion

[arXiv:2204.14198](https://arxiv.org/abs/2204.14198)

Dialogue

What do you think the robot is doing here?

The robot is picking up a ball.

What color is the ball?

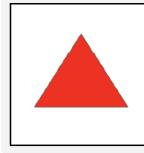
It's red.

I want the ball to be hidden. Is there something the robot can use for that?

The robot can use a cloth to hide the ball.

What color is the cloth?

The cloth is blue.



What is the difference between these two images?

The first one is a triangle and the second one is a hexagon.

Which one has larger internal angles?

The hexagon has larger internal angles.

What color are they?

They are both red.

[arXiv:2204.14198](https://arxiv.org/abs/2204.14198)

Hallucinations

input prompt

Question: What is on the phone screen? Answer:

Question: What can you see out the window? Answer:

Question: Whom is the person texting? Answer:

output

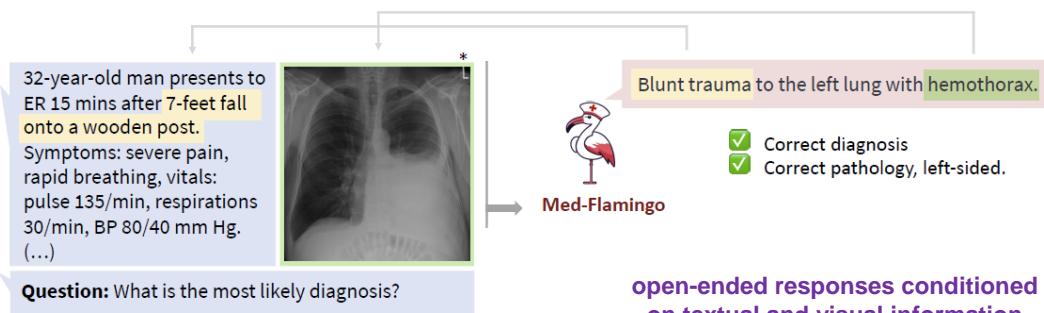
A text message from a friend.

A parking lot.

The driver.

[arXiv:2204.14198](https://arxiv.org/abs/2204.14198)

