

Any reproduction or distribution of this document, in whole or in part, is prohibited unless permission is granted by the authors.

EE-559

Deep Learning

What's on today?

- **Function approximation**: learning complex functions from data
- **Values and principles**: guiding ethical, responsible AI design
- **Shallow vs deep learning**: layer count distinguishes learning depth
- **Building a deep network**: your first 'deep' network
- **Network diagram**: to visualize nodes, layers and parameters
- **Activation function**: the non-linearities in the composition
- **Exercises**: hands-on practice to solidify the above concepts

Function approximation

$$y = f(x)$$

$$y = f(x; \Theta)$$

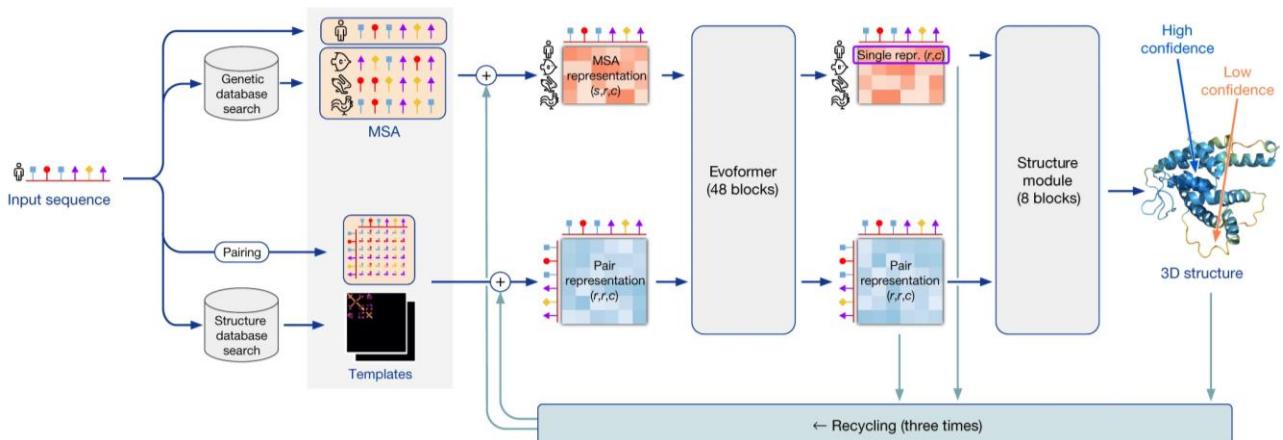
1,000,000,000,000

$$\Theta^* = \arg \min_{\Theta} L(\Theta)$$

$$\{x_i, y_i\}_{i=1}^N$$

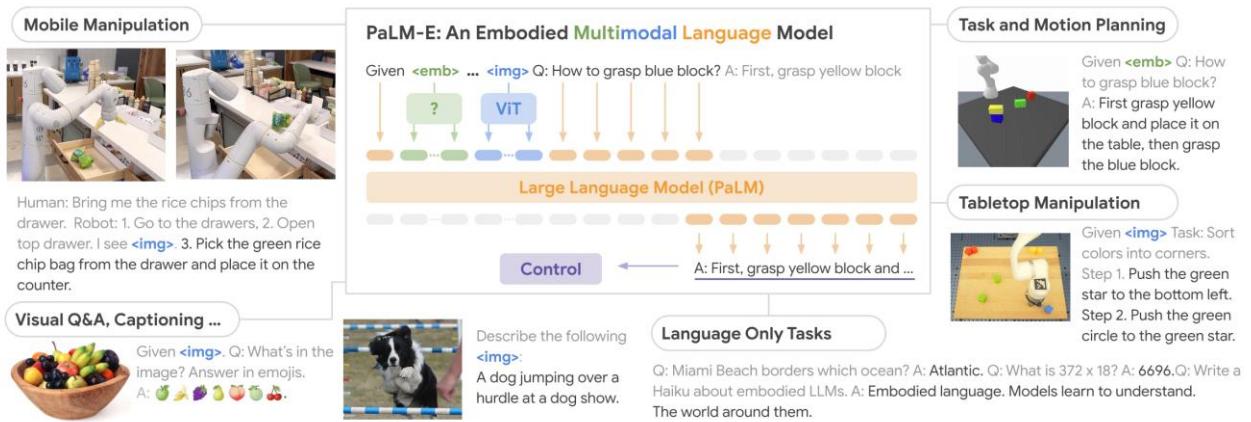
$$y = f(x)$$

Protein structure prediction



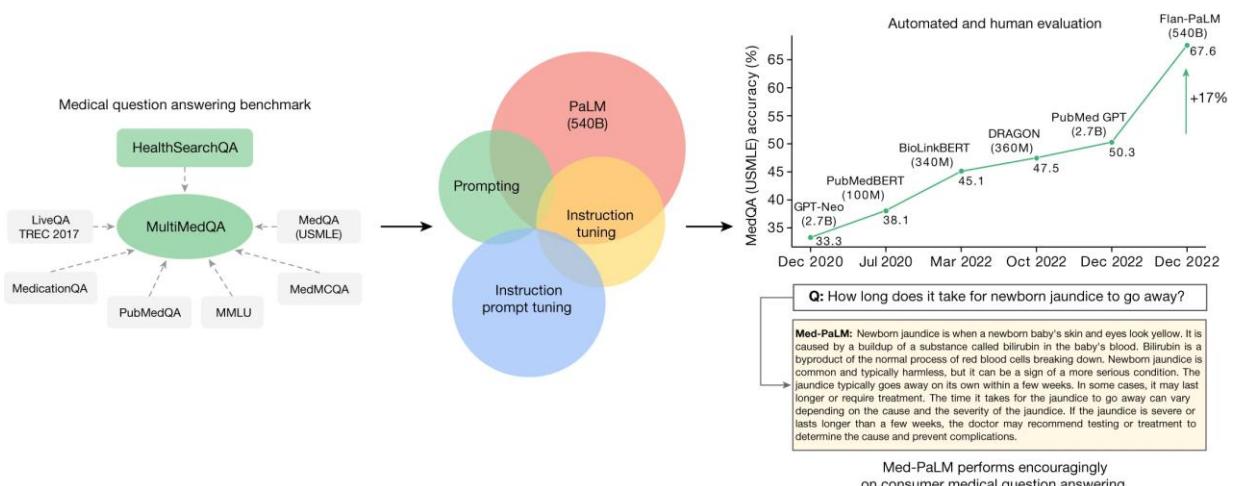
Nature volume 596, pages 583–589 (2021)

