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EE-559

Deep Learning

Any reproduction or distribution of this document, in whole or in part, is prohibited unless permission is granted by the authors

Have you completed the practice 

exercises for the first two lectures?

ⓘ Start presenting to display the poll results on this slide.
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What’s on today?

• The design space: the (many) choices for a model

• Training the model: how to fit the model to a dataset 

• Model performance: how well a model predicts

• Classification: binary and multi-class problems

• Real-world impact: the cost of model fitting and deployment

• Exercises: the full training pipeline and the impact of data

The design 

space
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𝑦 = 𝑓(𝑥; Θ)

The design space: choices for a model

Model 

parameters
Model

hyperparameters

number of hidden layers 

& units in each layer

weights

biases

Learning algorithm

hyperparameters

learning rate

batch size

Network

structure

architecture

Dataset(s)

size

augmentation
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{𝑥𝑖 , 𝑦𝑖}𝑖=1
𝑁

Datasets

Training

set

Testing

set

Validation

set

to measure the

ability to generalize

to determine the

hyperparameters

to determine the

model parameters

model performanceheuristics or searchminimize the loss
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Training

the model

Our ‘deep’ neural network

𝑥

ℎ1
(1)

𝑦ℎ2
(1)

ℎ3
(1)

ℎ1
(2)

ℎ2
(2)

ℎ3
(2)

ℎ1
(3)

ℎ2
(3)

ℎ3
(3)

𝑦 = 𝛩0
(3)

+𝜣 3 𝑎 𝜣0
(2)

+𝜣 2 𝑎 𝜣0
(1)

+𝜣 1 𝑎 𝜣0
(0)

+𝜣 0 𝑥

how to determine the value of the model parameters?
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Datasets

Training

set

Testing

set

Validation

set

to measure the

ability to generalize

to determine the

hyperparameters

to determine the

model parameters

Computing the loss, the training signal

𝑥𝑖

ℎ1
(1)

ℎ2
(1)

ℎ3
(1)

ℎ1
(2)

ℎ2
(2)

ℎ3
(2)

ℎ1
(3)

ℎ2
(3)

ℎ3
(3)

{𝑥𝑖 , 𝑦𝑖}𝑖=1
𝑁 𝐿 Θ = ෍

𝑖=1

𝑁

𝑙𝑖(Θ)

𝜣 0 𝜣 1 𝜣 2 𝜣 3

𝐿 Θ = ෍

𝑖=1

𝑁

(𝑓 𝑥𝑖; Θ − 𝑦𝑖)
2e.g.

𝑦𝑖

𝑙𝑖(Θ)

෥𝑦𝑖
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Determining the model parameters

initialize

parameters

randomly

changes that 

decrease 𝐿 Θ
on average

based on  
𝜕𝐿 Θ

𝜕Θ

Concepts: Initialization, vanishing gradient, gradient explosion, 

gradient of the loss with respect to the parameters (at current position)

𝜕𝐿 Θ

𝜕Θ
=

𝜕𝐿 Θ

𝜕Θ0
𝜕𝐿 Θ
𝜕Θ1
𝜕𝐿 Θ
𝜕Θ2

…

𝜕𝐿 Θ

𝜕Θ𝑃

gradient calculated 

from {𝑥𝑖 , 𝑦𝑖}𝑖=1
𝑁

1,000,000,000,000
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𝜕𝐿 Θ

𝜕Θ
Θ𝑛+1 = Θ𝑛 − 𝛼

𝜕𝐿 Θ𝑛

𝜕Θ

derivative of 𝐿 Θ
w.r.t. parameters Θ

adjust Θ
to decrease 𝐿 Θ

how to calculate the gradients efficiently?

for every parameter 

at every iteration 

of the training algorithm

Concepts: Global minimum, local minima, saddle points, convexity, concavity, 

trajectory of the gradient, exploration of the parameter space

learning rate 

(fixed or with schedule)

Gradient descent

Stochastic gradient descent (SGD)

Θ𝑛+1 = Θ𝑛 − 𝛼 ෍

𝑖∈𝐵𝑛

𝜕𝑙𝑖(Θ
𝑛)

𝜕Θ

set of batch indices

at iteration 𝑛

gradient estimate calculated from a

batch (random subset of data) 𝐵𝑛

with |𝐵𝑛| ∈ {1, 2, … ,𝑁}
where | . | is the cardinality of a set

Θ𝑛+1 = Θ𝑛 − 𝛼෍

𝑖=1

𝑁
𝜕𝑙𝑖(Θ

𝑛)