Medical generative vision-language model

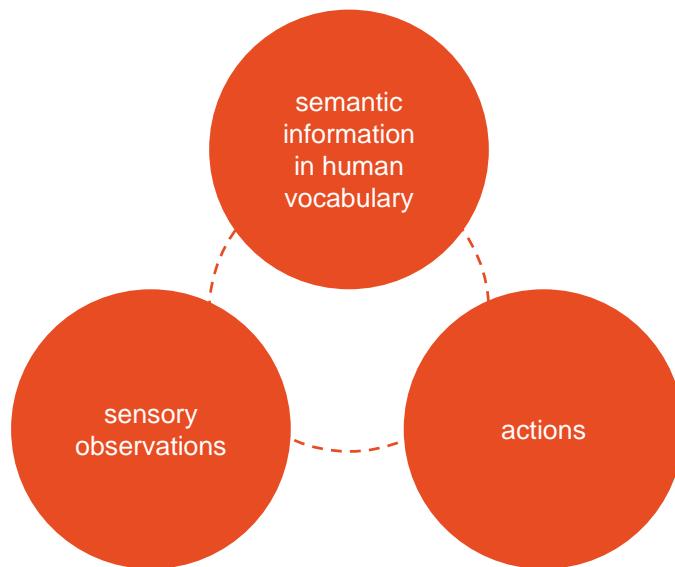


open-ended responses conditioned on textual and visual information

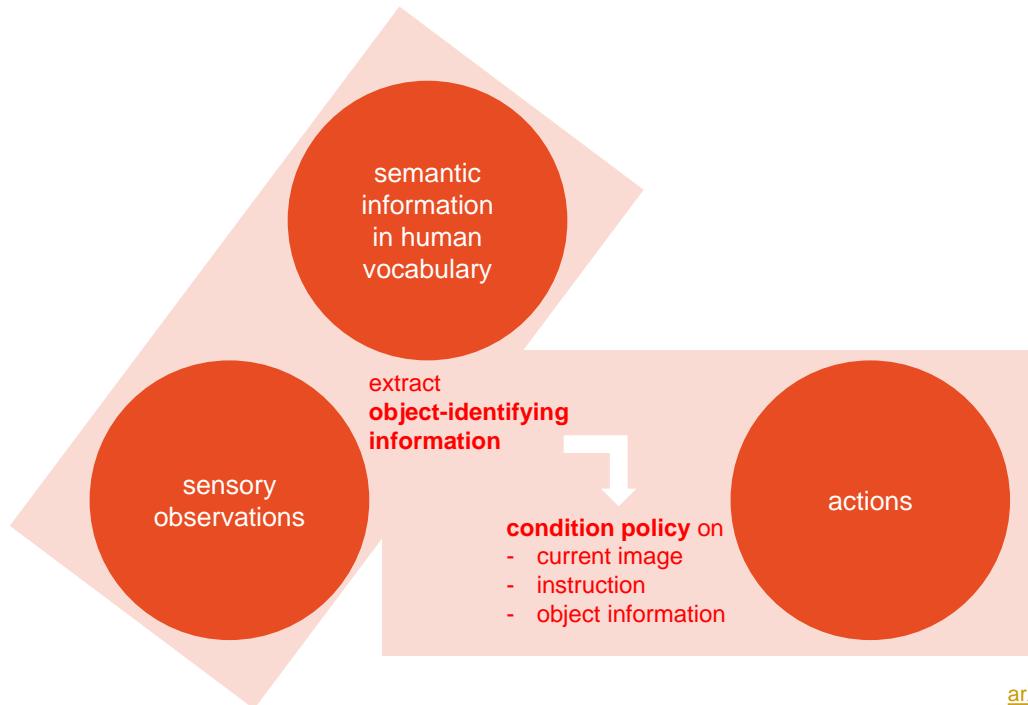
in-context learning

[arXiv:2307.15189](https://arxiv.org/abs/2307.15189)

Vision-Language-Action models

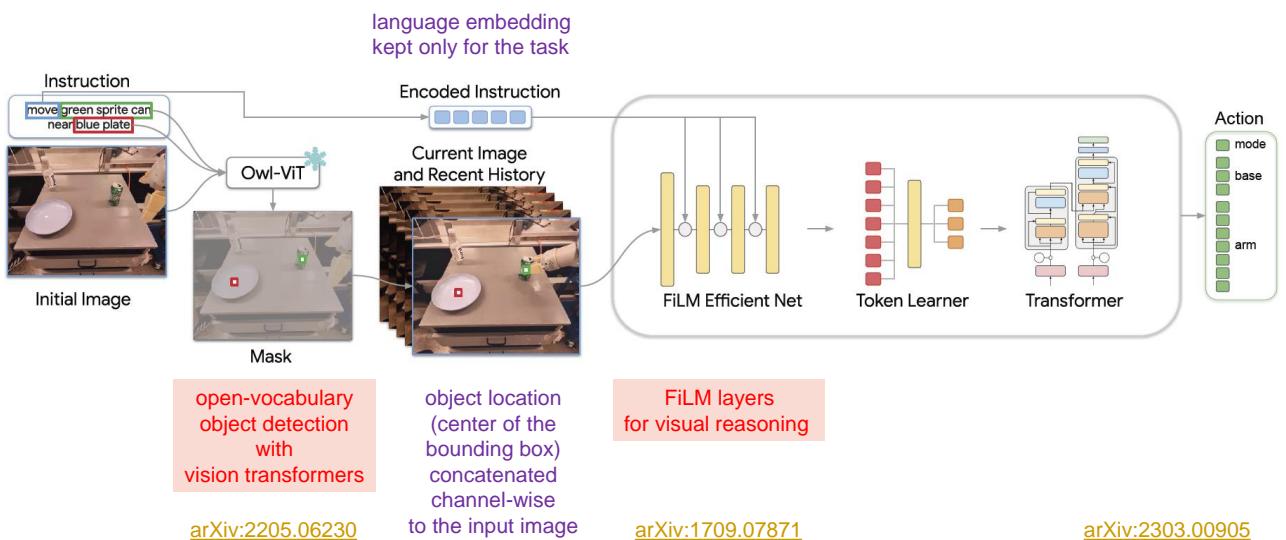


[arXiv:2303.00905](https://arxiv.org/abs/2303.00905)

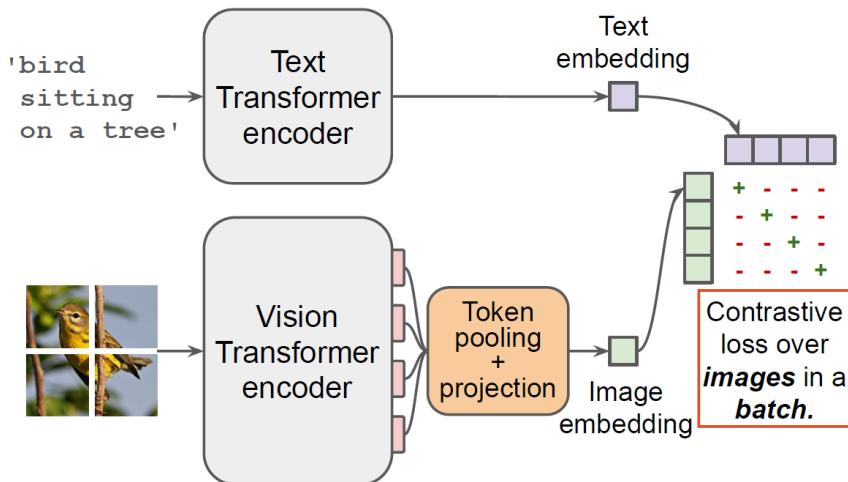


[arXiv:2303.00905](https://arxiv.org/abs/2303.00905)