Embodied multimodal language model



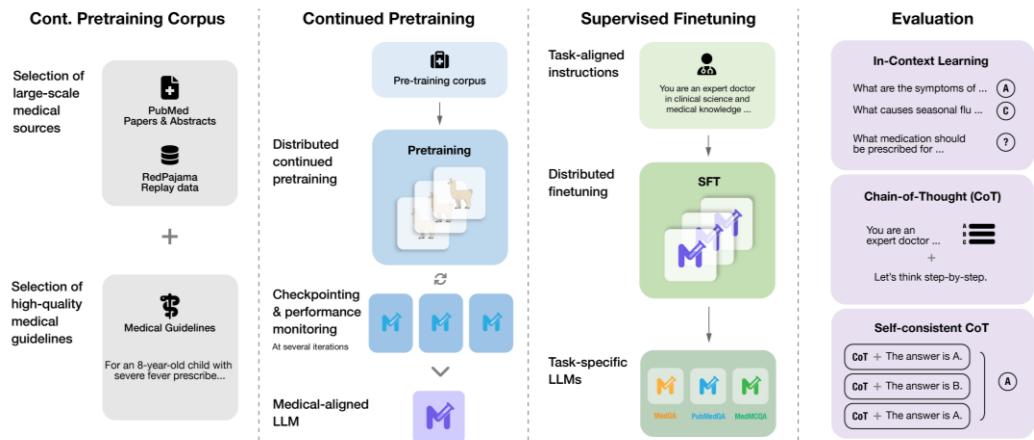
[arXiv:2303.03378](https://arxiv.org/abs/2303.03378)

Encoding clinical knowledge



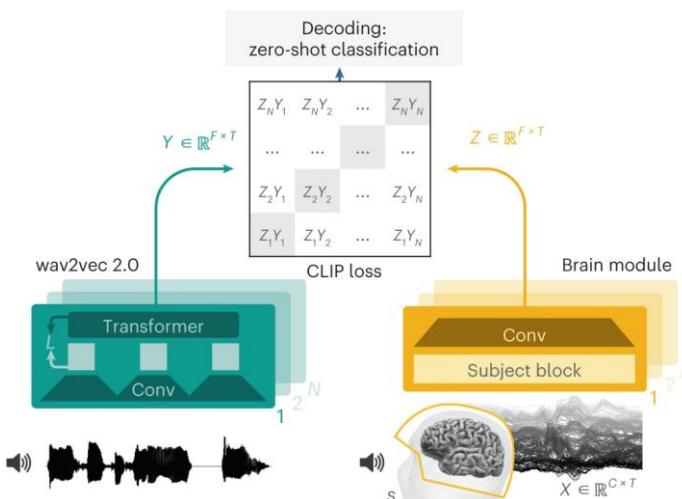
Nature volume 620, pages 172–180 (2023)

Meditron: medical Large Language Models



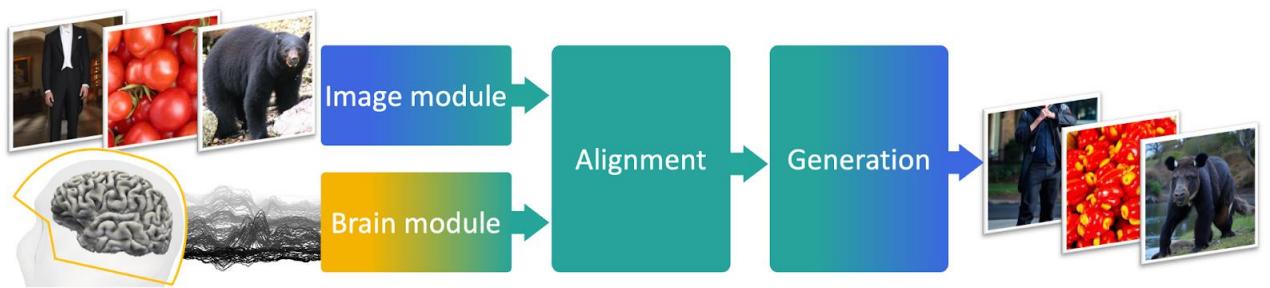
[arXiv:2311.16079](https://arxiv.org/abs/2311.16079)

Decoding speech from brain activity



[Nature Machine Intelligence volume 5, pages 1097–1107 \(2023\)](https://www.nature.com/articles/s43247-023-01107-1)

Decoding images from brain activity



[arXiv:2310.19812](https://arxiv.org/abs/2310.19812)

Decoding images from brain activity

Viewed Image

Predicted Image

[arXiv:2310.19812](https://arxiv.org/abs/2310.19812)

How do we know if an AI model is good for society?

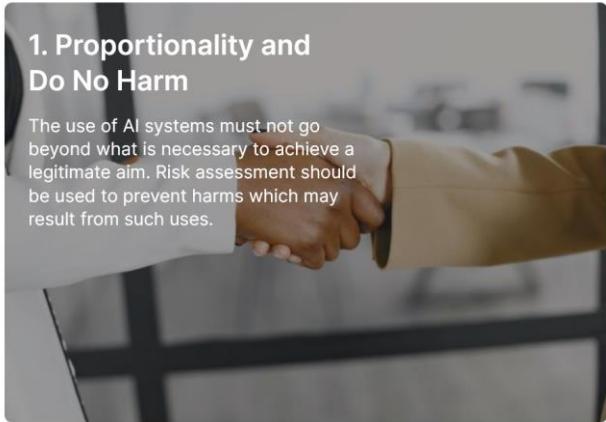
Core values

<https://www.unesco.org/en/artificial-intelligence/recommendation-ethics>

10 core principles

1. Proportionality and Do No Harm

The use of AI systems must not go beyond what is necessary to achieve a legitimate aim. Risk assessment should be used to prevent harms which may result from such uses.



2. Safety and Security

Unwanted harms (safety risks) as well as vulnerabilities to attack (security risks) should be avoided and addressed by AI actors.

