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V- Have you completed the practice
O- exercises for the first two lectures?

@ Start presenting to display the poll results on this slide.
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What's on today?

» The design space: the (many) choices for a model

* Training the model: how to fit the model to a dataset

* Model performance: how well a model predicts

* Classification: binary and multi-class problems

* Real-world impact: the cost of model fitting and deployment
 Exercises: the full training pipeline and the impact of data

The design
space
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y = f(x;0)

The design space: choices for a model

Model Model Learning algorithm Network
Dataset(s)
parameters hyperparameters hyperparameters structure
ngghts numbe.r of hidden layers learning _rate architecture size
biases & units in each layer batch size augmentation



{xi; :Vi}liv=1

Datasets
Training Validation
set set
to determine the to determine the to measure the
model parameters hyperparameters ability to generalize
minimize the loss heuristics or search model performance
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Training
the model

Our ‘deep’ neural network

y =0 +0®a [032) +0@aq [@g” +0Walol + @<0)x”]

how to determine the value of the model parameters?
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Datasets
Training Validation
set set
to determine the to determine the to measure the
model parameters hyperparameters ability to generalize

Computing the loss, the training signal

1;(©)

N N
Coydles LO) = ) 1(0) s L(O) = ) (f(xi;8) = )’
i=1 i=1
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Determining the model parameters

[L(0)]
9L(0)
initialize changes that 00,
arameters decrease L(©) aL(®) agée)
i on average 50 2
JL(O
randomly based on —6(@ )
aL(0)
50, |

Concepts: Initialization, vanishing gradient, gradient explosion,

gradient calculated
from {x;, y; 3}

gradient of the loss with respect to the parameters (at current position)

1,000,000,000,000
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Gradient descent

VN

derivative of L(0) aL(@) ®n+1 _ on o aL(@n) adjust ©

Ww.r.t. parameters © - 00 to decrease L(0)

00
for every parameter K j

at every iteration
of the training algorithm

learning rate
(fixed or with schedule)

how to calculate the gradients efficiently?

Concepts: Global minimum, local minima, saddle points, convexity, concavity,
trajectory of the gradient, exploration of the parameter space

Stochastic gradient descent (SGD)

N
; n+1 n ali(gn)
gradient calculated from {x;, y;}}*, Q) =0" -« W
i=1
radient estimate calculated from a
J al;(em)

batch (random subset of data) B™ ®n+1 — A" — o
with |[B™| € {1,2, ..., N}
where | .| is the cardinality of a set ieB™

00

set of batch indices
at iteration n

Concepts:
Batch, epoch, noise (randomness) in the gradient, deterministic descent on a changing loss, normalisation



3/5/2025

Momentum term

®n+1 " — mn+1 ( learning rate

n
dl; (@ ) controls the degree of

n+1_ :an + (1 _ ’B) Z ﬁ € [0)1) smoothing of the

gradient over time
[EBM

_ ) increases  if gradient directions over time are aligned
effective learning rate

decreases if gradient directions over time change

Concepts:
Weighted combination of gradients, reduced oscillations at valleys, Nesterov accelerated momentum

Normalizing the gradient

®n+1 — @n —a aL(Gn)
20
1 n+1_ IL(O™)
®n+1 " — m" m 00
\/ vl +e neic (aL(G”))Z
00
Concept:

Point-wise operations
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Adaptive moment estimation (Adam)

Sn+1
®n+1 A" — m"
\/ R
n+1 dl. (O™
mntl= m — m*ti=pm" + (1 - p) Z (O7)
vn+1 o0l. (G)n)
= V= yv" + (1) Z (
— j +1|
1 ()/ - [EB™
v,B €[0,1) SGD is a special case of Adam (y = € = 0)

Backpropagation algorithm

h(l) h(Z) h(3) store all

\ J activations
1) (2) 3
@ & M h e Vi
h(l) h(Z) h(3)