Policy learning and (separate) VL models

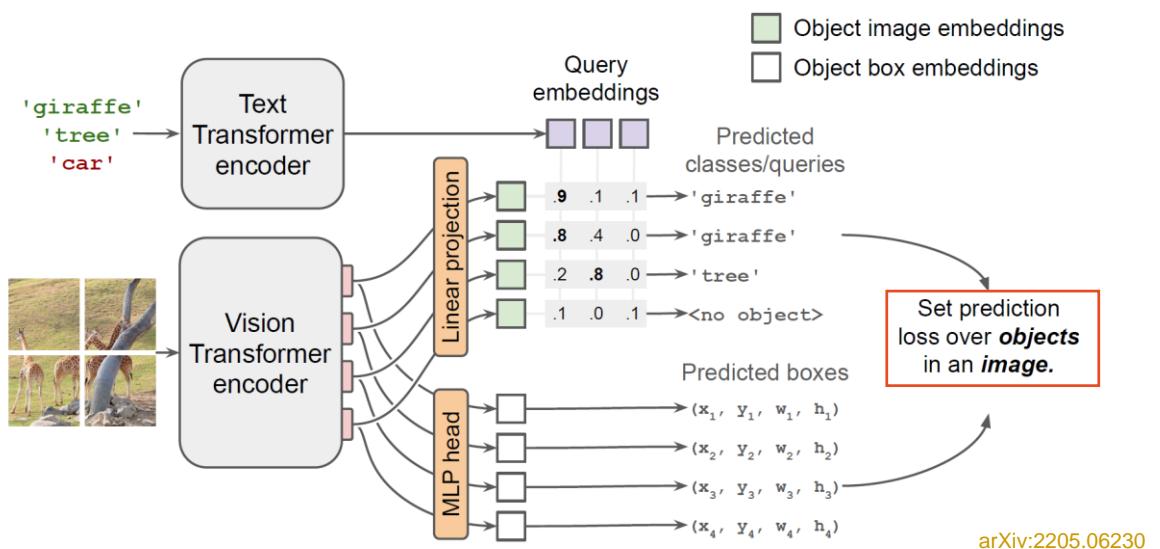


Contrastive image-text pre-training



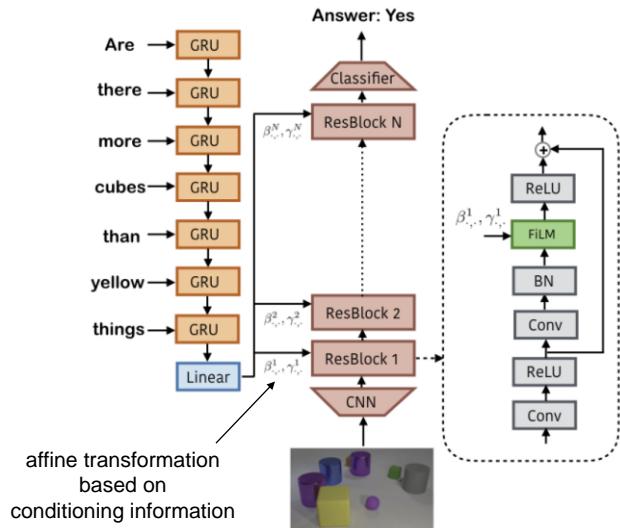
[arXiv:2205.06230](https://arxiv.org/abs/2205.06230)

Transfer to open-vocabulary detection



[arXiv:2205.06230](https://arxiv.org/abs/2205.06230)

FiLM: Feature-wise Linear Modulation



GRU: Gated Recurrent Unit

CNN: Convolutional Neural Network

BN: Batch Normalization

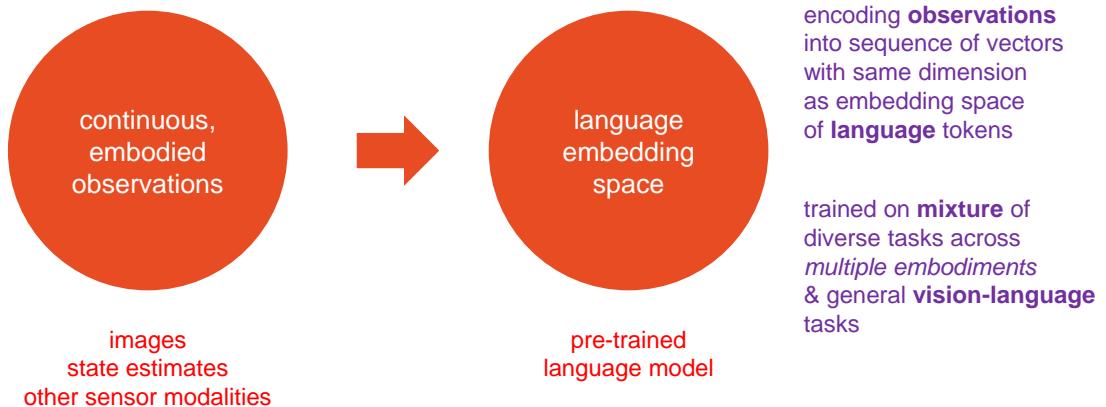
ReLU: Rectified Linear Unit

ResBlock: Residual Block (skip-connection)