<https://www.unesco.org/en/artificial-intelligence/recommendation-ethics>

10 core principles

3. Right to Privacy and Data Protection

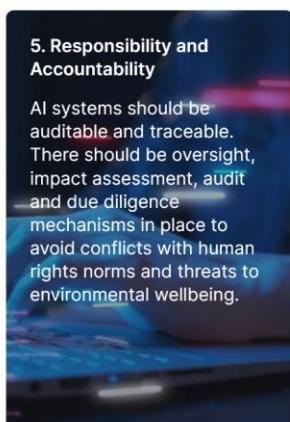
Privacy must be protected and promoted throughout the AI lifecycle. Adequate data protection frameworks should also be established.

4. Multi-stakeholder and Adaptive Governance & Collaboration

International law & national sovereignty must be respected in the use of data. Additionally, participation of diverse stakeholders is necessary for inclusive approaches to AI governance.

5. Responsibility and Accountability

AI systems should be auditable and traceable. There should be oversight, impact assessment, audit and due diligence mechanisms in place to avoid conflicts with human rights norms and threats to environmental wellbeing.

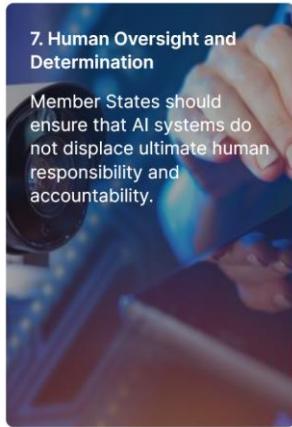


6. Transparency and Explainability

The ethical deployment of AI systems depends on their transparency & explainability (T&E). The level of T&E should be appropriate to the context, as there may be tensions between T&E and other principles such as privacy, safety and security.

<https://www.unesco.org/en/artificial-intelligence/recommendation-ethics>

10 core principles



7. Human Oversight and Determination

Member States should ensure that AI systems do not displace ultimate human responsibility and accountability.

8. Sustainability

AI technologies should be assessed against their impacts on 'sustainability', understood as a set of constantly evolving goals including those set out in the UN's Sustainable Development Goals.

9. Awareness & Literacy

Public understanding of AI and data should be promoted through open & accessible education, civic engagement, digital skills & AI ethics training, media & information literacy.

10. Fairness and Non-Discrimination

AI actors should promote social justice, fairness, and non-discrimination while taking an inclusive approach to ensure AI's benefits are accessible to all.

<https://www.unesco.org/en/artificial-intelligence/recommendation-ethics>

slido

How would you incorporate values and principles in a deep learning model?

① Start presenting to display the poll results on this slide.

Building a deep network

Back to the mapping

$y = f(x; \Theta)$ family of possible relationships between x and y
defined by the parameters Θ

$\{x_i, y_i\}_{i=1}^N$ training dataset (supervised learning, N pairs)

$L(\Theta) = \sum_{i=1}^N (f(x_i; \Theta) - y_i)^2$ loss or cost function

$$\Theta^* = \arg \min_{\Theta} L(\Theta)$$

Concepts:

Inference, training / learning, loss, optimization, supervised learning

Training & testing

- **Training, learning, model fitting:**
the process of finding the parameters Θ^ that minimize the loss $L(\Theta)$*
- **Expressiveness of a model f :**
its ability to capture the relationship between input x and output y
- **Testing:**
computing the loss on separate test data to determine how well the learned model $y = f(x; \Theta^)$ **generalizes** to unseen data*

Concepts:

Generalization, under-fitting, over-fitting

Linear regression

$$y = f(x; \Theta)$$

$$= \Theta_0 + \Theta_1 x$$

$$\begin{aligned} \Theta^* &= \arg \min_{\Theta} L(\Theta) \\ &= \arg \min_{\Theta} \sum_{i=1}^N (f(x_i; \Theta) - y_i)^2 \\ &= \arg \min_{\Theta} \sum_{i=1}^N (\Theta_0 + \Theta_1 x_i - y_i)^2 \end{aligned}$$

Concept: 1D linear regression represents the input-to-output relationship as a line

Neural network

$$y = f(x; \Theta)$$

$$= \Theta_0 + \Theta_1 a[\Theta_{10} + \Theta_{11}x] + \Theta_2 a[\Theta_{20} + \Theta_{21}x] + \Theta_3 a[\Theta_{30} + \Theta_{31}x]$$

linear function linear function linear function

$$a[z] = \begin{cases} 0 & z < 0 \\ z & z \geq 0 \end{cases}$$

Rectified linear unit (ReLU) **activation function**

$$\Theta^* = \arg \min_{\Theta} L(\Theta)$$

Optimization to determine the 10 parameters

Concept:

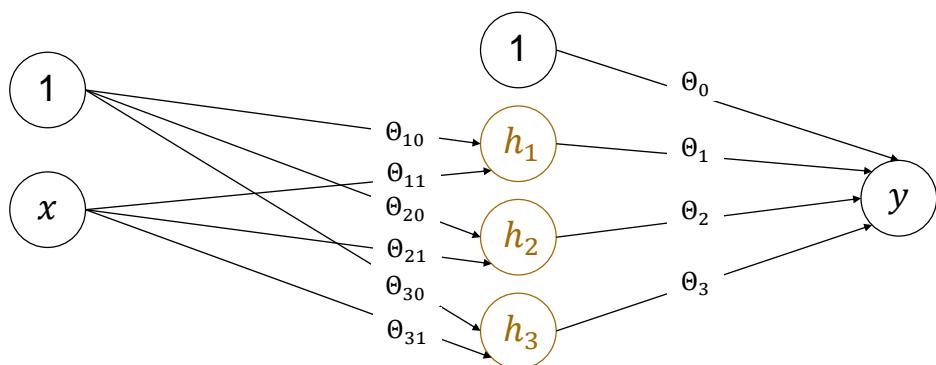
Family of continuous piecewise linear functions with up to four linear regions