0 o1¢Y) 0@ o®

[;(0)

derivation using
pre-computed activations

backward pass

10
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Gradient: challenges Mor il

activations
h(l) h(2) h(3) sioretall
\ ’ activations
® (3)
AN %\ > (7
hs (2) hf)
0 lo1¢Y) 0 o®
TTorll derivation using 1.(©
pre-computed activations ( )

gradients of the loss w.r.t to activations
backward pass

Concepts: Different starting point for the optimization for each different initialization, gradients of the
activations may “vanish” or “explode” (worsens with backward pass), problem worsens with depth

Exploding or vanishing gradient

_o® @ ) ©
y_ao+@®a@0+@®apo+@mapo+@@4]

f = @(()n) + @MWpm

With ReLU, range of ™ is half of range of f®-1

— @(()n) + @(n)a[f(n—l)] (clipping below 0)
0M=0
(n) _ _ 2 If 62 < 1 — much smaller magnitude than the input
0 N(ﬂ =0,0 ) If 52 > 1 — much larger magnitude than the input

Obijective: to maintain the variance of h» the same across every layer

Concepts: magnitudes of the gradient decrease (increase) uncontrollably during the backward pass,
updates to the model become vanishingly small (vanishing) or unstable (“exploding”)

11
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Model
performance

Under and overfitting

overfitting

underfitting
underperforming on the training set underperforming on the test set
Model is too simple Low-quality and/or small size training data
Model needs more training time and/or data Model capacity used to model training data noise
High bias High variance

12
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Model performance: cause of errors

CIEIEE @i » unable to describe the true function » bias T
model

Choice of the . . .
. limited, noisy variance T

training data

Concepts: Sampling of the input space, choice of the hyperparameters, stochastic learning
algorithm may not converge to the same solution each time

How to reduce bias and variance?

add hidden units and/or hidden layers DT = bias |

increase quantity and/or quality of training data N T = variance |

Given a fixed N
if D T = bias | but variance T = trade-off

Concepts:
Bias-variance trade-off, a model capacity increase does not (necessarily) imply a test error reduction

13
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k-fold cross validation

randomly choose k

shuffle the split data in

k subsets

dataset

Data resampling procedure

test set training set

take one train on k-1

subset out

subsets

evaluate
7
L7 performance

e
4
e

R4 _ evaluate
Repeat . _.--" performance
-
estimate of the model's performance (bias, variance)
Concepts:
Aggregation of performance results, leave-p-out cross validation, nested cross-validation

Training
set

to determine the to
model parameters

hyperparameters

Validation

set

to measure the
ability to generalize

determine the

14
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Hyperparameters
model .
e g [[ain models
with different measure » select the » measure
hyper-
parameters hyper- performance best model performance

parameters

Training Validation
set set

Concepts:
Hyperparameter search, empirical choice, sampling the hyperparameter space

Data

Training Validation Real-world

set set

data

15
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Classification

Recap: negative log-likelihood criterion

N
6" = argmin |- Z log[P (y;f Cx;; O))]]
i=1

16
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Recap: network diagram

Binary classification

y; € {0,1} 2 classes
Probability distribution (Bernoulli) over the output space:
1—A Vi = 0
= A€ (0,1

PN =21 -0

Concepts:
Categories, labels

17
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Binary cross-entropy loss

sig(z) = logistic sigmoid (R — [0,1])

14+ e 2
P(ylx) = sig(f (x; ©))” (1 — sig(f (x; ©)))*

N

L(8) = ) —;log[sig(f(x;; )] — (1 — y) log[1 — sig(f (xi; ©))]

i=1

inference  § = 1ifA > 0.5 (and 0 otherwise)

Concepts:
Setting f (x; ©) to predict A of the Bernoulli distribution, negative log-likelihood of the training set

Multi-class classification

yi e {1) 2) ") CJ R | C} C CIaSSeS

Probability distribution (categorical) over the output space:
P(y=c)=A, AL Ay, s, ., A probability of each category

A. € [0,1] eZc

. » softmax.(z) = T softmax function
A =1 er=1 €75

c=1

P(y = c|x) = softmax.(f(x; ©))