[arXiv:1709.07871](https://arxiv.org/abs/1709.07871)

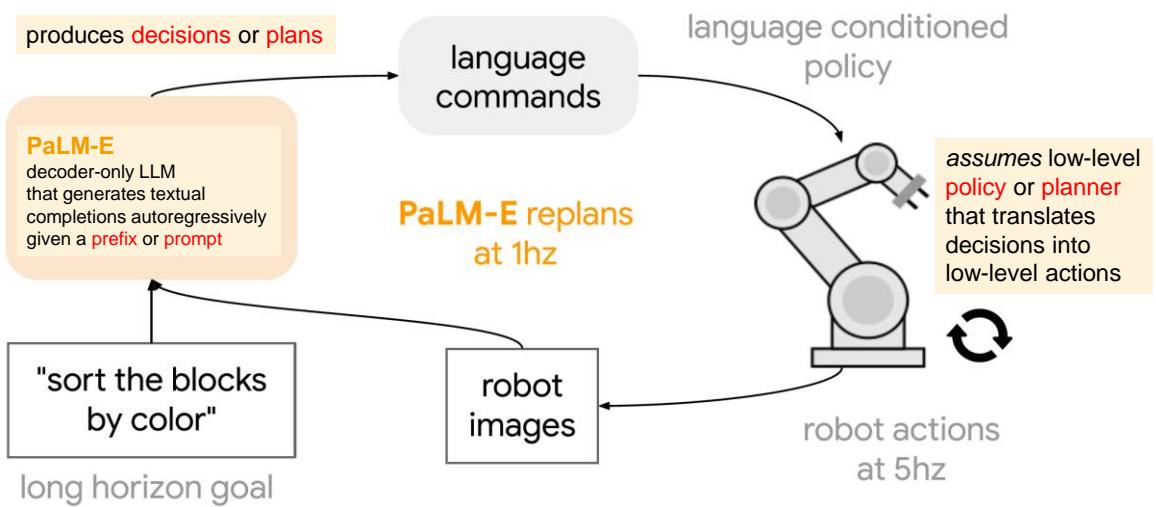
PaLM-E

Embodied multimodal language model



[arXiv:2303.03378](https://arxiv.org/abs/2303.03378)

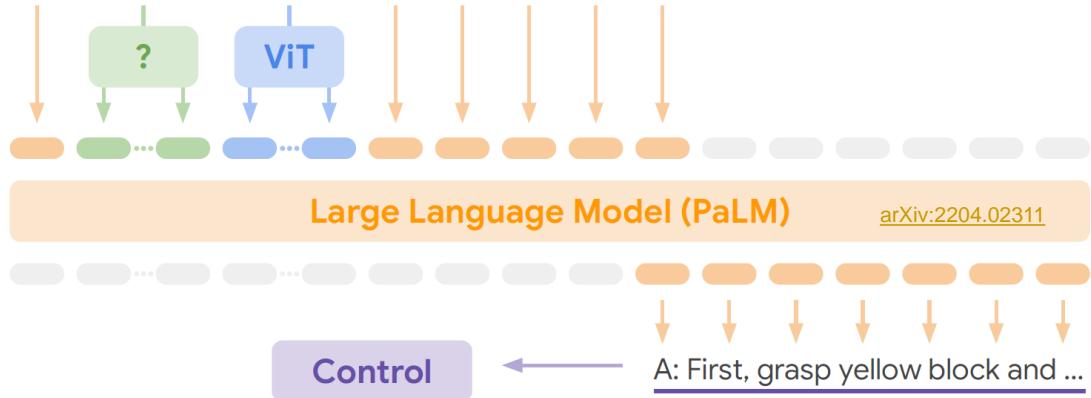
Embodied multimodal language model



[arXiv:2303.03378](https://arxiv.org/abs/2303.03378)