Neural network

$$y = f(x; \Theta)$$

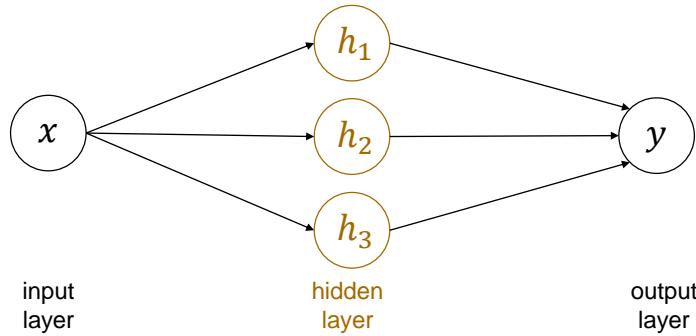
$$= \Theta_0 + \Theta_1 a[\Theta_{10} + \Theta_{11}x] + \Theta_2 a[\Theta_{20} + \Theta_{21}x] + \Theta_3 a[\Theta_{30} + \Theta_{31}x]$$

h_1 h_2 h_3



Neural network: simplified representation

$$y = f(x; \Theta) = \Theta_0 + \Theta_1 a[\Theta_{10} + \Theta_{11}x] + \Theta_2 a[\Theta_{20} + \Theta_{21}x] + \Theta_3 a[\Theta_{30} + \Theta_{31}x]$$



Concepts: Shallow neural network, hidden units, feed-forward architecture

Shallow network with capacity D

$$h_d = a[\Theta_{d0} + \Theta_{d1}x] \quad \text{hidden unit}$$

$$y = \Theta_0 + \sum_{d=1}^D \Theta_d h_d \quad D+1: \text{linear regions}$$

the larger D ,
the higher the descriptive power of the network

Universal approximation theorem

With enough suitably chosen hidden units (basis functions, linear regions), we can describe (approximate) any (non-linear) continuous function on a compact region to any arbitrary accuracy

Concepts:

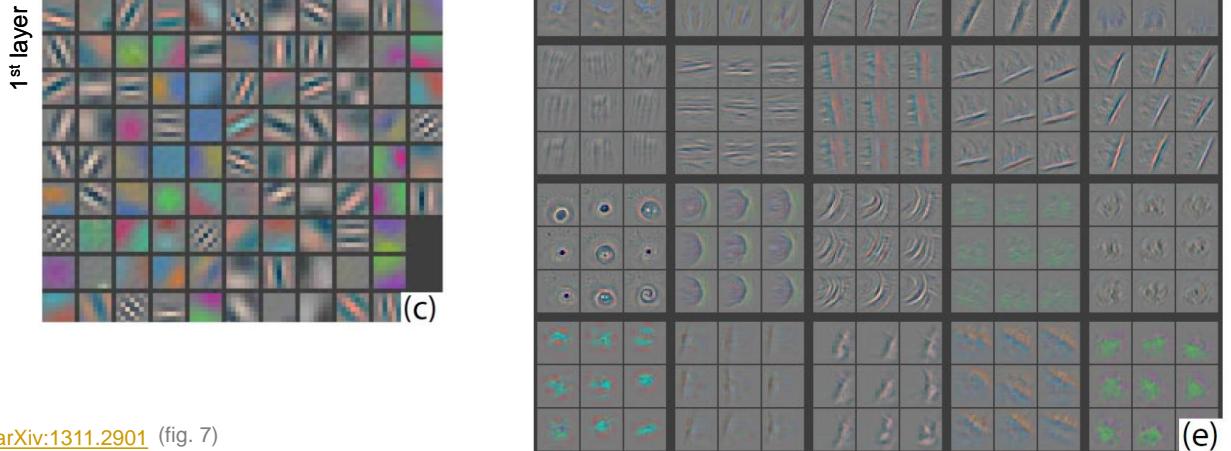
Network capacity, linear regions, basis functions, approximation of any continuous function

So, why isn't this course called Wide Learning?

Deep vs Wide Learning

- **Shallow networks** (SNs, “Wide Learning”)
 - the number of *basis functions* grows rapidly with the dimensionality of x
 - for some functions, SNs require an impractically large number of *hidden units*
- **Deep networks** (DNs)
 - can produce many more *linear regions* than SNs
 - can describe a broader family of functions
 - multiple layers of learnable parameters
 - *hierarchical representation* → compositional inductive bias
 - e.g. combination of **low-level features** into **higher level features**

Example



[arXiv:1311.2901](https://arxiv.org/abs/1311.2901) (fig. 7)

Deep vs shallow networks

For a given number of parameters, the number of regions the input space is divided into is

- **exponential** in the **depth** of the network and
- **polynomial** in the **width** of the hidden layers

SN	$D > 2$ hidden units	up to $D + 1$ linear regions defined by $3D + 1$ parameters
DN	K layers of $D > 2$ hidden units	up to $(D + 1)^K$ linear regions defined by $3D + 1 + (K - 1)D(D + 1)$ parameters

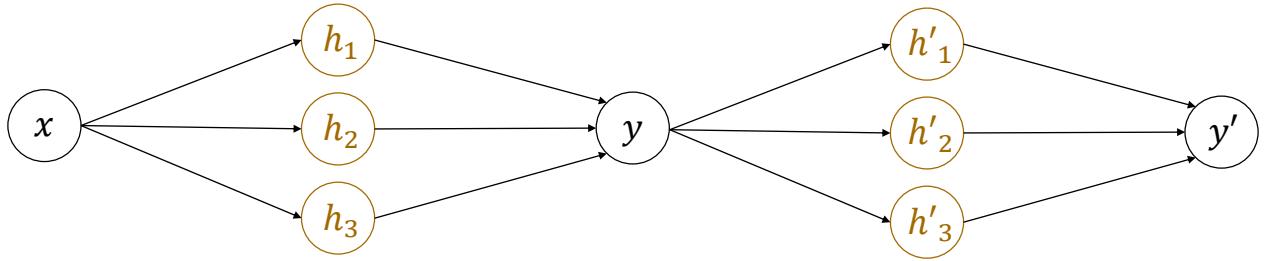
A **SN** needs exponentially more hidden units than a **DN** for an equivalent approximation

(for some functions)

Composition of two shallow networks

$$y = \Theta_0 + \Theta_1 h_1 + \Theta_2 h_2 + \Theta_3 h_3$$

$$y' = \Theta'_0 + \Theta'_1 h'_1 + \Theta'_2 h'_2 + \Theta'_3 h'_3 \quad \text{where} \quad h'_d = a[\Theta'_d \Theta_0 + \Theta'_d y]$$



