

Any reproduction or distribution of this document, in whole or in part, is prohibited unless permission is granted by the authors

EE-559

Deep Learning

What's on today?

- **Graphs**: on nodes, edges and structure
- **Simple graph**: on aggregation and parameter sharing
- **Tasks on graphs**: how to perform regression and classification
- **Graph convolutional networks**: on deep learning with graphs
- **Graph attention**: on weighted, learned, neighbor feature aggregation
- **Training**: how to deal with the structure
- **Line graphs**: on the complementary graph
- **Graph types**: on the diversity of graph representations
- **Exercises**: message passing and graph classification

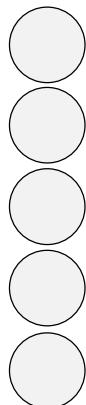
Graphs

$$y = f(x)$$

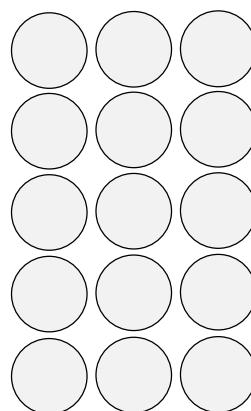
$$y = f(x; \Theta)$$

Input

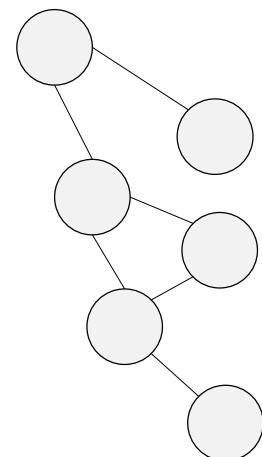
$$x \in \mathbb{R}$$



$$x \in \mathbb{R}^W$$



$$X \in \mathbb{R}^{W \times N}$$



$$X \in \mathbb{R}^{W \times N}$$

$$\mathbf{A} \in \mathbb{R}^{N \times N}$$

What type of real-world problems can be modeled effectively using a graph representation?

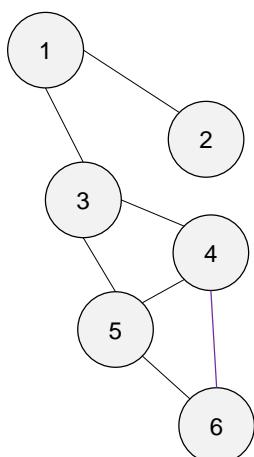
① Start presenting to display the poll results on this slide.

$$y = f(X, A; \theta)$$

$$y = f(\mathbf{X}, \mathbf{A}; \boldsymbol{\theta})$$

adjacency
matrix

Adjacency matrix



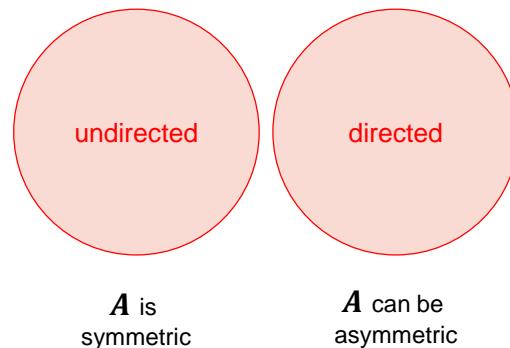
	1	2	3	4	5	6
1						
2						
3						
4						
5						
6						

$$\mathbf{A} \in \mathbb{R}^{N \times N}$$

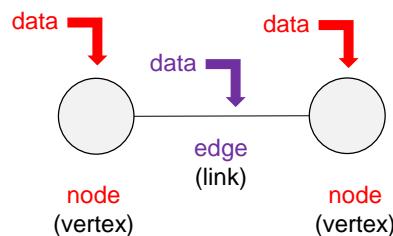
$$N = 6$$

Concepts:
Node indexing, walks of length one

Edges



Node and edge embeddings



Examples: Social networks, citation networks, train map (stations, lines), protein interactions in a cell, molecule (component, bound)