Embodied multimodal language model

Given `<emb>` ... `` Q: How to grasp blue block? A: First, grasp yellow block

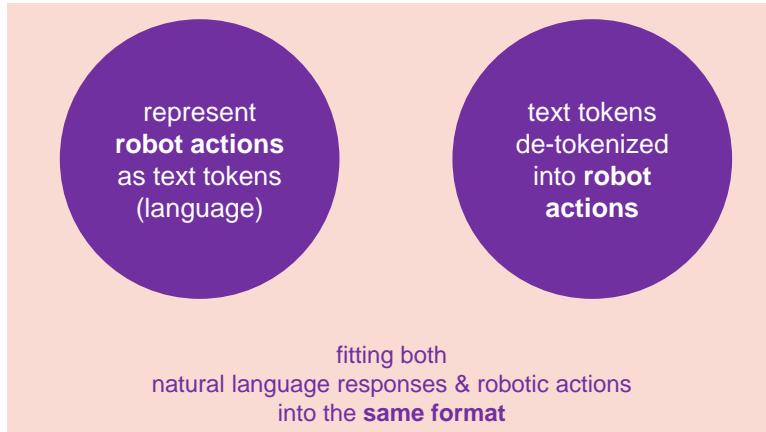


PaLM: Pathways Language Model

[arXiv:2303.03378](https://arxiv.org/abs/2303.03378)

Co-fine-tuning

Closed loop control



[arXiv:2307.15818](https://arxiv.org/abs/2307.15818)

Co-fine-tuning

Q: What should the robot do to **<task>**?

A: 132 114 128 5 25 156 ↘

Δ Translation = [0.1, -0.2, 0]
 Δ Rotation = [10°, 25°, -7°]

co-fine-tune vision-language models on *robotic trajectory data* and Internet-scale *vision-language tasks*

[arXiv:2307.15818](https://arxiv.org/abs/2307.15818)

Co-fine-tuning

Q: What is happening in the image?

A: 311 423 170 55 244

A grey donkey walks down the street.

co-fine-tune vision-language models on *robotic trajectory data* and Internet-scale *vision-language tasks*

[arXiv:2307.15818](https://arxiv.org/abs/2307.15818)

Co-fine-tuning

Q: Que puis-je faire avec ces objets?

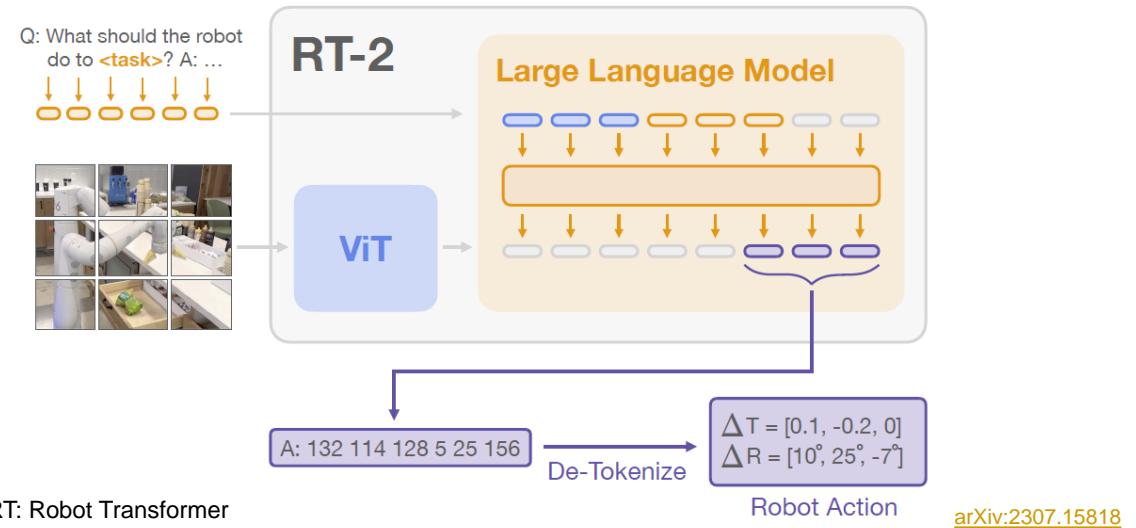
A: 3455 1144 189 25673

Faire cuire un gâteau.

co-fine-tune vision-language models on *robotic trajectory data* and Internet-scale *vision-language tasks*

[arXiv:2307.15818](https://arxiv.org/abs/2307.15818)

VLA model for robot control (end-to-end)



Closed loop actions

arXiv:2307.15818

Examples

move coke can to Taylor Swift

move banana to the sum of two plus one

pick animal with different color

pick robot

[arXiv:2307.15818](https://arxiv.org/abs/2307.15818)

Chain-of-thought reasoning

Prompt:

Given Instruction:
Move all the objects together.
Prediction:
Plan: move green can near green rice chip bag.
Action: 1 128 126 127 135 123 119 127

Prompt:

Given Instruction:
Move the green objects together.
Prediction:
Plan: move green can near green rice chip bag.
Action: 1 130 129 121 131 127 128 127

[arXiv:2307.15818](https://arxiv.org/abs/2307.15818)

Chain-of-thought reasoning

Prompt:

Given I need to hammer a nail, what object from the scene might be useful?

