

Any reproduction or distribution of this document, in whole or in part, is prohibited unless permission is granted by the authors

EE-559

Deep Learning

What's on today?

- **Generative Adversarial Networks**: on synthetizing data from noise
- **Image-to-image GANs**: on translating images across domains
- **StyleGAN**: on creating hyperrealistic images with control of details
- **Exercises**: implementing and training a GAN

Generative Adversarial Networks

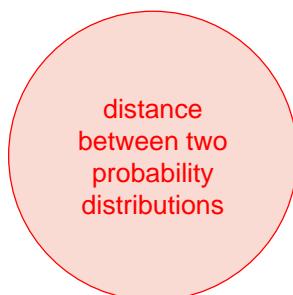
$$\{x_i\}_{i=1}^N$$

$$\{x_j^*\}_{j=1}^M$$

Transforming random noise z_j
into data $\{x_j^*\}_{j=1}^M$ that are **indistinguishable**
from a training set $\{x_i\}_{i=1}^N$

game-theoretic formulation for training a **data synthesis model** (the generator)

Challenge



loss

balance between quality of **discriminator** and **generator**

if **discriminator** becomes **too good**, training updates of **generator** are attenuated

if **discriminator** perfectly separates generated and real samples, no change to **generated data** will change classification score

Wasserstein distance

Concepts: Wasserstein distance is (a) well-defined even for disjoint distributions and (b) decreases smoothly as they become closer to one another.

LOSS

$d(\cdot)$ discriminator
 $g(\cdot)$ generator

$$\begin{aligned}
 L(\phi) &= \sum_j d(x_j^*; \phi) - \sum_i d(x_i; \phi) \\
 &= \sum_j d(g(z_j; \Theta); \phi) - \sum_i d(x_i; \phi)
 \end{aligned}$$