Structure and embeddings

structure of the graph

$$A \in \mathbb{R}^{N \times N}$$

$$a_{nm} \in \{0,1\}$$

node embeddings

$$X \in \mathbb{R}^{W_x \times N}$$

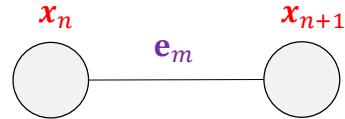
$$x_n \in \mathbb{R}^{W_x}$$

edge embeddings

$$E \in \mathbb{R}^{W_e \times E}$$

$$e_m \in \mathbb{R}^{W_e}$$

N	number of nodes
E	number of edges
W_x	size of the node embeddings
W_e	size of the edge embeddings

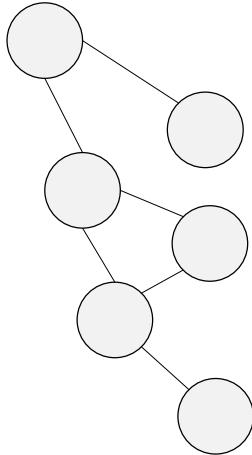


Concept:

The adjacency matrix, A , is symmetric for undirected graphs

Simple graph

Simple graph



$A \in \mathbb{R}^{N \times N}$ defines neighboring edges
(structure of the graph)

\mathcal{N}_n set of all neighbors of node n

$X \in \mathbb{R}^{W_x \times N}$ node embeddings
 $x_n \in \mathbb{R}^{W_x}$

$E \in \mathbb{R}^{W_e \times E}$ edge embeddings
 $e_m \in \mathbb{R}^{W_e}$

Concepts:

At most one edge between any two nodes, undirected edges, no self-edges

Walks from a node

$$A \in \mathbb{R}^{N \times N}$$

$$a_{nm} \in \{0,1\}$$

$$x_n \in \{0,1\}^N$$

encoding each node
as a one-hot vector

Ax_n number of walks of length 1
from node n to each other node

A^2x_n number of walks of length 2
from node n to each other node

A^Lx_n number of walks of length L
from node n to each other node

Concept:
Neighbourhood of each node

Permutation of node indices

P permutation matrix

one entry in each row and column
is 1, the others are 0

$$X' = X\mathbf{P}$$

permutes the columns

$$A' = \mathbf{P}^T A \mathbf{P}$$

permutes the rows

Concept:

Node indexing in a graph is *arbitrary* (any processing applied to the graph should be indifferent to permutations)

Importance of parameter sharing

invariance

dependence only
on the structure, A ,
not on the labelling
of the nodes

equivariance

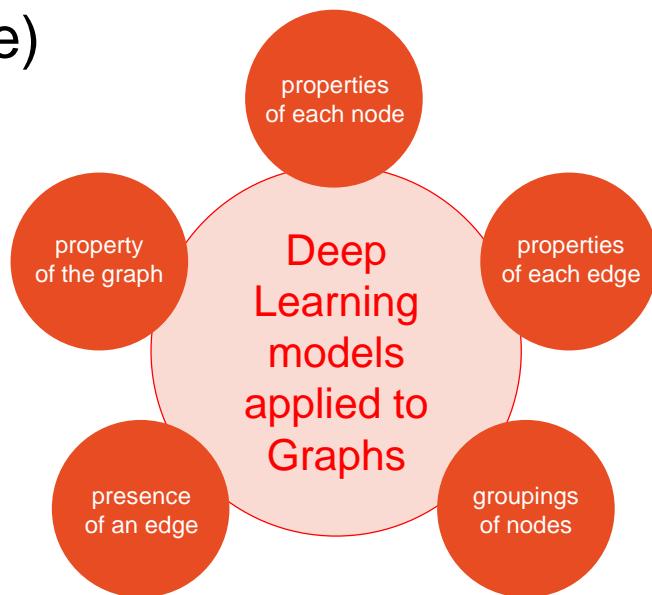
output permuted
consistently
with permutation
of A