My first 'deep' network

$$\begin{aligned} h'_1 &= a[\Theta'_{10} + \Theta'_{11}y] = a[\Theta'_{10} + \Theta'_{11}(\Theta_0 + \Theta_1 h_1 + \Theta_2 h_2 + \Theta_3 h_3)] \\ &= a[\Theta'_{10} + \Theta'_{11}\Theta_0 + \Theta'_{11}\Theta_1 h_1 + \Theta'_{11}\Theta_2 h_2 + \Theta'_{11}\Theta_3 h_3] \end{aligned}$$

$$\begin{aligned} h'_2 &= a[\Theta'_{20} + \Theta'_{21}y] = a[\Theta'_{20} + \Theta'_{21}(\Theta_0 + \Theta_1 h_1 + \Theta_2 h_2 + \Theta_3 h_3)] \\ &= a[\Theta'_{20} + \Theta'_{21}\Theta_0 + \Theta'_{21}\Theta_1 h_1 + \Theta'_{21}\Theta_2 h_2 + \Theta'_{21}\Theta_3 h_3] \end{aligned}$$

$$\begin{aligned} h'_3 &= a[\Theta'_{30} + \Theta'_{31}y] = a[\Theta'_{30} + \Theta'_{31}(\Theta_0 + \Theta_1 h_1 + \Theta_2 h_2 + \Theta_3 h_3)] \\ &= a[\Theta'_{30} + \Theta'_{31}\Theta_0 + \Theta'_{31}\Theta_1 h_1 + \Theta'_{31}\Theta_2 h_2 + \Theta'_{31}\Theta_3 h_3] \end{aligned}$$

$\Psi'_{30} \qquad \qquad \Psi'_{31} \qquad \qquad \Psi'_{32} \qquad \qquad \Psi'_{33}$

My first 'deep' network

$$h'_1 = a[\Psi'_{10} + \Psi'_{11}h_1 + \Psi'_{12}h_2 + \Psi'_{13}h_3]$$

$$h'_2 = a[\Psi'_{20} + \Psi'_{21}h_1 + \Psi'_{22}h_2 + \Psi'_{23}h_3]$$

$$h'_3 = a[\Psi'_{30} + \Psi'_{31}h_1 + \Psi'_{32}h_2 + \Psi'_{33}h_3]$$

recall that:

$$h_d = a[\Theta_{d0} + \Theta_{d1}x]$$



Concepts: Network depth and width, network capacity, hyperparameters, family of functions mapping x to y'

Matrix notation

$$h'_1 = a[\Psi'_{10} + \Psi'_{11}h_1 + \Psi'_{12}h_2 + \Psi'_{13}h_3]$$

$$h'_2 = a[\Psi'_{20} + \Psi'_{21}h_1 + \Psi'_{22}h_2 + \Psi'_{23}h_3]$$

$$h'_3 = a[\Psi'_{30} + \Psi'_{31}h_1 + \Psi'_{32}h_2 + \Psi'_{33}h_3]$$

$$\begin{bmatrix} h'_1 \\ h'_2 \\ h'_3 \end{bmatrix} = a \left[\begin{bmatrix} \Psi'_{10} \\ \Psi'_{20} \\ \Psi'_{30} \end{bmatrix} + \begin{bmatrix} \Psi'_{11} & \Psi'_{12} & \Psi'_{13} \\ \Psi'_{21} & \Psi'_{22} & \Psi'_{23} \\ \Psi'_{31} & \Psi'_{32} & \Psi'_{33} \end{bmatrix} \begin{bmatrix} h_1 \\ h_2 \\ h_3 \end{bmatrix} \right]$$

$$\mathbf{h}' = a[\Psi_0 + \Psi \mathbf{h}]$$

Matrix notation

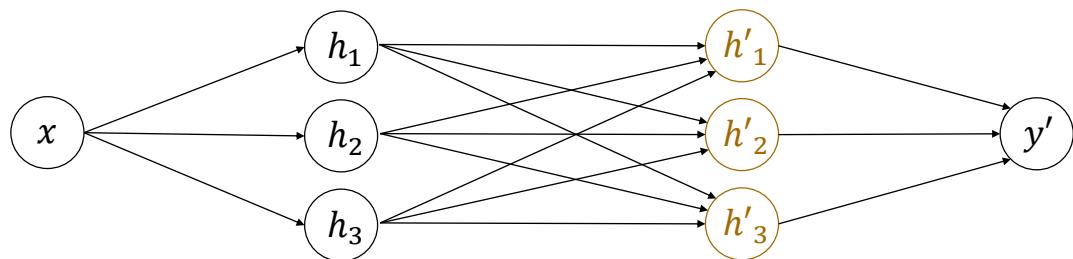
$$\begin{aligned}
 h_1 &= a[\Theta_{10} + \Theta_{11}x] & y' &= \Theta'_0 + \Theta'_1 h'_1 + \Theta'_2 h'_2 + \Theta'_3 h'_3 \\
 h_2 &= a[\Theta_{20} + \Theta_{21}x] & & \downarrow \\
 h_3 &= a[\Theta_{30} + \Theta_{31}x] & y' &= \Theta'_0 + [\Theta'_1 \Theta'_2 \Theta'_3] \begin{bmatrix} h'_1 \\ h'_2 \\ h'_3 \end{bmatrix} \\
 & \downarrow & & \downarrow \\
 \begin{bmatrix} h_1 \\ h_2 \\ h_3 \end{bmatrix} &= a \begin{bmatrix} \begin{bmatrix} \Theta_{10} \\ \Theta_{20} \\ \Theta_{30} \end{bmatrix} + \begin{bmatrix} \Theta_{11} \\ \Theta_{21} \\ \Theta_{31} \end{bmatrix} x \end{bmatrix} & y' &= \Theta'_0 + \boldsymbol{\Theta}' \mathbf{h}' \\
 & \downarrow & & \\
 \mathbf{h} &= a[\boldsymbol{\Theta}_0 + \boldsymbol{\Theta}x] & &
 \end{aligned}$$