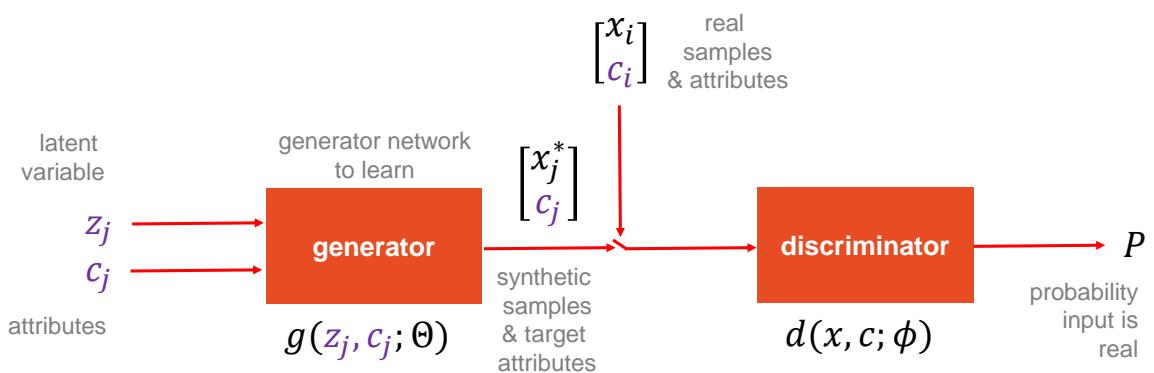
Constraint for the discriminator

$$\left| \frac{\partial d(x; \phi)}{\partial x} \right| < 1$$

$$\{x_j^*, c_j\}_{j=1}^M$$

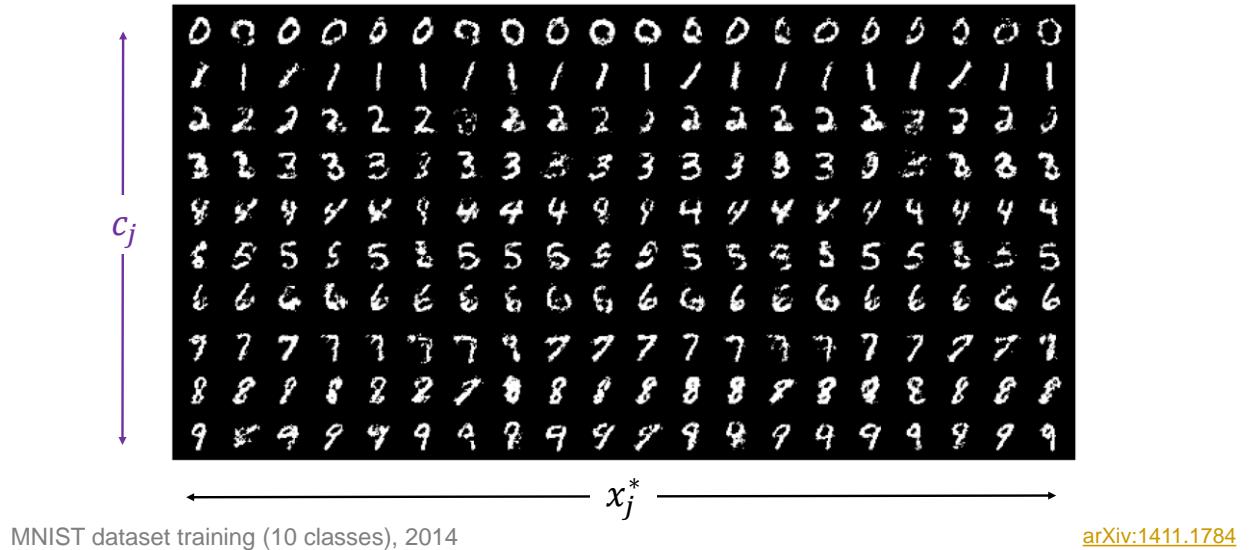
(controlled) attribute(s) of x_j^*
discrete or continuous

Conditional GAN

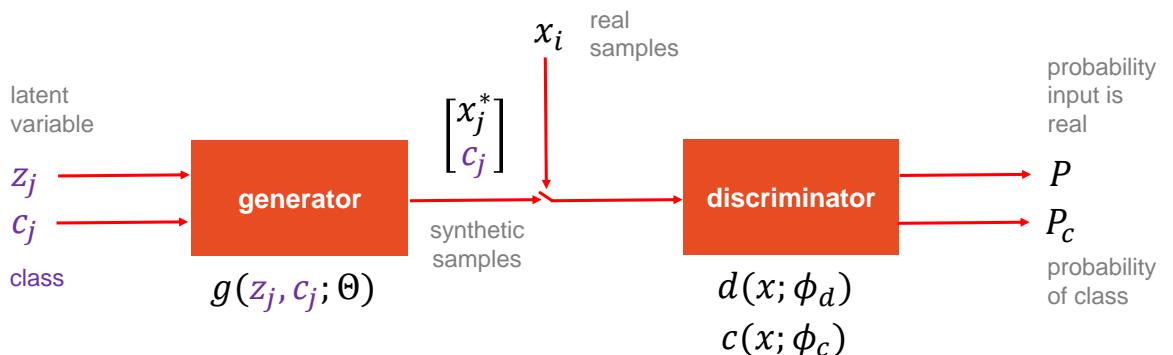


Concepts: Generator trained *using* a discriminator network whose task is to distinguish real vs generated samples, GAN augmented using side information (*recall*: multi-task training).