Prediction:

Rocks. Action: 1 129 138
122 132 135 106 127

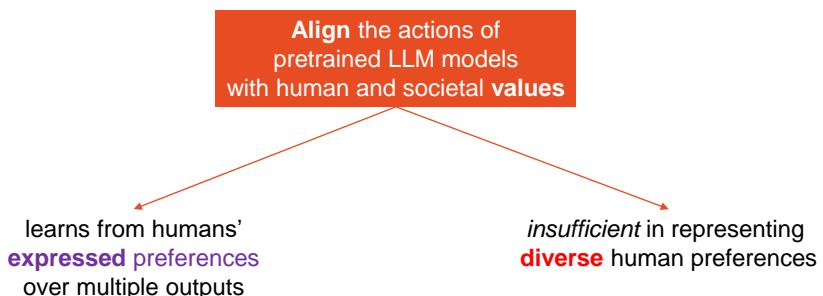
[arXiv:2307.15818](https://arxiv.org/abs/2307.15818)

Reinforcement learning from human feedback

RLHF (preference data)

[arXiv:2402.08925](https://arxiv.org/abs/2402.08925)

Fine tuning with RLHF



[arXiv:2404.10271](https://arxiv.org/abs/2404.10271)

Supervised fine-tuning

p_θ language model **fine-tuned with supervised learning** for downstream tasks of interest (e.g. *dialogue, instruction following, summarization*)

$x_i \in V$
set of tokens (vocabulary set)

$x = \{x_1, x_2, \dots, x_N\}$
prompt (sequence of tokens)

$x \in X$
set of prompts

$y \sim p_\theta(\cdot | x)$ output response

[arXiv:2404.10271](https://arxiv.org/abs/2404.10271)

Preference data collection

$$y \sim p_\theta(\cdot | x)$$

generate a dataset of model outputs

$$\{y_1, y_2\} \sim p_\theta(\cdot | x)$$

pairs of
responses

humans evaluate paired completions &
select which output they prefer, e.g.

$$y_1 \succ y_2$$

(preferred y_1 and dis-preferred y_2 response)

[arXiv:2404.10271](https://arxiv.org/abs/2404.10271)

Reward model training

$r_\phi(\mathbf{y}, \mathbf{x})$ reward model

$r_\phi: Y \rightarrow \mathbb{R}$

$$P^*(\mathbf{y}_1 \succcurlyeq \mathbf{y}_2 | \mathbf{x}) = \frac{e^{r^*(\mathbf{y}_1, \mathbf{x})}}{e^{r^*(\mathbf{y}_1, \mathbf{x})} + e^{r^*(\mathbf{y}_2, \mathbf{x})}} \quad \text{Bradely-Terry preference model}$$

$D = \{\mathbf{x}^i, \mathbf{y}_1^i, \mathbf{y}_2^i\}_{i=1 \dots N}$ static dataset sampled from P^*

$$L(r_\phi, D) = -\mathbb{E}_{(\mathbf{x}, \mathbf{y}_1, \mathbf{y}_2) \sim D} [\log \sigma(r_\phi(\mathbf{y}_1, \mathbf{x}) - r_\phi(\mathbf{y}_2, \mathbf{x}))]$$

r_ϕ learned with **max likelihood estimation**
(to match the likelihood of the human preferences observed from the data)

[arXiv:2404.10271](https://arxiv.org/abs/2404.10271)

Reinforcement learning fine tuning

$p_{r_\phi}^*$ optimal policy under reward r_ϕ

KL-regularized reward maximization

$$\max_p E_{\mathbf{x} \sim P, \mathbf{y} \sim p_\theta(\cdot | \mathbf{x})} [r_\phi(\mathbf{y}, \mathbf{x}) - \beta D_{KL}[p(\cdot | \mathbf{x}) || p_{\text{REF}}(\cdot | \mathbf{x})]]$$

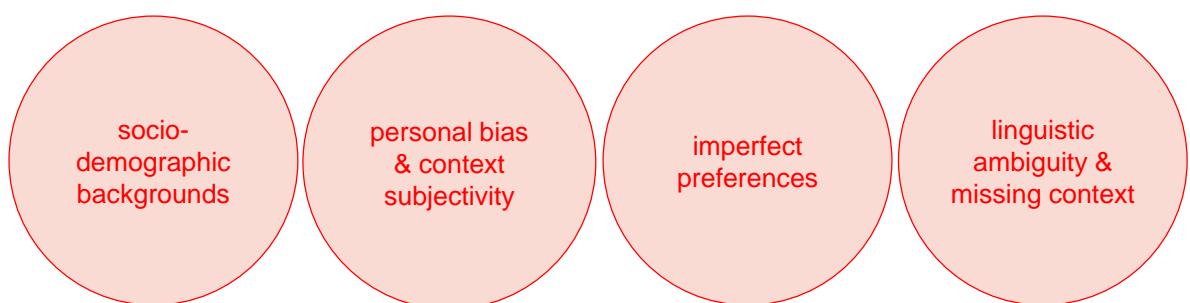
$$\beta > 0$$

controls the deviation from the base reference policy p_{REF}

[arXiv:2404.10271](https://arxiv.org/abs/2404.10271)

