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EE-559

Deep Learning

Any reproduction or distribution of this document, in whole or in part, is prohibited unless permission is granted by the authors

What’s on today?

• Graphs: on nodes, edges and structure

• Simple graph: on aggregation and parameter sharing  

• Tasks on graphs: how to perform regression and classification 

• Graph convolutional networks: on deep learning with graphs

• Graph attention: on weighted, learned, neighbor feature aggregation

• Training: how to deal with the structure 

• Line graphs: on the complementary graph

• Graph types: on the diversity of graph representations  

• Exercises: message passing and graph classification 
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Graphs

𝑦 = 𝑓(𝑥)
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𝑦 = 𝑓(𝑥; Θ)

Input

𝑿 ϵ ℝ𝑊 𝗑 𝑁𝑥 ϵ ℝ 𝒙 ϵ ℝ𝑊 𝑿ϵ ℝ𝑊 𝗑 𝑁

A 𝜖 ℝ𝑁 𝗑 𝑁
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What type of real-world problems can be 

modeled effectively using a graph 

representation?

ⓘ Start presenting to display the poll results on this slide.

𝑦 = 𝑓(𝑿, 𝑨;𝜣)
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𝑦 = 𝑓(𝑿, 𝑨;𝜣)
adjacency

matrix 

Adjacency matrix

4
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1

2

3
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1

2

3

4

5

6

1 2 3 4 5 6

𝑨 ϵ ℝ𝑁 𝗑 𝑁

𝑁 = 6

Concepts:

Node indexing, walks of length one
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Edges

undirected directed

𝑨 can be 

asymmetric

𝑨 is 

symmetric

Node and edge embeddings

node

(vertex)

node

(vertex)

edge

(link)

data data

data

Examples: Social networks, citation networks, train map (stations, lines), 

protein interactions in a cell, molecule (component, bound)
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Structure and embeddings

𝐄 ϵ ℝ𝑊𝑒 𝗑 𝐸

node embeddings

𝑨 𝜖 ℝ𝑁 𝗑 𝑁 𝑿 ϵ ℝ𝑊𝑥 𝗑 𝑁

edge embeddingsstructure of the graph

𝑎𝑛𝑚 ∈ {0,1}

𝑁 number of nodes

𝐸 number of edges

𝑊𝑥 size of the node embeddings

𝑊𝑒 size of the edge embeddings

𝒙𝑛 ϵ ℝ
𝑊𝑥 𝐞𝑚 ϵ ℝ𝑊𝑒

Concept:

The adjacency matrix, 𝑨, is symmetric for undirected graphs 

𝒙𝑛 𝒙𝑛+1
𝐞𝑚

Simple graph



3/26/2025

8

Simple graph

A 𝜖 ℝ𝑁 𝗑 𝑁 defines neighboring edges 

(structure of the graph) 

Concepts:

At most one edge between any two nodes, undirected edges, no self-edges

𝒩𝑛 set of all neighbors of node 𝑛

𝑬 ϵ ℝ𝑊𝑒 𝗑 𝐸

node embeddings𝑿 ϵ ℝ𝑊𝑥 𝗑 𝑁

edge embeddings

𝒙𝑛 ϵ ℝ
𝑊𝑥

𝐞𝑚 ϵ ℝ𝑊𝑒

Walks from a node

𝑨 ϵ ℝ𝑁 𝗑 𝑁

𝑎𝑛𝑚 ϵ {0,1}

Concept:

Neighbourhood of each node

𝒙𝑛 ϵ 0,1 𝑁

encoding each node 

as a one-hot vector

𝑨𝒙𝑛

𝑨2𝒙𝑛

𝑨𝐿𝒙𝑛

number of walks of length 1
from node 𝑛 to each other node 

number of walks of length 𝑳
from node 𝑛 to each other node 

number of walks of length 2
from node 𝑛 to each other node 
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Permutation of node indices

Concept:

Node indexing in a graph is arbitrary (any processing applied to the graph should be indifferent to permutations)

𝑷 permutation matrix

one entry in each row and column 

is 1, the others are 0

𝑿′ = 𝑿𝑷

𝑨′ = 𝑷T𝑨𝑷

permutes the columns

permutes the rows

Importance of parameter sharing

equivariance scaling

output permuted 

consistently 

with permutation 

of 𝑨

handling the 

growing

of the 

graph size

invariance

dependence only

on the structure, 𝑨,

not on the labelling 

of the nodes
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Tasks on graphs

Tasks (inference)