Matrix notation: summary

$$y' = \Theta'_0 + \boldsymbol{\Theta}' \mathbf{h}'$$

$$\mathbf{h}' = a[\boldsymbol{\Psi}_0 + \boldsymbol{\Psi} \mathbf{h}]$$

$$\mathbf{h} = a[\boldsymbol{\Theta}_0 + \boldsymbol{\Theta}x]$$



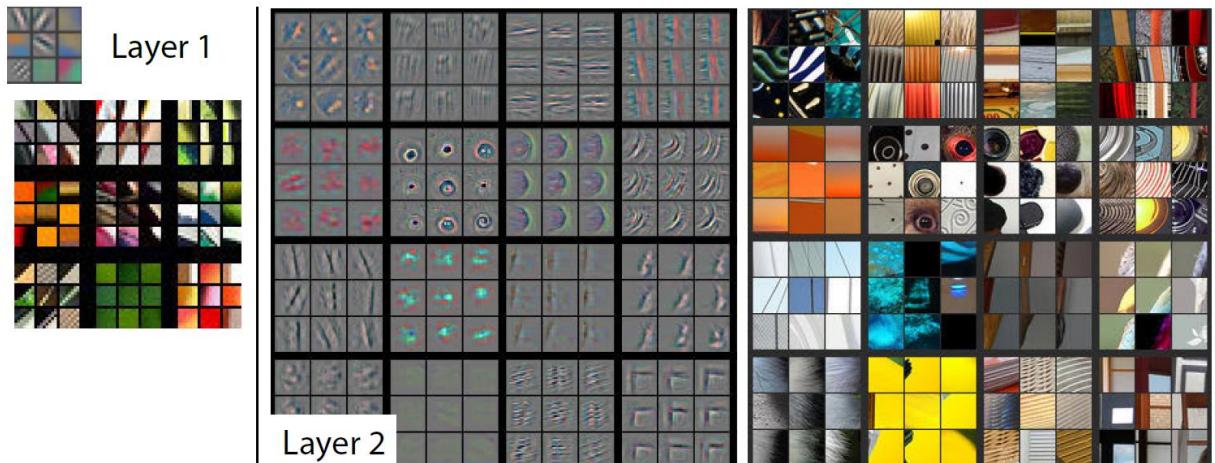
Deep learning: advantages

- Transformation of the data across successive layers
- Exponential gain in the number of possibilities with increased depth
- **Hierarchical** representation → compositional inductive bias
- **Distributed** representation → combination of hidden units
- **Representation learning**
 - the representation learned for a task can be useful for another
 - earlier layers: commonality of low-level features across tasks
 - later layers: more specialized to a particular task

Concepts:

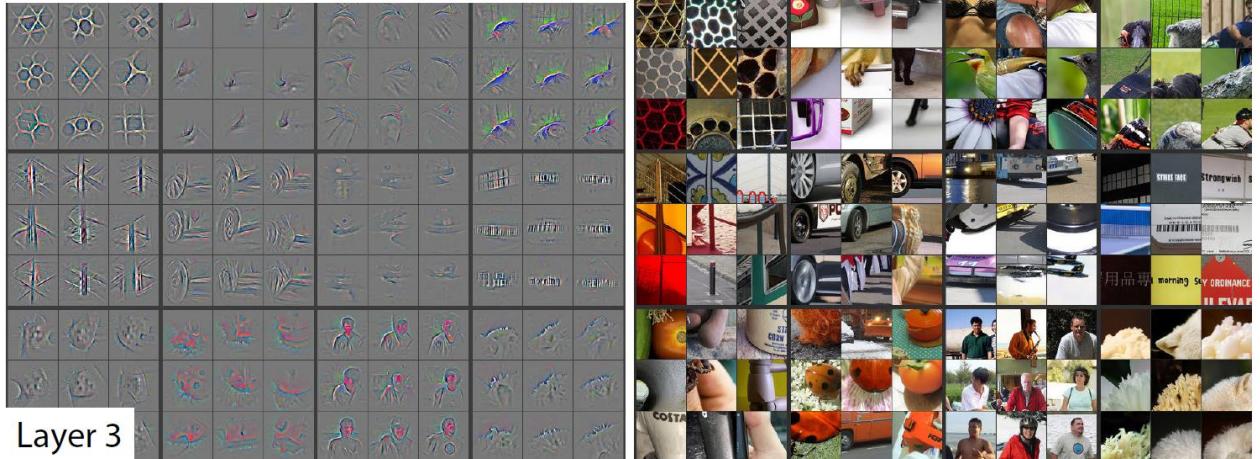
Embedding space, internal representation, transfer learning, pre-training, fine-tuning, multi-task learning