Pluralistic alignment

Key factors contributing to diversity

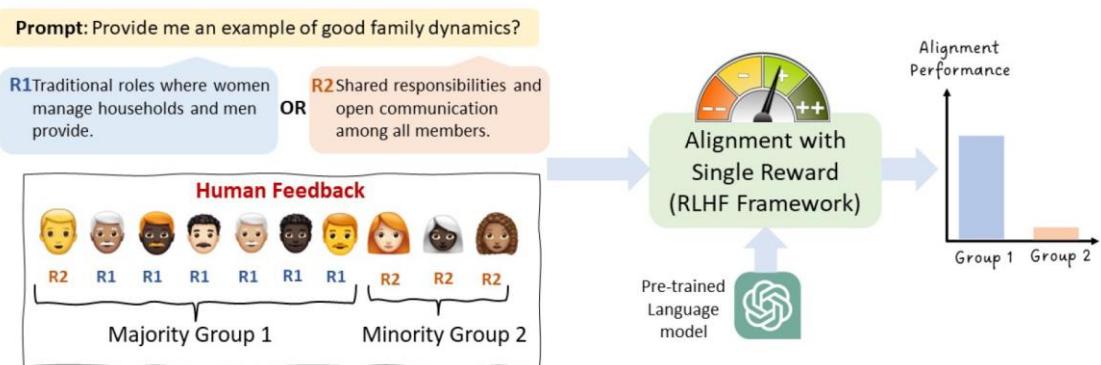


Reflecting and supporting diversity

algorithmic monocultures
*lead to increased unfairness
 when applied by many decision makers*

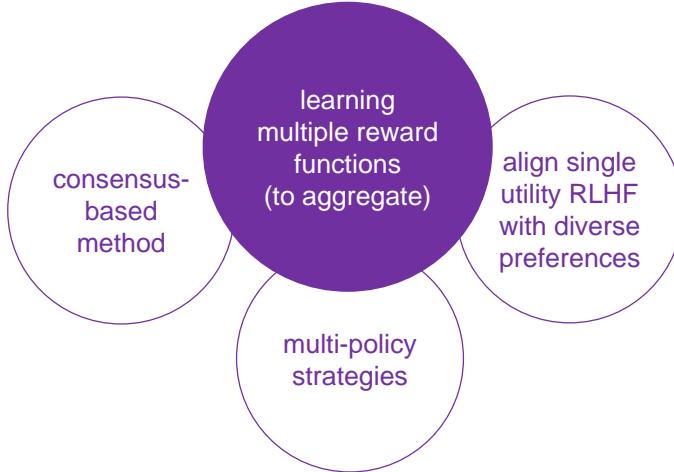
[arXiv:2402.05070](https://arxiv.org/abs/2402.05070)

Majority vs minority user groups



[arXiv:2402.08925](https://arxiv.org/abs/2402.08925)

Diversity in opinions and preferences



[arXiv:2402.08925](https://arxiv.org/abs/2402.08925)

Mixture of preference distributions

$$P_u^*(\mathbf{y}_1 \succcurlyeq \mathbf{y}_2 | \mathbf{x}) = \mathbb{E}_{h \in H_u} [I(h \text{ prefers } \mathbf{y}_1 \text{ over } \mathbf{y}_2 | \mathbf{x})] \quad \text{for all groups in } U$$

$$U = \{H_1, H_2, \dots, H_{|U|}\} \quad H = \bigcup_{u=1}^{|U|} H_u \quad u \quad \text{human subpopulation index}$$

$$P^*(\mathbf{y}_1 \succcurlyeq \mathbf{y}_2 | \mathbf{x}) = \sum_{u=1}^{|U|} \left[\sum_{h \in H_u} I_h(\mathbf{z} = (\mathbf{y}_1 \succcurlyeq \mathbf{y}_2 | \mathbf{x})) q(h|u) \right] \eta(u) = \sum_{u=1}^{|U|} p_u^*(\mathbf{z}) \eta(u)$$

$\mathbf{z} = (\mathbf{y}_1 \succcurlyeq \mathbf{y}_2 | \mathbf{x})$
z = (y₁ ≥ y₂ | x)
distribution over the humans H

marginal probability distribution of subpopulation H_u
subpopulation with specific preference distribution

[arXiv:2402.08925](https://arxiv.org/abs/2402.08925)