scaling

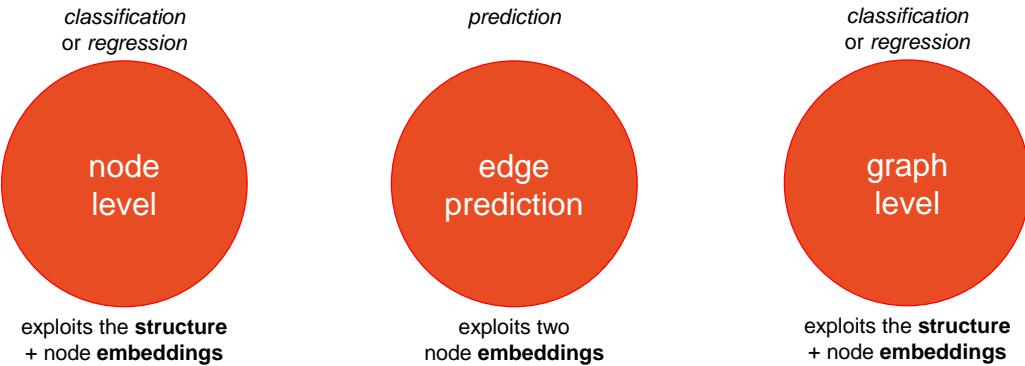
handling the
growing
of the
graph size

Tasks on graphs

Tasks (inference)



Tasks on a graph



Tasks on a graph

\mathbf{X} (input) node embeddings (data)
 \mathbf{A} adjacency matrix (structure)
 \mathbf{H}^k hidden representation (layer k)
 \mathbf{h}_n^k (modified) node n embedding

$$P(y_{nm} = 1 | \mathbf{X}, \mathbf{A}) = \text{sigmoid}((\mathbf{h}_m^K)^T \mathbf{h}_n^K)$$

edge prediction

$$P(y_n = 1 | \mathbf{X}, \mathbf{A}) = \text{sigmoid}(\Theta_1^K + \boldsymbol{\theta}_1^K \mathbf{h}_n^K)$$

node level

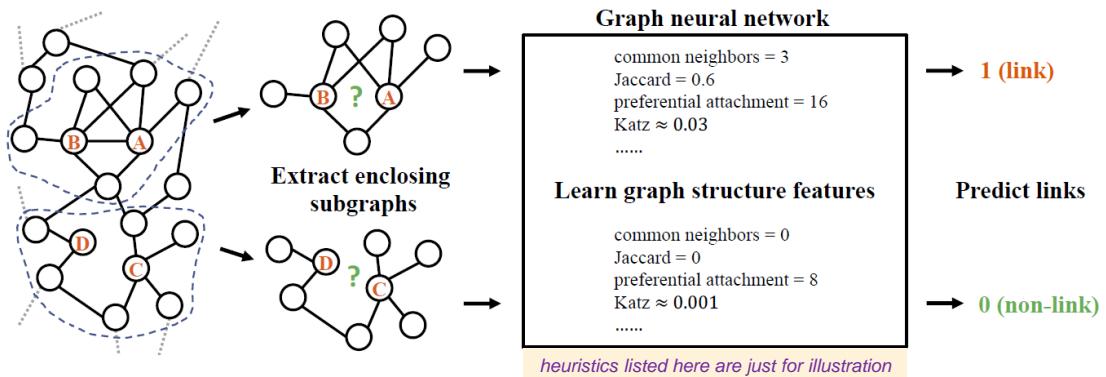
$$P(y = 1 | \mathbf{X}, \mathbf{A}) = \text{sigmoid}(\Theta_1^K + \boldsymbol{\theta}_1^K \mathbf{H}^K \mathbf{1}/N)$$

mean
pooling

graph level

Concepts: *Edge prediction*: binary classification task, *node level*: independently for each node, *graph level*: combining output node embeddings

Edge prediction example



[arXiv:1802.09691](https://arxiv.org/abs/1802.09691)

Concepts: Graph structure features inside the observed node and edge structures, relative degree of influence of a node (*Katz centrality*), intersection over the union of the sets of neighbors of a node (*Jaccard index*)

slido

Is there anything about the mini-project that you would like clarification on?