Deep 

Learning 

models 

applied to 

Graphs
groupings

of nodes

presence

of an edge

properties

of each node

properties

of each edge

property

of the graph
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Tasks on a graph

node 

level

edge 

prediction

exploits the structure

+ node embeddings

exploits two 

node embeddings

graph 

level

exploits the structure

+ node embeddings

classification

or regression

prediction classification

or regression

Tasks on a graph

Concepts: Edge prediction: binary classification task, node level: independently for each node, 

graph level: combining output node embeddings

𝑃 𝑦𝑛 = 1 𝑿,𝑨 = sigmoid(Θ1
K + 𝜣1

K𝒉𝑛
K) node level

𝑃 𝑦𝑛𝑚 = 1 𝑿,𝑨 = sigmoid (𝒉𝑚
K T

𝒉𝑛
K) edge prediction

𝑃 𝑦 = 1 𝑿,𝑨 = sigmoid(Θ1
K +𝜣1

K𝑯K𝟏/𝑁) graph level
mean

pooling

𝑿 (input) node embeddings (data)

𝑨 adjacency matrix (structure)

𝑯𝑘 hidden representation (layer 𝑘)

𝒉𝑛
𝑘 (modified) node 𝑛 embedding
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Edge prediction example

Concepts: Graph structure features inside the observed node and edge structures, relative degree of influence of a 

node (Katz centrality), intersection over the union of the sets of neighbors of a node (Jaccard index)

arXiv:1802.09691

heuristics listed here are just for illustration

Is there anything about the mini-project 

that you would like clarification on?

ⓘ Start presenting to display the poll results on this slide.

https://arxiv.org/abs/1802.09691
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Graph 

convolutional 

networks

Graph convolutional networks 

Concepts: Relational inductive bias, message passing, spatial-based convolutional graph neural network (GCN), 

updating the local representation at each node by gathering information from its neighbors by passing messages

𝑯1 = 𝑓 𝑿,𝑨,𝜣0

𝑯2 = 𝑓 𝑯1, 𝑨, 𝜣1

𝑯𝐾 = 𝑓 𝑯𝐾−1, 𝑨, 𝜣𝐾−1

𝑿 input node embeddings

𝑨 adjacency matrix (structure)

𝑯𝑘 modified node embeddings (layer 𝑘)

𝜣𝑘 parameters that map from layer 𝑘 to 𝑘 + 1

4

5

1

2

3

6

𝒉5
𝟏

𝒉3
𝟏
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GCN layer

𝒢𝑛
𝑘 = ෍

𝑚∈𝒩𝑛

𝒉𝑚
𝑘

set of indices of the

neighborhood of node 𝑛

𝒉𝑛
𝑘+1 = 𝑎[Θ0

𝑘 +𝜣1
𝑘𝒉𝑛

𝑘 +𝜣1
𝑘𝒢𝑛

𝑘]

𝑯𝑘+1 = 𝑎[Θ0
𝑘𝟏𝑁

𝑇 +𝜣1
𝑘𝑯𝑘 +𝜣1

𝑘𝑯𝑘𝑨]

= 𝑎[Θ0
𝑘𝟏𝑁

𝑇 +𝜣1
𝑘𝑯𝑘 𝑨 + 𝑰 ]

Concept: Aggregating information from neighboring nodes (sum of node embeddings),

local function of the embedding of the previous layer, combine messages from adjacent nodes

combine “messages” from adjacent nodes

(sum them with the transformed current node)

aggregated neighborhood

Oversmoothing problem

arXiv:1909.12223

𝑘 ↑ ⇒ performance gradually decreases 

repeated graph convolutions make 

node embeddings indistinguishable 

(oversmoothing)

normalization layer 

𝑘 : number of layers (network depth)

https://arxiv.org/abs/1909.12223
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Graph prediction example

𝑯𝑘 = 𝑎[Θ0
𝑘−1𝟏𝑁

𝑇 +𝜣1
𝑘−1𝑯𝑘−1 𝑨 + 𝑰 ]

𝑓 𝑿,𝑨, 𝜣 = sigmoid(Θ1
K +𝜣1

𝐾𝑯𝐾𝟏/𝑁)
mean

pooling

A 𝜖 ℝ𝑁 𝗑 𝑁

𝑿ϵ ℝ118 𝗑 𝑁

molecular structure

matrix of one-hot vectors

indicating which element 

of the periodic table is present

Is a molecule toxic?

Variants for aggregation

𝑯𝑘+1 = 𝑎[Θ0
𝑘𝟏𝑁

𝑇 +𝜣1
𝑘𝑯𝑘 𝑨+ 𝑰 ]

𝑯𝑘+1 = 𝑎[Θ0
𝑘𝟏𝑁

𝑇 +𝜣1
𝑘𝑯𝑘 𝑨+ (1 + 𝜖𝑘)𝑰 ]

learned

scalar

diagonal enhancement 

𝑯𝑘+1 =
𝑎[Θ0

𝑘𝟏𝑁
𝑇 +𝜣1

𝑘𝑯𝑘𝑨]

𝑯𝑘
residual connection
concatenation with the node

𝒢𝑛
𝑘 = max

𝑚∈𝒩𝑛

𝒉𝑚
𝑘 max pooling aggregation

element-wise maximum
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Mean aggregation

𝑯𝑘+1 = 𝑎[Θ0
𝑘𝟏𝑁

𝑇 +𝜣1
𝑘𝑯𝑘 𝑨 𝑫 −1 + 𝑰 ]