Conditional GAN: examples



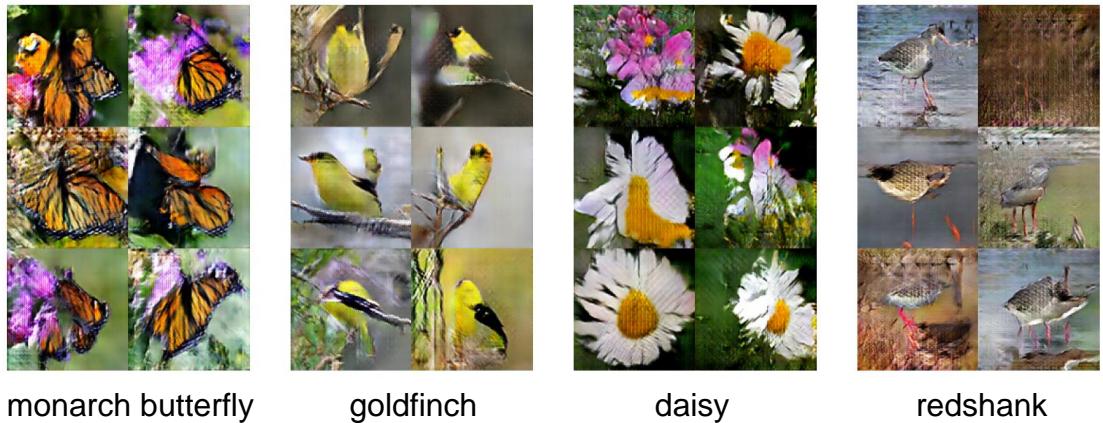
Auxiliary classifier GAN



Concept:

Label conditioning (adding more structure to the latent space for higher quality samples)

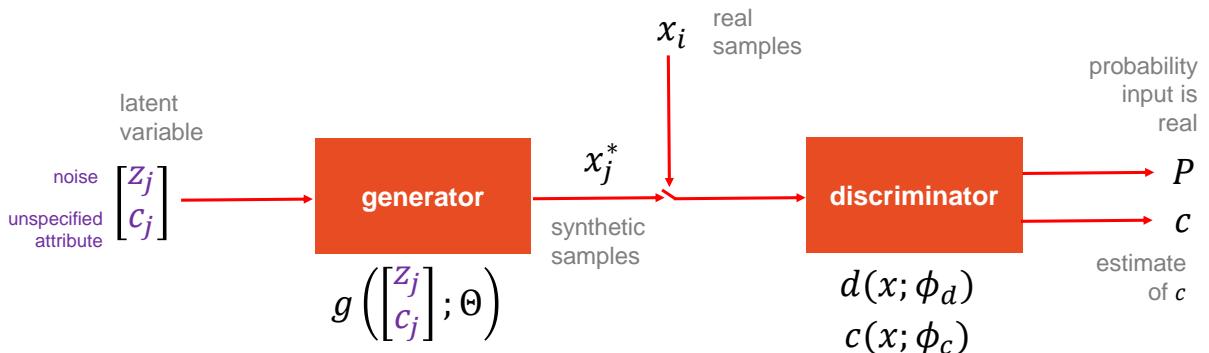
Auxiliary classifier GAN: examples



128x128 samples, ImageNet dataset training (1K classes), 2016/2017

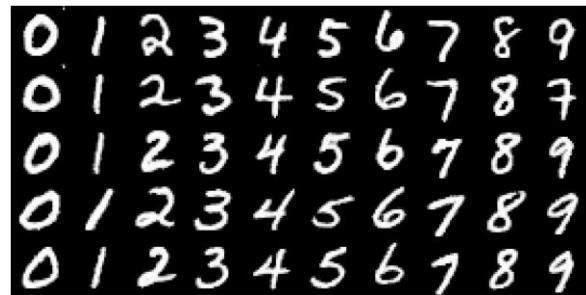
[arXiv:1610.09585](https://arxiv.org/abs/1610.09585)

InfoGAN



Concepts: Unsupervised learning of disentangled (*interpretable*) representations, information-theoretic extension to GAN, maximizing the mutual information between latent attribute and the generated data.