① Start presenting to display the poll results on this slide.

Graph convolutional networks

Graph convolutional networks

$$\mathbf{H}^1 = f(\mathbf{X}, \mathbf{A}, \boldsymbol{\theta}^0)$$

$$\mathbf{H}^2 = f(\mathbf{H}^1, \mathbf{A}, \boldsymbol{\theta}^1)$$

⋮

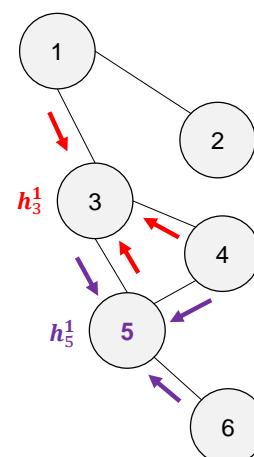
$$\mathbf{H}^K = f(\mathbf{H}^{K-1}, \mathbf{A}, \boldsymbol{\theta}^{K-1})$$

\mathbf{X} input node embeddings

\mathbf{A} adjacency matrix (structure)

\mathbf{H}^k modified node embeddings (layer k)

$\boldsymbol{\theta}^k$ parameters that map from layer k to $k + 1$



Concepts: Relational inductive bias, *message passing*, spatial-based convolutional graph neural network (GCN), updating the *local representation* at each node by gathering information from its neighbors by passing messages

GCN layer

$$\mathcal{G}_n^k = \sum_{m \in \mathcal{N}_n} \mathbf{h}_m^k$$

set of indices of the neighborhood of node n

$$\mathbf{h}_n^{k+1} = a[\Theta_0^k + \Theta_1^k \mathbf{h}_n^k + \Theta_1^k \mathcal{G}_n^k]$$

$$\mathbf{H}^{k+1} = a[\Theta_0^k \mathbf{1}_N^T + \Theta_1^k \mathbf{H}^k + \Theta_1^k \mathbf{H}^k \mathbf{A}]$$

aggregated neighborhood

$$= a[\Theta_0^k \mathbf{1}_N^T + \Theta_1^k \mathbf{H}^k (\mathbf{A} + \mathbf{I})]$$

combine “messages” from adjacent nodes (sum them with the transformed current node)

Concept: Aggregating information from neighboring nodes (sum of node embeddings), local function of the embedding of the previous layer, combine messages from adjacent nodes

Oversmoothing problem

repeated graph convolutions make
node embeddings indistinguishable
 (oversmoothing)

$k \uparrow \Rightarrow$ performance gradually decreases

normalization layer

k : number of layers (network depth)

[arXiv:1909.12223](https://arxiv.org/abs/1909.12223)

Graph prediction example

Is a molecule toxic?

$$\mathbf{H}^k = a[\Theta_0^{k-1} \mathbf{1}_N^T + \Theta_1^{k-1} \mathbf{H}^{k-1} (\mathbf{A} + \mathbf{I})]$$

$$f(\mathbf{X}, \mathbf{A}, \boldsymbol{\Theta}) = \text{sigmoid}(\Theta_1^K + \Theta_1^K \mathbf{H}^K \mathbf{1}/N)$$

mean
pooling

$\mathbf{A} \in \mathbb{R}^{N \times N}$
molecular structure

$\mathbf{X} \in \mathbb{R}^{118 \times N}$
matrix of one-hot vectors
indicating which element
of the **periodic table** is present