𝒢𝑛
𝑘 =

1

|𝒩𝑛|
෍

𝑚∈𝒩𝑛

𝒉𝑚
𝑘

mean aggregation
when embedding information

is more important than 

structural information 

𝒢𝑛
𝑘 = ෍

𝑚∈𝒩𝑛

𝒉𝑚
𝑘

𝑫 𝜖 ℝ𝑁 𝗑 𝑁 diagonal matrix 
each non-zero element

is the number of neighbors 

of the corresponding node

𝑫 −1 inverse matrix
each non-zero element

is the denominator to

compute the average

Spatial and spectral methods

spatial

methods

spectral 

methods

use the 

graph structure
use the

Fourier domain 
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Graphs and transformers

transformer 

w/o positional 

embedding

~

GNN on a fully 

connected 

graph

handle 

variable-length 

input

use of 

attention

w/o: without 

~: equivalent to

GNN: Graph Neural Network

Graph attention
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Graph attention layers

෢𝑯𝑘 = Θ0
𝑘𝟏𝑁

𝑇 +𝜣1
𝑘𝑯𝑘

𝑠𝑚𝑛 = 𝑎 (𝝓𝑘)T
෢𝒉𝑚
𝑘

෢𝒉𝑛
𝑘

𝑺 𝜖 ℝ𝑁 𝗑 𝑁

𝑯𝑘+1 = 𝑎 ෢𝑯𝑘 softmask[𝑺, 𝑨 + 𝑰]

Concepts: Aggregation by attention, concatenation of node embeddings, weights depend on the data at the nodes 

(previous cases depended instead on neighbors equally or on graph topology) 

linear transformation on node embedding

similarity of every node to every other node

attention weights applied to transformed embedding

softmax for each column of 𝑺
(set to zero non-neighboring nodes)

vector of learned parameters

Aggregation: summary

𝑯𝑘+1 = 𝑎[Θ0
𝑘𝟏𝑁

𝑇 +𝜣1
𝑘𝑯𝑘 𝑨+ 𝑰 ]

𝑯𝑘+1 = 𝑎[Θ0
𝑘𝟏𝑁

𝑇 +𝜣1
𝑘𝑯𝑘 𝑨+ (1 + 𝜖𝑘)𝑰 ] diagonal enhancement

learned scalar 𝜖𝑘

𝑯𝑘+1 =
𝑎[Θ0

𝑘𝟏𝑁
𝑇 +𝜣1

𝑘𝑯𝑘𝑨]

𝑯𝑘
residual connection
concatenation with the node

𝒢𝑛
𝑘 = max

𝑚∈𝒩𝑛

𝒉𝑚
𝑘 max pooling aggregation

element-wise maximum of the 𝒉𝑚
𝑘

𝑯𝑘+1 = 𝑎[Θ0
𝑘𝟏𝑁

𝑇 +𝜣1
𝑘𝑯𝑘 𝑨 𝑫 −1 + 𝑰 ] mean aggregation

less importance to structural information 

𝑯𝑘+1 = 𝑎 ෢𝑯𝑘 softmask[𝑺, 𝑨 + 𝑰] aggregation by attention
attention weights on transformed embedding
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Training

{𝑥𝑖 , 𝑦𝑖}𝑖=1
𝑀
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{𝑿𝑖 , 𝑨𝑖 , 𝑦𝑖}𝑖=1
𝑀

𝑦 = 𝑓(𝑿, 𝑨;𝜣)
learned with SGD 

& binary cross-entropy loss
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Inductive and transductive models

inductive

models

transductive

models

learning the 

mapping

apply the

mapping

training 

data

test

data

labeling of 

unknown data

labeled and 

unlabeled data

Inductive models 

{𝑿𝑖 , 𝑨𝑖 , 𝑦𝑖}𝑖=1
𝑀

testing graphtraining graphs
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Transductive models

?

?

??

?

?

?

?

Concept:

Train to predict the known labels, then examine the predictions at the unknown nodes

Line graphs
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Line or edge graph 

Concept:

Edge graph, complementary graph to process edge embeddings

edge node

original 

graph
line

graph

edges with 

common node
edge

Example
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Graph types

Graph types

directed 

multigraph
geometric

multiple edges

between the same 

pair of nodes

hierarchical

defined by

geometric means

(nodes in a space

with a metric)

Concepts:

Simple graphs, spatial elements associated to geometric objects, parent function defines the hierarchy

defined also by

an acyclic 

parent function

𝑝:𝒩 → 𝒩

heterogeneous

nodes / edges 

of different types
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Exercises

Today’s exercises

Practice. You will become familiar with: 
- PyTorch geometric: load datasets, view information about the graphs

- Graph Neural Networks: message passing and graph classification 
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What did we learn today?

• Graphs

• Simple graph  

• Tasks on graphs 

• Graph convolutional networks

• Graph attention

• Training

• Line graphs

• Graph types

• Exercises

EE-559

Deep Learning

andrea.cavallaro@epfl.ch