Example

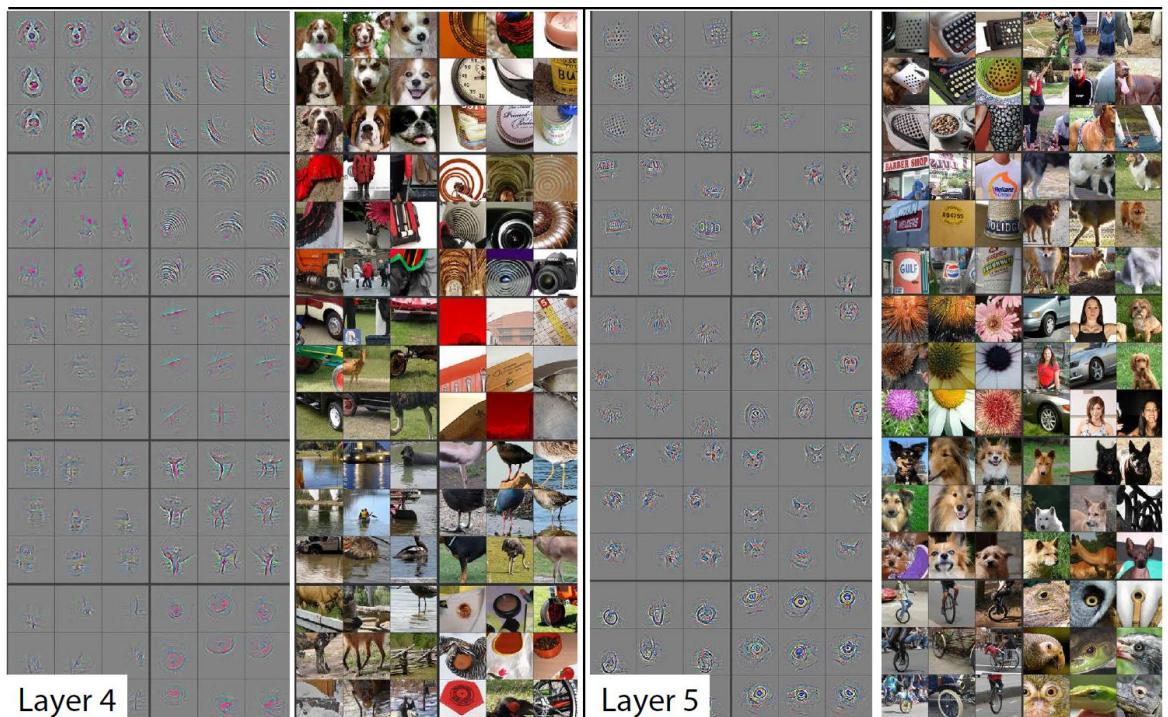


[arXiv:1311.2901](https://arxiv.org/abs/1311.2901) (fig. 2)

Example



[arXiv:1311.2901](https://arxiv.org/abs/1311.2901) (fig. 2)



[arXiv:1311.2901](https://arxiv.org/abs/1311.2901)

Basis functions

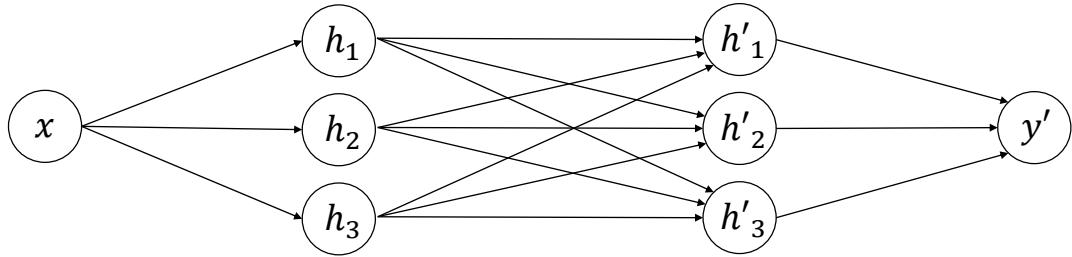
- Hand-crafted
 - Defined through expert (domain) knowledge + trial-and-error
- **Data-driven**
 - Learned from training data
 - *not learning only from data* → use of biases
 - Domain knowledge used to introduce biases (constraints) when
 - designing the **network architecture**
 - incorporating **invariances** (e.g. translational or scale invariance)
 - defining the **training** process (e.g. regularization, transfer learning, augmentation)

Concepts:

Inductive bias, explicit assumptions, geometric deep learning

Network diagram

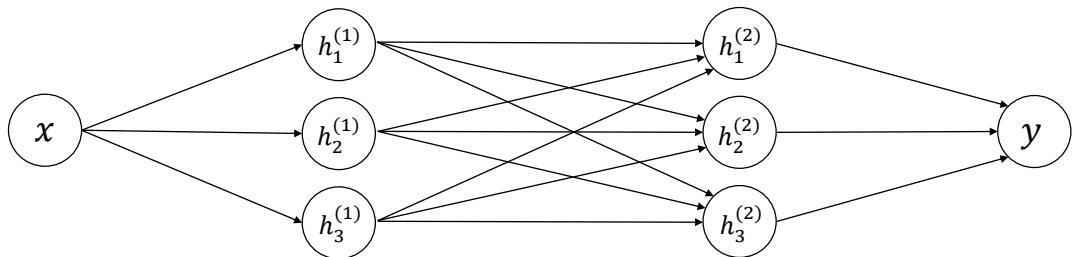
Network diagram & matrix notation



$$y' = \theta'_0 + \theta' a \left[\Psi_0 + \frac{\Psi a [\theta_0 + \theta x]}{h} \right]$$

Concepts: Recursive construction, hierarchical model with multiple layers, basis functions with learnable parameters, pre-activation, biases

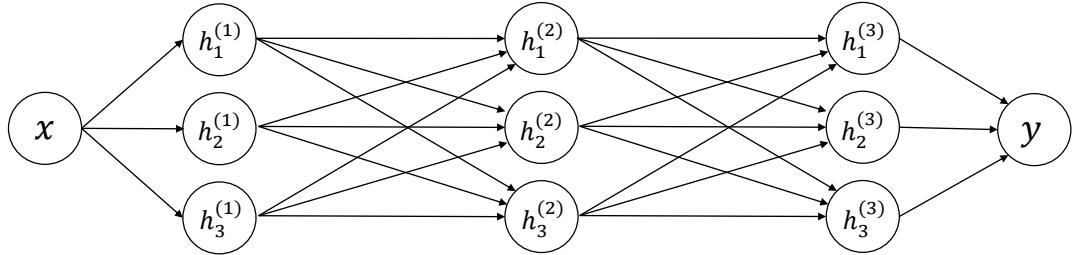
Network diagram & matrix notation



$$y = \theta_0^{(2)} + \theta^{(2)} a \left[\theta_0^{(1)} + \theta^{(1)} a \left[\theta_0^{(0)} + \theta^{(0)} x \right] \right]$$

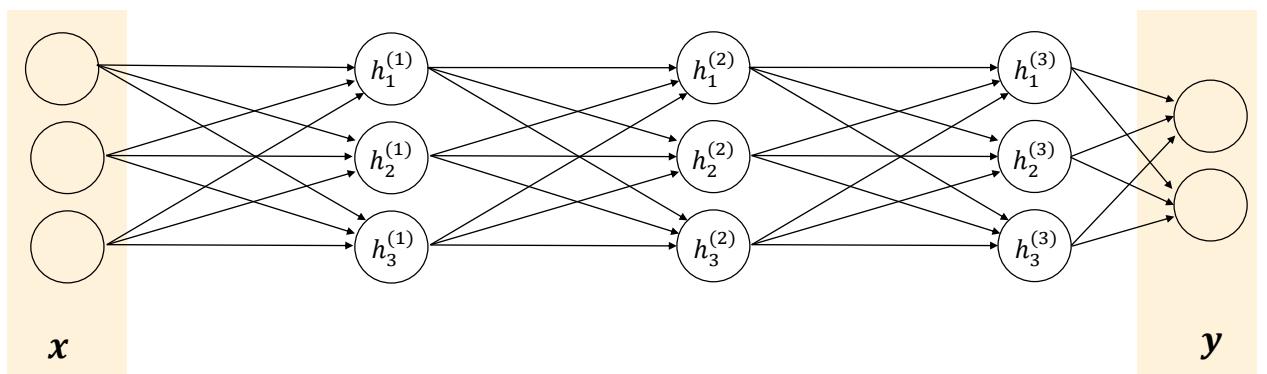
Concepts:
Linear basis, non-linear activation