𝜕Θ
gradient calculated from {𝑥𝑖 , 𝑦𝑖}𝑖=1

𝑁

Concepts: 

Batch, epoch, noise (randomness) in the gradient, deterministic descent on a changing loss, normalisation
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Momentum term

Θ𝑛+1= Θ𝑛 − 𝛼 𝒎𝑛+1

𝒎𝑛+1= 𝛽𝒎𝑛 + (1 − 𝛽) ෍

𝑖∈𝐵𝑛

𝜕𝑙𝑖(Θ
𝑛)

𝜕Θ 𝛽 ∈ 0,1

Concepts: 

Weighted combination of gradients, reduced oscillations at valleys, Nesterov accelerated momentum 

𝛼 learning rate 

controls the degree of 

smoothing of the 

gradient over time

effective learning rate
if gradient directions over time are aligned increases

decreases if gradient directions over time change
ቊ

Normalizing the gradient

Θ𝑛+1= Θ𝑛 − 𝛼
𝒎𝑛+1

𝒗𝑛+1 + 𝜖

Θ𝑛+1 = Θ𝑛 − 𝛼
𝜕𝐿 Θ𝑛

𝜕Θ

𝒎𝑛+1= 
𝜕𝐿 Θ𝑛

𝜕Θ

𝒗𝑛+1= 
𝜕𝐿 Θ𝑛

𝜕Θ

2

Concept: 

Point-wise operations 
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Adaptive moment estimation (Adam)

Θ𝑛+1= Θ𝑛 − 𝛼
෥𝒎𝑛+1

෥𝒗𝑛+1 + 𝜖

𝒎𝑛+1= 𝛽𝒎𝑛 + (1 − 𝛽) ෍

𝑖∈𝐵𝑛

𝜕𝑙𝑖(Θ
𝑛)

𝜕Θ෥𝒎𝑛+1=
𝒎𝑛+1

1 − (𝛽)𝑛+1

෥𝒗𝑛+1=
𝒗𝑛+1

1 − (𝛾)𝑛+1
𝒗𝑛+1= 𝛾𝒗𝑛 + (1 − 𝛾) ෍

𝑖∈𝐵𝑛

𝜕𝑙𝑖(Θ
𝑛)

𝜕Θ

2

𝛾, 𝛽 ∈ 0,1 SGD is a special case of Adam (𝛾 = 𝜖 = 0)

Backpropagation algorithm

𝑥𝑖

ℎ1
(1)

𝑦𝑖ℎ2
(1)

ℎ3
(1)

ℎ1
(2)

ℎ2
(2)

ℎ3
(2)

ℎ1
(3)

ℎ2
(3)

ℎ3
(3)

𝑙𝑖(Θ)

𝜣 0 𝜣 1 𝜣 2 𝜣 3

forward pass

backward pass

store all 

activations

derivation using 

pre-computed activations

෥𝑦𝑖
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Gradient: challenges

𝑥𝑖

ℎ1
(1)

𝑦𝑖ℎ2
(1)

ℎ3
(1)

ℎ1
(2)

ℎ2
(2)

ℎ3
(2)

ℎ1
(3)

ℎ2
(3)

ℎ3
(3)

𝑙𝑖(Θ)

𝜣 0 𝜣 1 𝜣 2 𝜣 3

forward pass

backward pass

store all 

activations

derivation using 

pre-computed activations

෥𝑦𝑖

activations

gradients of the loss w.r.t to activations

↑↑ or ↓↓

↑↑ or ↓↓

Concepts: Different starting point for the optimization for each different initialization, gradients of the 

activations may “vanish” or “explode” (worsens with backward pass), problem worsens with depth

Exploding or vanishing gradient 

𝑦 = 𝛩0
(3)

+𝜣 3 𝑎 𝜣0
(2)

+𝜣 2 𝑎 𝜣0
(1)

+ 𝜣 1 𝑎 𝜣0
(0)

+ 𝜣 0 𝑥

𝒇 𝑛 = 𝜣0
𝑛
+ 𝜣 𝑛 𝒉 𝑛

= 𝜣0
𝑛
+ 𝜣 𝑛 𝑎 𝒇 𝑛−1

𝜣0
𝑛

= 0

𝜣 𝑛 ~ N(𝜇 = 0, 𝜎2)
If 𝜎2 ≪ 1 → much smaller magnitude than the input
If 𝜎2 ≫ 1 → much larger magnitude than the input