InfoGAN: examples



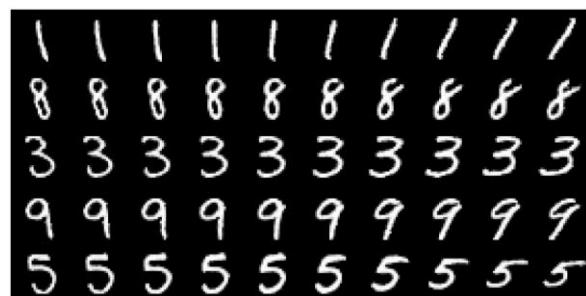
$\longleftrightarrow c_1 \longrightarrow$

digit type
(discrete)

other latent codes & noise are fixed

[arXiv:1606.03657](https://arxiv.org/abs/1606.03657)

InfoGAN: examples



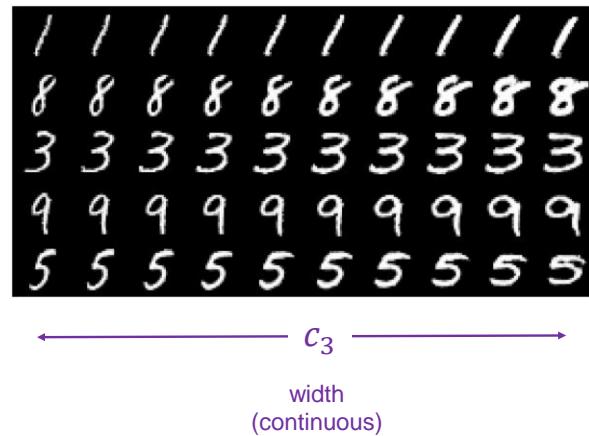
$\longleftrightarrow c_2 \longrightarrow$

rotation
(continuous)

other latent codes & noise are fixed

[arXiv:1606.03657](https://arxiv.org/abs/1606.03657)

InfoGAN: examples



other latent codes & noise are fixed

[arXiv:1606.03657](https://arxiv.org/abs/1606.03657)

Desirable properties of synthetic data (images)

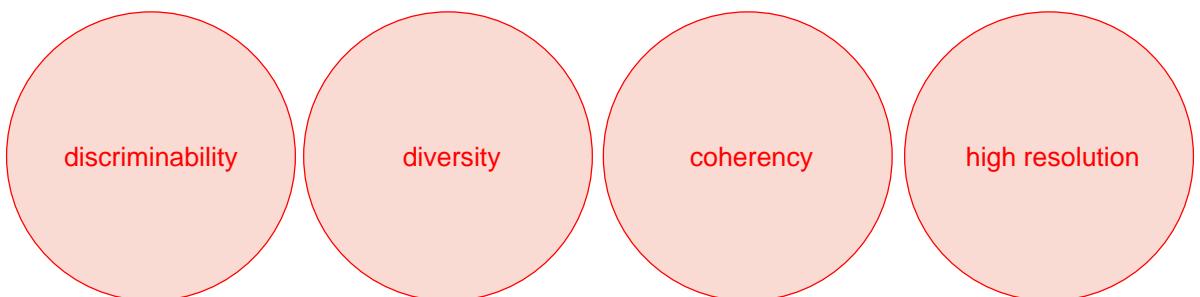
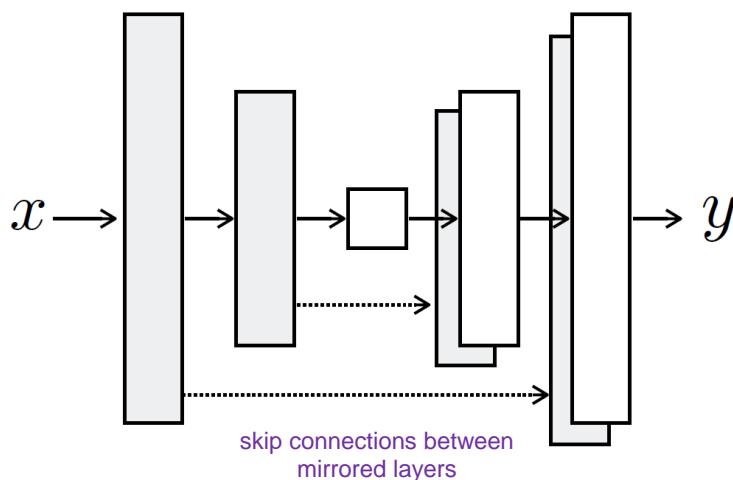