Concepts:
Exponential function ensures positivity, sum in the denominator ensures “sum to 1”
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Multi-class cross-entropy loss

N
L(®) = —Z log[softmaxyi(f(xi; @))]
i=1

N
c ,
- output ¢’ of the
= — f, (x;;0) —log eifer (x1;0) neural network
yizti cr=1
i=1 a

inference y = arg max P(y = clf(x;0))

Concepts:
Categorical distribution of C possible classes, point estimate, most probable category

Cross-entropy loss

Kullback-Leibler (KL) divergence: distance between q(z) and p(z)
+o0

D[q||p]=f_ 4(2) loglq(2)] dz - j 4(2) loglp(2)] dz

— 00

empirical data distribution observed at {y; }N_,

q) = =2, 5[y — ]

Dirac delta function

Concept:
Weighted sum of point masses

3/5/2025
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Cross-entropy loss

6" = argmin W—j q(y) log[P(y|©)] dy

cross-entropy: amount of uncertainty in
= argmin |— q(_’y) log[P (yl@)] dy a distribution after taking into account
Q)
| — 00

what we already know from the other

N
+0co 1
= argmin |- j = oLy = il |loglP(yI®)] dy
- i=1

[ N N
= arg mGi)n —%z log[P(y;|®)]|= arg mGi)n —Z log|P(y;|f (x;;©))]
=l i=1

negative log-likelihood criterion

Negative log-likelihood and cross-entropy

negative log-likelihood criterion “ cross-entropy criterion
maximizing the data likelihood minimizing the distance

between the model and
empirical data distributions

Concept:
Equivalence between negative log-likelihood and cross-entropy criteria

20
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Real-world
Impact

The cost of model fitting

oo ﬁ Measuring the carbon intensity
1om —_— # OfAlin cloud instances
. Ye:r’\‘;rr;me
()

& measure operational carbon emissions
- Barrel .
of ol data per energy unit

100k
- )
. _ - location-based
10k . » . ..
- time-specific marginal emissions
[ | Ga\lﬂrmf
1. Em [ gasoline
|| =
100 dive

[ natural language processing
computer vision applications

10 _ -_-
Phone
0 charge
BERT  BERT 68 Dense Dense Dense wiT ViT viT viT viT
finetune LM transt 121 169 201 tiny small base large huge
Model

CO2 Relative Size Comparison arXiv:2206.05229


https://arxiv.org/abs/2206.05229

Model emissions (g of CO,)

Model emissions (g of COy)

The cost of deployment
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Text classification

Token classification
Extractive QA

Masked Language Modeling
Image classification
Multitask Text Classification
Object detection

Multitask Extractive QA
Text generation
Summarization

Image captioning

Multitask summarization
Image generation

arXiv:2311.16863

modality
* Textto category
e Texttoimage
® Textto text
* Image to text
Image to category

arXiv:2311.16863
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https://arxiv.org/abs/2311.16863
https://arxiv.org/abs/2311.16863

S

Model development

Documentation

Data Sources

Pretraining
Finetuning

Data Documentation
Data Governance

Data

—

@

Estimating Impact
Efficient Use of Resources

5

Environmental

Impact

Data Preparation —| | [:EaElGIn] Model Evaluation Model Release

Analysis m Pretraining ’ Capabilities —wh Model Documentation
Exploration @/ Finetuning }\ Risks & Harms :Q License Selection
Cleaning Efficiency Reproducibility
Filtering Usage Monitoring
Deduplication

Decentamination

Auditing
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https://fmcheatsheet.org

Exercises

23
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Today’s practice exercises

You will experiment with a full training pipeline
- implementing the model architecture
- training and evaluation
- logging the metrics
- using different optimizers

Today’s marked exercises

The impact of data on model performance
- data augmentation on a balanced dataset
- weighted sampler on an imbalanced dataset
- weighted cross-entropy loss to mitigate the imbalance

3/5/2025
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What did we learn today?

» The design space

* Training the model
» Model performance
+ Classification

* Real-world impact
» Exercises

EE-559
Deep Learning

andrea.cavallaro@epfl.ch
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