With ReLU, range of ℎ 𝑛 is half of range of  𝑓 𝑛−1

(clipping below 0)

Concepts: magnitudes of the gradient decrease (increase) uncontrollably during the backward pass, 

updates to the model become vanishingly small (vanishing) or unstable (“exploding”)

Objective: to maintain the variance of 𝒉 𝑛 the same across every layer



3/5/2025

12

Model 

performance

Under and overfitting

underfitting

overfitting

underperforming on the training set underperforming on the test set

Low-quality and/or small size training data

Model capacity used to model training data noise

High variance

Model is too simple

Model needs more training time and/or data

High bias
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Model performance: cause of errors

Choice of the 

model

Choice of the 

training data
variance ↑limited, noisy 

unable to describe the true function bias ↑

Concepts: Sampling of the input space, choice of the hyperparameters, stochastic learning 

algorithm may not converge to the same solution each time

How to reduce bias and variance?

add hidden units and/or hidden layers

increase quantity and/or quality of training data 𝑁 ↑ ⇒ variance ↓

𝐷 ↑ ⇒ bias ↓

Given a fixed 𝑁
if 𝐷 ↑ ⇒ bias ↓ but variance ↑ ⇒ trade-off

Concepts: 

Bias-variance trade-off, a model capacity increase does not (necessarily) imply a test error reduction
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k-fold cross validation 

shuffle the 

dataset

split data in 

k subsets

take one 

subset out

train on k-1 

subsets

randomly choose k test set training set

Data resampling procedure

evaluate 

performance

Repeat
evaluate 

performance

estimate of the model's performance

Concepts: 

Aggregation of performance results, leave-p-out cross validation, nested cross-validation   

(bias, variance)

Datasets

Training

set

Testing

set

Validation

set

to measure the

ability to generalize

to determine the

hyperparameters

to determine the

model parameters
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Hyperparameters

Concepts: 

Hyperparameter search, empirical choice, sampling the hyperparameter space

train models 

with different

hyper-

parameters

measure 

performance

select the 

best model

measure 

performance

Validation 

set

Training 

set

Test

set

model

hyper-

parameters

Data

Training

set

Testing

set

Validation

set

Real-world 

data
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Classification

Recap: negative log-likelihood criterion

Θ∗ = argmin
Θ

− ෍

𝑖=1

𝑁

log 𝑃 𝑦𝑖 𝑓 𝑥𝑖; Θ )
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Recap: network diagram

ℎ1
(1)

ℎ2
(1)

ℎ3
(1)

ℎ1
(2)

ℎ2
(2)

ℎ3
(2)

ℎ1
(3)

ℎ2
(3)

ℎ3
(3)

𝒙 𝒚

Binary classification

𝑦𝑖 ∈ {0,1} 2 classes 

Concepts: 

Categories, labels

𝑃 𝑦 λ) = ቊ
1 − λ 𝑦𝑖 = 0
λ 𝑦𝑖 = 1

𝑃 𝑦 λ) = λ𝑦 1 − λ 1−𝑦

Probability distribution (Bernoulli) over the output space:

λ ∈ [0,1]
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Binary cross-entropy loss

𝑃 𝑦 𝑥) = sig(𝑓(𝑥; Θ))𝑦(1 − sig(𝑓 𝑥; Θ ))1−𝑦

𝐿 Θ = ෍

𝑖=1

𝑁

−𝑦𝑖 log sig 𝑓 𝑥𝑖; Θ − 1 − 𝑦𝑖 log[1 − sig 𝑓 𝑥𝑖; Θ ]

logistic sigmoid (ℝ → [0,1]) sig 𝑧 =
1

1 + 𝑒−𝑧

Concepts: 

Setting 𝑓 𝑥; Θ to predict λ of the Bernoulli distribution, negative log-likelihood of the training set  

ො𝑦 = 1 if λ > 0.5 and 0 otherwiseinference

Multi-class classification

𝑦𝑖 ∈ {1, 2, … , 𝑐, … , 𝐶} 𝐶 classes  

𝑃(𝑦 = 𝑐|𝑥) = softmaxc 𝑓 𝑥; Θ

softmax functionsoftmaxc 𝒛 =
𝑒𝑧𝑐

σ𝑐′=1
𝐶 𝑒𝑧𝑐′

𝑃(𝑦 = 𝑐) = λ𝑐

Probability distribution (categorical) over the output space:

λ1, λ2, … , λ𝑐 , … , λ𝐶 probability of each category

λ𝑐 ∈ [0,1]

෍
𝑐=1

𝐶

λ𝑐 = 1

Concepts: 

Exponential function ensures positivity, sum in the denominator ensures “sum to 1” 
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Multi-class cross-entropy loss

𝐿 Θ = −෍

𝑖=1

𝑁

log softmax𝑦𝑖 𝑓 𝑥𝑖; Θ

= −෍

𝑖=1

𝑁

f𝑦𝑖 𝑥𝑖; Θ − log ෍
𝑐′=1

𝐶

𝑒f𝑐′ 𝑥𝑖;Θ

ො𝑦 = argmax
𝑐

𝑃 𝑦 = 𝑐 𝑓 𝑥; Θ∗ )inference

output 𝑐′ of the 

neural network 

Concepts: 

Categorical distribution of C possible classes, point estimate, most probable category

Cross-entropy loss

𝐷[𝑞| 𝑝 = න
−∞

+∞

𝑞 𝑧 log 𝑞 𝑧 𝑑𝑧 − න
−∞

+∞

𝑞 𝑧 log 𝑝 𝑧 𝑑𝑧

Kullback-Leibler (KL) divergence: distance between 𝑞 𝑧 and 𝑝 𝑧

{𝑦𝑖}𝑖=1
𝑁

empirical data distribution observed at

𝑞 𝑦 =
1

𝑁
σ𝑖=1
𝑁 𝛿[𝑦 − 𝑦𝑖]

Concept: 

Weighted sum of point masses

Dirac delta function
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Cross-entropy loss

Θ∗ = argmin
Θ

න
−∞

+∞

𝑞 𝑦 log 𝑞 𝑦 𝑑𝑦 − න
−∞

+∞

𝑞 𝑦 log 𝑃 𝑦|Θ 𝑑𝑦

= argmin
Θ

−න
−∞

+∞

𝑞 𝑦 log 𝑃 𝑦|Θ 𝑑𝑦
cross-entropy: amount of uncertainty in 

a distribution after taking into account 

what we already know from the other

= argmin
Θ

−න
−∞

+∞ 1

𝑁
෍

𝑖=1

𝑁

𝛿[𝑦 − 𝑦𝑖] log 𝑃 𝑦|Θ 𝑑𝑦

= argmin
Θ

−
1

𝑁
෍

𝑖=1

𝑁

log 𝑃 𝑦𝑖|Θ = argmin
Θ

−෍

𝑖=1

𝑁

log 𝑃 𝑦𝑖|𝑓 𝑥𝑖; Θ

negative log-likelihood criterion

Negative log-likelihood and cross-entropy

negative log-likelihood criterion

maximizing the data likelihood

cross-entropy criterion

minimizing the distance

between the model and 

empirical data distributions

Concept: 

Equivalence between negative log-likelihood and cross-entropy criteria 



3/5/2025

21

Real-world 

impact

The cost of model fitting

measure operational carbon emissions 

data per energy unit 

- location-based

- time-specific marginal emissions

Measuring the carbon intensity 

of AI in cloud instances

arXiv:2206.05229

natural language processing

computer vision applications

https://arxiv.org/abs/2206.05229
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The cost of deployment

for 1000 queries

arXiv:2311.16863

Carbon emitted for 1000 inferences

Note - logarithmic scales in both axes
arXiv:2311.16863

https://arxiv.org/abs/2311.16863
https://arxiv.org/abs/2311.16863
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Model development

https://fmcheatsheet.org

Exercises

https://fmcheatsheet.org/


3/5/2025

24

Today’s practice exercises

You will experiment with a full training pipeline
- implementing the model architecture

- training and evaluation 

- logging the metrics 

- using different optimizers

Today’s marked exercises

The impact of data on model performance
- data augmentation on a balanced dataset

- weighted sampler on an imbalanced dataset

- weighted cross-entropy loss to mitigate the imbalance
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What did we learn today?

• The design space

• Training the model

• Model performance

• Classification

• Real-world impact

• Exercises

EE-559

Deep Learning

andrea.cavallaro@epfl.ch