Image-to-image GANS

U-Net

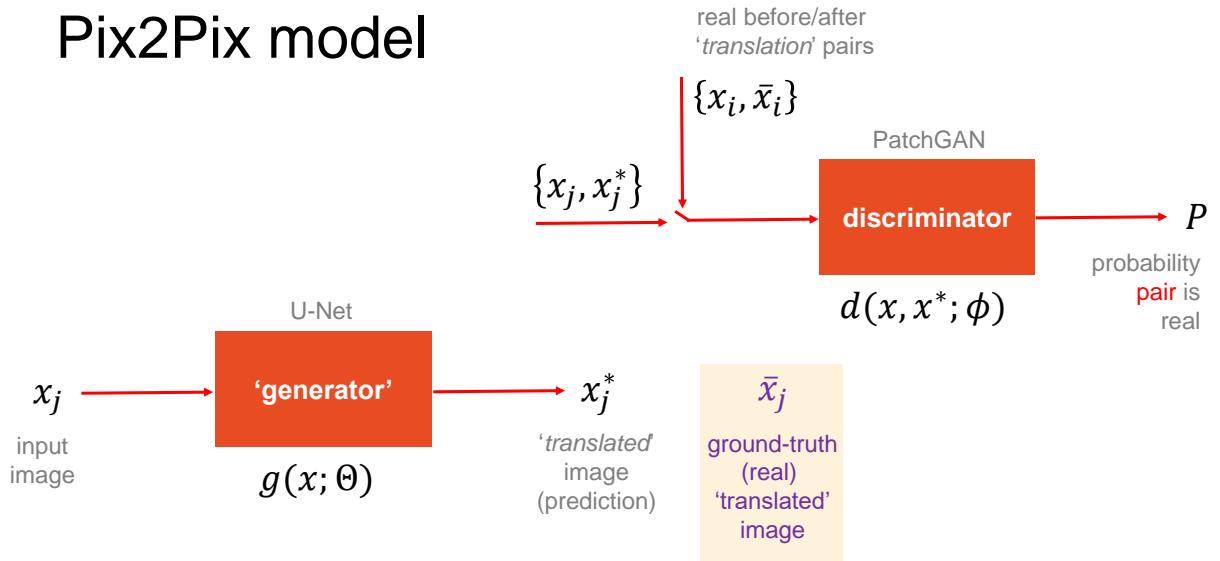


concatenates all channels at layer i with those at layer $N - i$

(N : number of layers)

[arXiv:1611.07004](https://arxiv.org/abs/1611.07004)

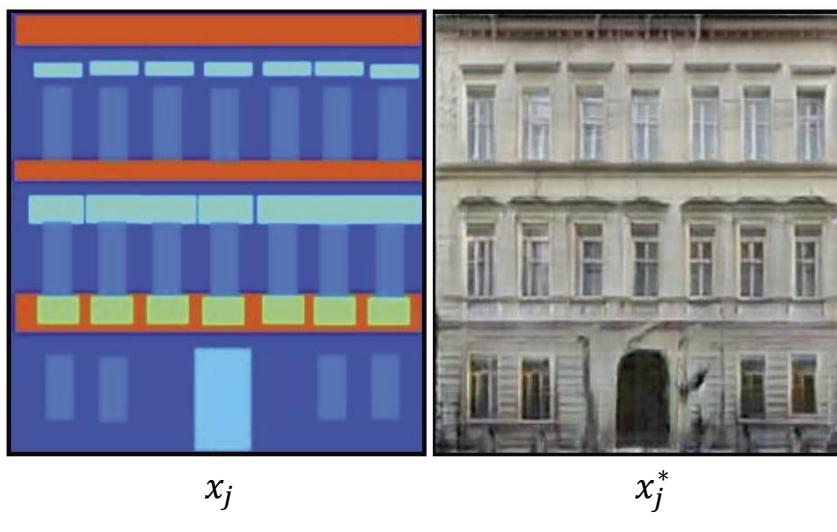
Pix2Pix model



Note: input does not include noise

[arXiv:1611.07004](https://arxiv.org/abs/1611.07004)