Mixture of preference distributions

$$p(\mathbf{z}') = \sum_{u=1}^{|U|} p_{\phi_u}^*(\mathbf{z}') \eta(u) \quad \text{preference distribution}$$

$$\mathbf{z}' = (\mathbf{y}_w \succcurlyeq \mathbf{y}_l \mid \mathbf{x}) \quad \begin{array}{l} \mathbf{y}_w \text{ chosen response by the human sub-population group } H_u \\ \mathbf{y}_l \text{ rejected response by the human sub-population group } H_u \end{array}$$

$$\begin{aligned} L(\phi) &= \sum_{\mathbf{z}' \in D} \log \sum_{u=1}^{|U|} p_{\phi_u}(\mathbf{z}') \eta(u) \\ &= \sum_{\mathbf{z}' \in D} \log \sum_{u=1}^{|U|} \frac{e^{r_{\phi_u}(\mathbf{y}_w, \mathbf{x})}}{e^{r_{\phi_u}(\mathbf{y}_w, \mathbf{x})} + e^{r_{\phi_u}(\mathbf{y}_l, \mathbf{x})}} \eta(u) \quad \text{maximization of the log likelihood} \end{aligned}$$

[arXiv:2402.08925](https://arxiv.org/abs/2402.08925)

Maximizing the minimum utility

Alignment objective (with diverse human preferences)

$$\underset{p}{\operatorname{argmax}} \left(\min_u \mathbb{E}_{\mathbf{x} \sim P, \mathbf{y} \sim p(\cdot | \mathbf{x})} [r_{\phi_u^*}(\mathbf{y}, \mathbf{x})] \right) - \beta D_{KL}[p(\cdot | \mathbf{x}) || p_{\text{REF}}(\cdot | \mathbf{x})]$$

ϕ_u^* reward model parameter
for each human subpopulation in U

[arXiv:2402.08925](https://arxiv.org/abs/2402.08925)

The implementation

Algorithm 1 MaxMin RLHF

- 1: **Input:** Preference dataset \mathcal{D} , initial reward parametrization for each subpopulation u as $r_{\phi_0}^u$, initial policy parameter π_0 .
- 2: **Reward Learning with EM:** Utilize Algorithm 2 for learning rewards with EM to learn r_{ϕ}^u for all user subpopulation u
- 3: **Max-Min Policy Iteration:**
- 4: **for** $t = 0$ to $T - 1$ **do**
- 5: **Choosing Minimum Utility Subpopulation:**
- 6: $u_{\min} \leftarrow \arg \min_{\mathcal{H}_u \in \mathcal{U}} F_{r_{\phi}^u}(\pi_t)$
- 7: **Perform the PPO Update:**
- 8: Update policy π towards maximizing the objective:
- 9: $\pi_{t+1} \leftarrow \text{PPO-update}(F_{r_{\phi_u}^*}(\pi_t) - \beta \mathbb{D}_{\text{KL}}[\pi_t || \pi_{\text{ref}}])$
- 10: **end for**
- 11: **Output:** Policy π_T aligned with socially fair preference dataset

Algorithm 2 Learning Rewards with EM Algorithm

- 1: **Input:** Preference data \mathcal{D} , $|\mathcal{U}|$ clusters of users among all humans in $\mathcal{H} = \bigcup_{u=1}^{|\mathcal{U}|} \mathcal{H}_u$, pretrained $\{r_{\phi_u}\}_{u=1}^{|\mathcal{U}|}$, loss function loss, convergence criteria
- 2: **while** not reach the convergence criteria **do**
- 3: **for** $h \in \mathcal{H}$ **do**
- 4: **E-step (hard cluster assignment):** assign h to the u -th cluster s.t.
- 5:
$$u = \arg \max_{u \in 1, \dots, |\mathcal{U}|} \prod_{(\mathbf{x}, \mathbf{y}_1, \mathbf{y}_2, h) \in \mathcal{D}} w(\phi_u, \mathbf{x}, \mathbf{y}_1, \mathbf{y}_2)$$

where $w(\cdot) = \frac{\exp(r_{\phi_u}(\mathbf{y}_1, \mathbf{x}))}{\exp(r_{\phi_u}(\mathbf{y}_1, \mathbf{x})) + \exp(r_{\phi_u}(\mathbf{y}_2, \mathbf{x}))}$

- 5: **end for**
- 6: **M-step:** Update each $\phi_u, u = 1, \dots, |\mathcal{U}|$ by minimizing the negative log-likelihood loss (2) on the assigned users' data
- 7: **end while**

[arXiv:2402.08925](https://arxiv.org/abs/2402.08925)

What did we learn today?

- Flamingo
- Vision-Language-Action models
- Reinforcement learning from human feedback
- Pluralistic alignment

EE-559

Deep Learning

andrea.cavallaro@epfl.ch