Variants for aggregation

$$\mathbf{H}^{k+1} = a[\Theta_0^k \mathbf{1}_N^T + \Theta_1^k \mathbf{H}^k (\mathbf{A} + \mathbf{I})]$$

$$\mathbf{H}^{k+1} = a[\Theta_0^k \mathbf{1}_N^T + \Theta_1^k \mathbf{H}^k (\mathbf{A} + (1 + \epsilon_k) \mathbf{I})]$$

learned
scalar

diagonal enhancement

$$\mathbf{H}^{k+1} = \left[a[\Theta_0^k \mathbf{1}_N^T + \Theta_1^k \mathbf{H}^k \mathbf{A}] \right]_{\mathbf{H}^k}$$

residual connection
concatenation with the node

$$\mathcal{G}_n^k = \max_{m \in \mathcal{N}_n} \mathbf{h}_m^k$$

max pooling aggregation
element-wise maximum

Mean aggregation

$$\mathcal{G}_n^k = \sum_{m \in \mathcal{N}_n} \mathbf{h}_m^k \quad \rightarrow \quad \mathcal{G}_n^k = \frac{1}{|\mathcal{N}_n|} \sum_{m \in \mathcal{N}_n} \mathbf{h}_m^k$$

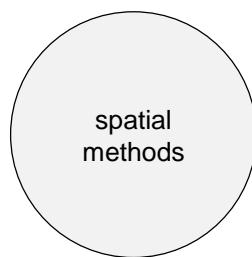
mean aggregation
when *embedding information*
is more important than
structural information

$\mathbf{D} \in \mathbb{R}^{N \times N}$ **diagonal matrix**
each non-zero element
is the number of neighbors
of the corresponding node

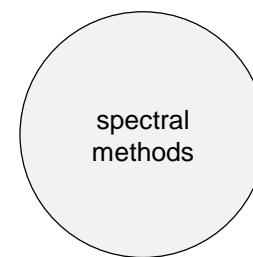
$(\mathbf{D})^{-1}$ **inverse matrix**
each non-zero element
is the denominator to
compute the average

$$\mathbf{H}^{k+1} = a[\Theta_0^k \mathbf{1}_N^T + \Theta_1^k \mathbf{H}^k (\mathbf{A}(\mathbf{D})^{-1} + \mathbf{I})]$$

Spatial and spectral methods

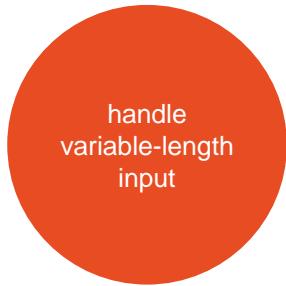
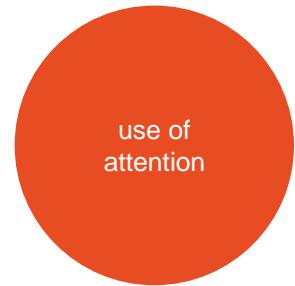


use the
graph structure



use the
Fourier domain

Graphs and transformers



w/o: without

~: equivalent to

GNN: Graph Neural Network

Graph attention

Graph attention layers

$$\widehat{\mathbf{H}}^k = \Theta_0^k \mathbf{1}_N^T + \Theta_1^k \mathbf{H}^k \quad \text{linear transformation on node embedding}$$

$$s_{mn} = a \left[(\boldsymbol{\phi}^k)^T \begin{bmatrix} \widehat{\mathbf{h}}_m^k \\ \widehat{\mathbf{h}}_n^k \end{bmatrix} \right] \quad \mathbf{S} \in \mathbb{R}^{N \times N} \quad \text{similarity of every node to every other node}$$

↑
vector of learned parameters

$$\mathbf{H}^{k+1} = a \left[\widehat{\mathbf{H}}^k \text{ softmask}[\mathbf{S}, \mathbf{A} + \mathbf{I}] \right] \quad \text{attention weights applied to transformed embedding}$$

softmax for each column of \mathbf{S}
(set to zero non-neighboring nodes)