Pix2Pix model: example



[arXiv:1611.07004](https://arxiv.org/abs/1611.07004)

Pix2Pix model: example

[arXiv:1611.07004](https://arxiv.org/abs/1611.07004)

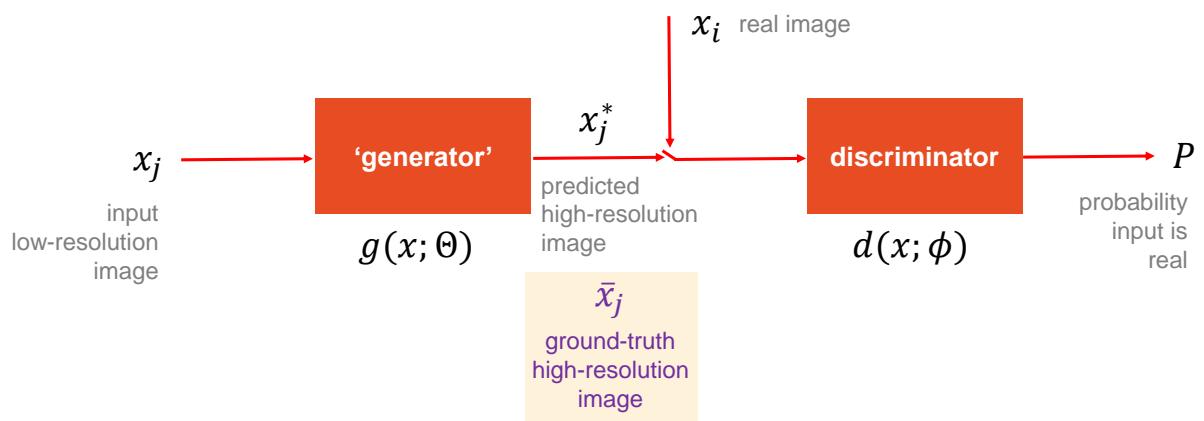
Pix2Pix model: example

[arXiv:1611.07004](https://arxiv.org/abs/1611.07004)

Pix2Pix model: example

[arXiv:1611.07004](https://arxiv.org/abs/1611.07004)

Super-resolution GAN



Note: input does not include noise

[arXiv:1609.04802](https://arxiv.org/abs/1609.04802)

Super-resolution GAN: example

 x_j^* \bar{x}_j [arXiv:1609.04802](https://arxiv.org/abs/1609.04802)

Super-resolution GAN: example

 x_j^* \bar{x}_j [arXiv:1609.04802](https://arxiv.org/abs/1609.04802)