Network diagram & matrix notation



$$y = \theta_0^{(3)} + \boldsymbol{\theta}^{(3)} a \left[\boldsymbol{\theta}_0^{(2)} + \boldsymbol{\theta}^{(2)} a \left[\boldsymbol{\theta}_0^{(1)} + \boldsymbol{\theta}^{(1)} a \left[\boldsymbol{\theta}_0^{(0)} + \boldsymbol{\theta}^{(0)} x \right] \right] \right]$$

Network diagram



Concepts:

Feed-forward topology, fully connected network, bias parameter (omitted in the network diagram)

Activation function

Rectified linear unit (ReLU)

$$y = f(x; \theta)$$

$$= \theta_0 + \theta_1 \underbrace{a[\theta_{10} + \theta_{11}x]}_{\text{linear function}} + \theta_2 \underbrace{a[\theta_{20} + \theta_{21}x]}_{\text{linear function}} + \theta_3 \underbrace{a[\theta_{30} + \theta_{31}x]}_{\text{linear function}}$$

$$a[z] = \begin{cases} 0 & z < 0 \\ z & z \geq 0 \end{cases}$$

ReLU \leftarrow activation function non-linear function

$$= \max(0, z)$$

enables efficient training
less sensitive to random initialization of the weights
computationally cheap to evaluate

Concepts:

Pre-activation, linear vs non-linear activation function, derivative of the ReLU not defined in 0

Other activation functions

$$a[z] = \ln(1 + e^z)$$

softplus (soft ReLU)

if $z \gg 1$ then $a[z] \simeq z$

gradient is non-zero for large, positive pre-activation values

$$a[z] = \max(0, z) + \lambda \min(0, z)$$

leaky ReLU

$$a[z] = \frac{1}{1+e^{-z}}$$

logistic sigmoid

$$a[z] = \frac{e^z - e^{-z}}{e^z + e^{-z}}$$

hyperbolic tangent

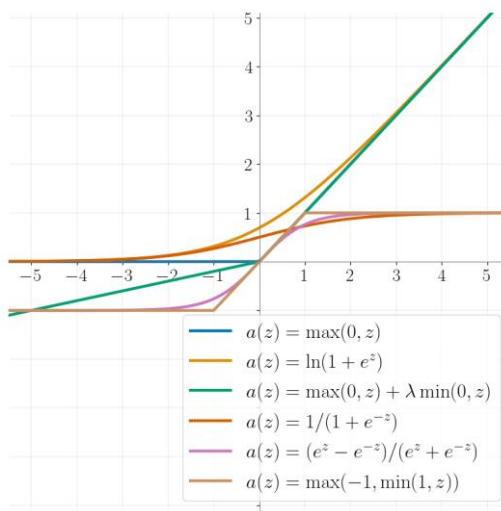
$$a[z] = \max(-1, \min(1, z))$$

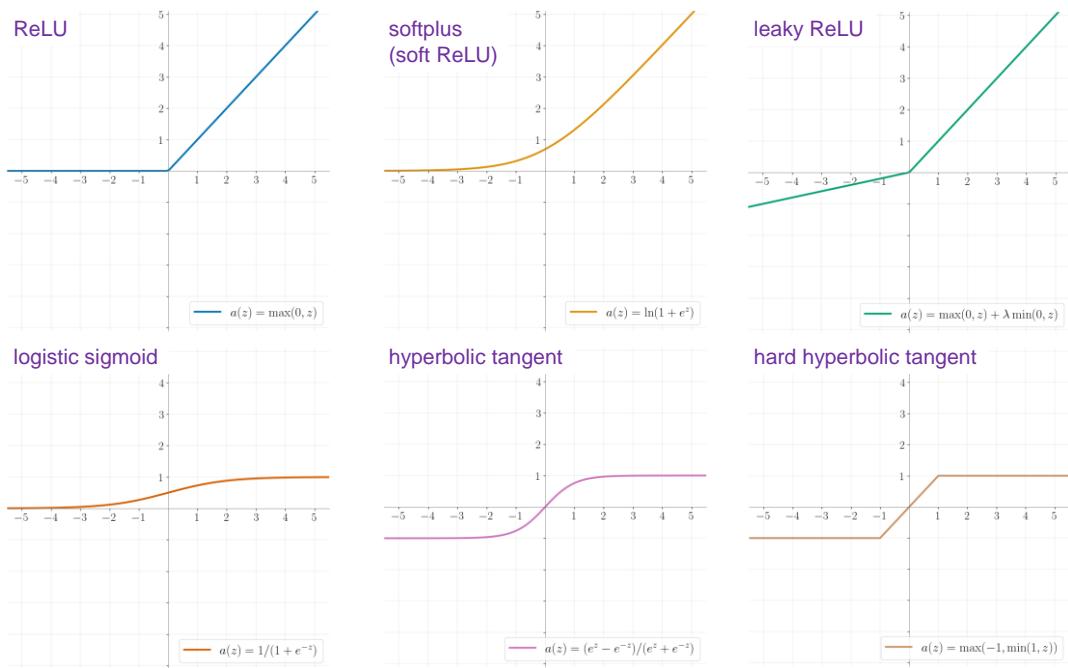
hard hyperbolic tangent

Concepts:

Training error signal, vanishing gradient, initialization scheme for weights and biases

Activation functions





What did we learn today?

- Function approximation
- Values and principles
- Shallow vs deep learning
- Building a deep network
- Network diagram
- Activation function
- **Exercises will take place in PO 01**

EE-559

Deep Learning

andrea.cavallaro@epfl.ch