Concepts: Aggregation by attention, concatenation of node embeddings, weights depend on the *data at the nodes* (previous cases depended instead on neighbors equally or on graph topology)

Aggregation: summary

$$\mathbf{H}^{k+1} = a[\Theta_0^k \mathbf{1}_N^T + \Theta_1^k \mathbf{H}^k (\mathbf{A} + \mathbf{I})]$$

$$\mathbf{H}^{k+1} = a[\Theta_0^k \mathbf{1}_N^T + \Theta_1^k \mathbf{H}^k (\mathbf{A} + (1 + \epsilon_k) \mathbf{I})]$$

$$\mathbf{H}^{k+1} = \begin{bmatrix} a[\Theta_0^k \mathbf{1}_N^T + \Theta_1^k \mathbf{H}^k \mathbf{A}] \\ \mathbf{H}^k \end{bmatrix}$$

$$\mathcal{G}_n^k = \max_{m \in \mathcal{N}_n} \mathbf{h}_m^k$$

$$\mathbf{H}^{k+1} = a[\Theta_0^k \mathbf{1}_N^T + \Theta_1^k \mathbf{H}^k (\mathbf{A} (\mathbf{D})^{-1} + \mathbf{I})]$$

$$\mathbf{H}^{k+1} = a[\widehat{\mathbf{H}}^k \text{ softmask}[\mathbf{S}, \mathbf{A} + \mathbf{I}]]$$