Super-resolution GAN: comparison

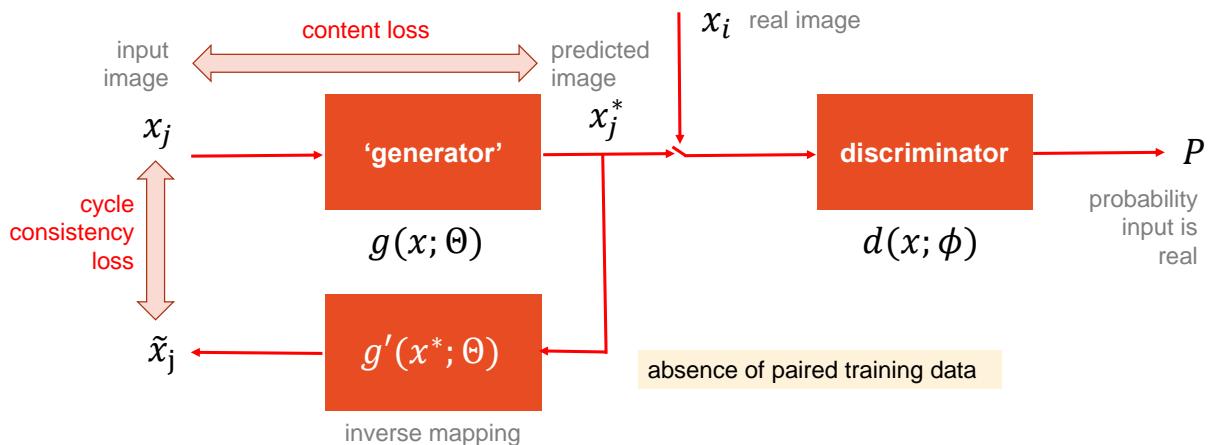
method 1

method 2

 x_j^*

[arXiv:1609.04802](https://arxiv.org/abs/1609.04802)

CycleGAN



Note: input does not include noise

[arXiv:1703.10593](https://arxiv.org/abs/1703.10593)

CycleGAN: example

 x_j x_j^* [arXiv:1703.10593](https://arxiv.org/abs/1703.10593)

CycleGAN: example

 x_j x_j^* [arXiv:1703.10593](https://arxiv.org/abs/1703.10593)

CycleGAN: example

 x_j x_j^* [arXiv:1703.10593](https://arxiv.org/abs/1703.10593)

StyleGAN

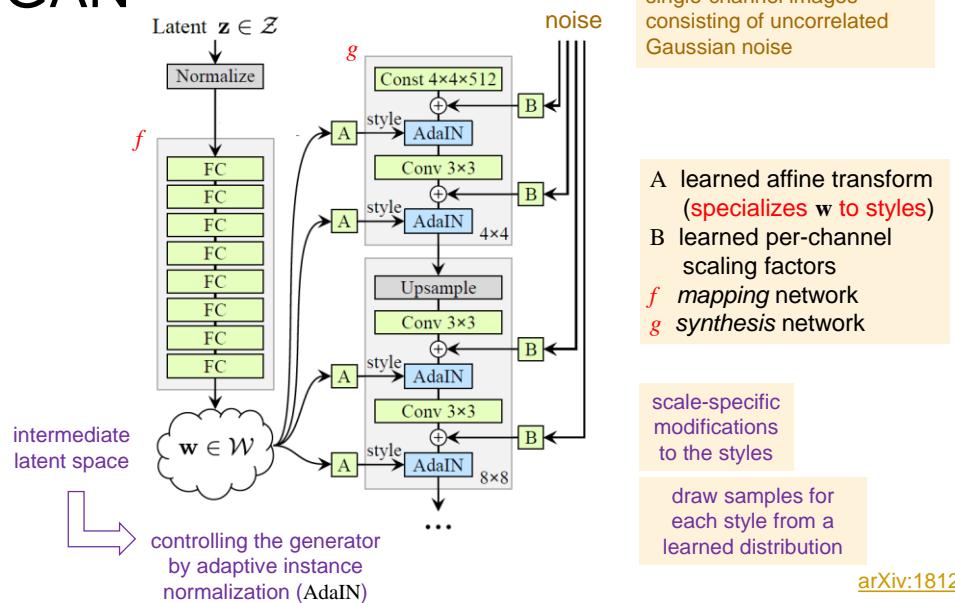
StyleGAN

scale-specific control of the synthesis

learned, unsupervised separation of
high-level attributes
(e.g. pose, identity)
& **stochastic variation**
(e.g. freckles, hair)

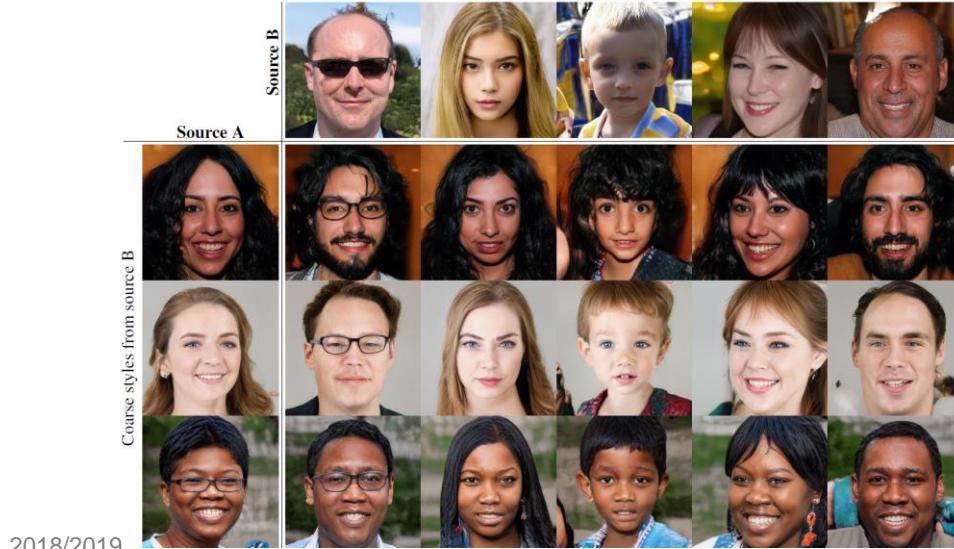
[arXiv:1812.04948](https://arxiv.org/abs/1812.04948)

StyleGAN



[arXiv:1812.04948](https://arxiv.org/abs/1812.04948)

StyleGAN: examples



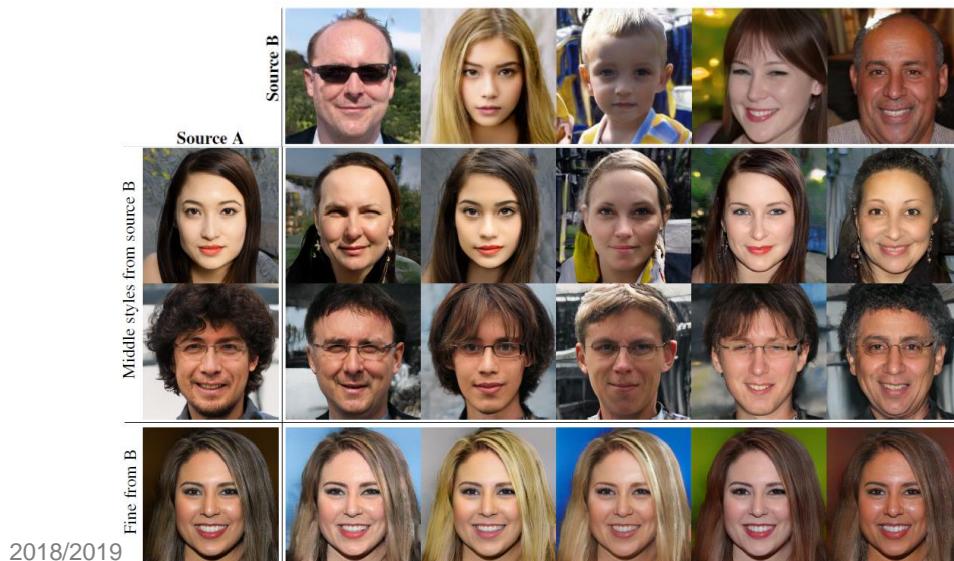
2018/2019

sources A and B:
generated from their
respective latent codes

other images:
generated copying a
specified subset of
styles from source B
and taking the rest
from source A

[arXiv:1812.04948](https://arxiv.org/abs/1812.04948)

StyleGAN: examples



2018/2019

sources A and B:
generated from their
respective latent codes

other images:
generated copying a
specified subset of
styles from source B
and taking the rest
from source A

[arXiv:1812.04948](https://arxiv.org/abs/1812.04948)

Marked exercise

Submission 2

- Implementation and training of a Wasserstein GAN (today's lab slot)
- Denoising Diffusion Probabilistic Models (from next week)
 - implementation of forward and reverse diffusion processes
 - implementation of training and sampling
 - answering two questions

What did we learn today?

- Generative Adversarial Networks
- Image-to-image GANs
- StyleGAN
- Exercises

EE-559

Deep Learning

andrea.cavallaro@epfl.ch