diagonal enhancement
learned scalar ϵ_k

residual connection
concatenation with the node

max pooling aggregation
element-wise maximum of the \mathbf{h}_m^k

mean aggregation
less importance to structural information

aggregation by attention
attention weights on transformed embedding

Training

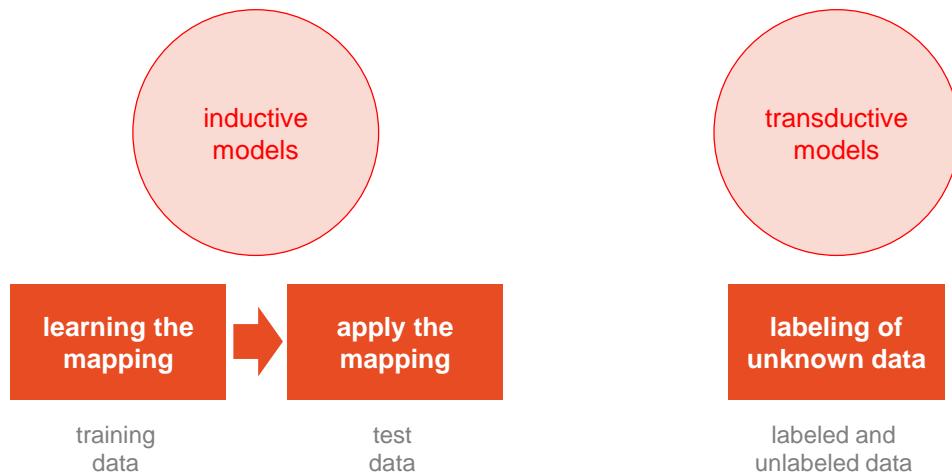
$$\{x_i, y_i\}_{i=1}^M$$

$$\{X_i, \mathbf{A}_{\textcolor{red}{i}}, y_i\}_{i=1}^M$$

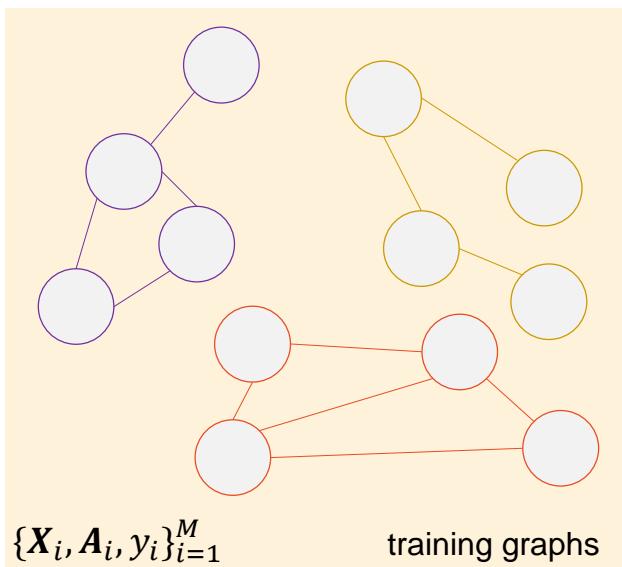
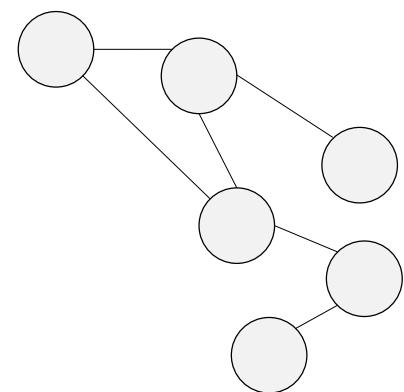
$$y = f(X, A; \boldsymbol{\Theta})$$

learned with SGD
& binary cross-entropy loss

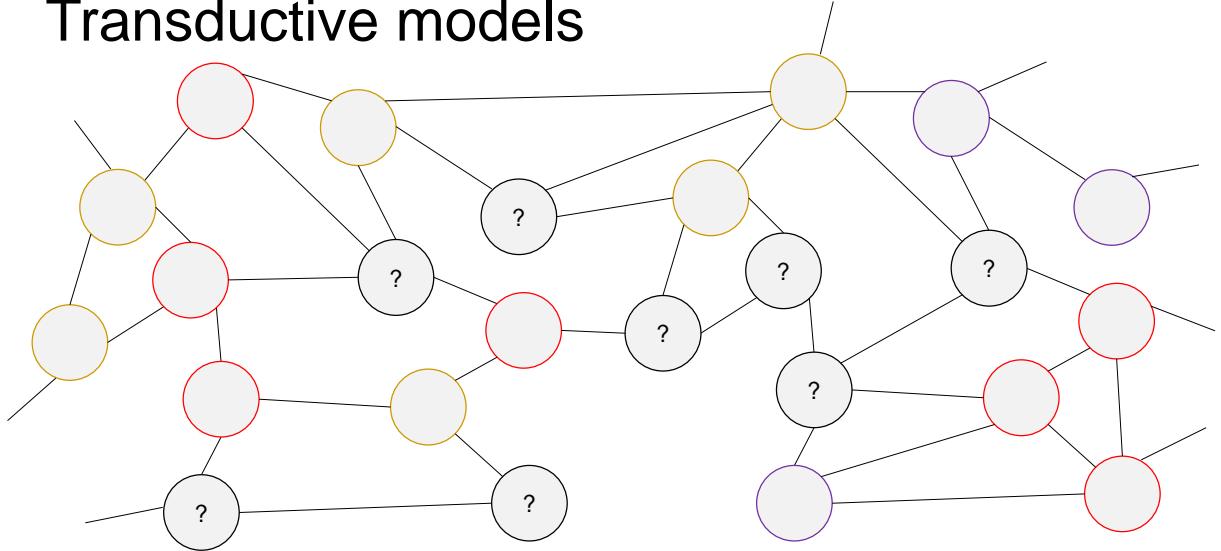
Inductive and transductive models



Inductive models



Transductive models

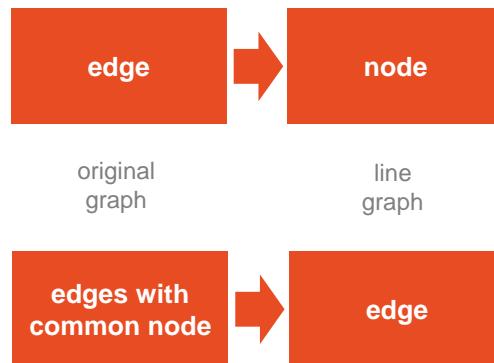


Concept:

Train to predict the known labels, then examine the predictions at the unknown nodes

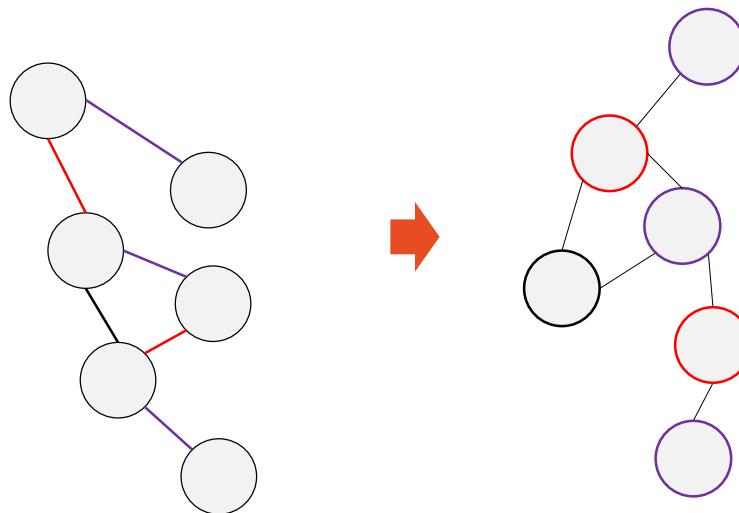
Line graphs

Line or edge graph



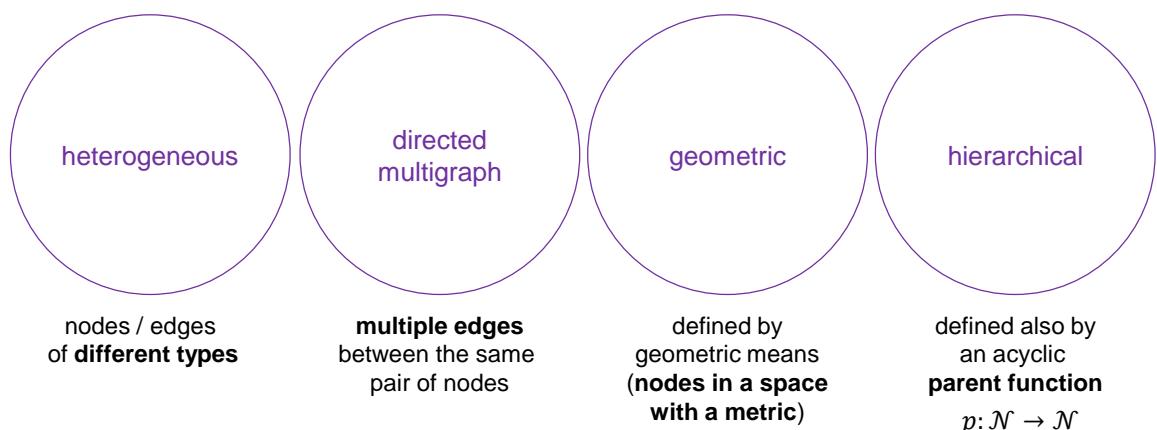
Concept:
Edge graph, complementary graph to process *edge embeddings*

Example



Graph types

Graph types



Concepts:

Simple graphs, spatial elements associated to geometric objects, parent function defines the hierarchy

Exercises

Today's exercises

Practice. You will become familiar with:

- **PyTorch geometric**: load datasets, view information about the graphs
- **Graph Neural Networks**: message passing and graph classification

What did we learn today?

- Graphs
- Simple graph
- Tasks on graphs
- Graph convolutional networks
- Graph attention
- Training
- Line graphs
- Graph types
- Exercises

EE-559

Deep Learning

andrea.cavallaro@epfl.ch