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This chapter deals with two key processes by which carriers flow in semiconductors: chlft

and diffusion. Carrier drift originates from the electrostatic force that an electric field exerts

over electrons and holes. Diffusion is the movement of particles in response to a concentration

gradient. Carrier drift and diffusion are at the heart of device operation. Electrons, for example,

drift from source to drain in an n- -channel MOSFET. The magnitude of the current and the time

that carriers take to traverse the device are determined by the physics of drift in the channel. In

npn bipolar transistors, a combination of electron diffusion and drift in the base takes electrons
from the emitter to the collector.

In order to understand the physics of carrier drift and diffusion in semiconductors it is essential
to develop an appreciation for the random motion of electrons and holes at finite temperatures.
In the time scale of interest in most microelectronic devices, carriers undcrgo many collisions
with the lattice, with impurities, and with each other. An important implication of this is that
carriers are unlikely to maintain energy distributions that are too different from equilibrium over
any meamngful perlods of time. For most time scales of interest, the carriers can be considered
to be in a "quasi-equilibrium” state in which, with some care, the concept of Fermi level remains
useful. In these situations we define two quasi-Fermi levels, one for electrons and another one for
holes. These allow us to graph simple and intuitive energy band diagrams that effectively convey
a great deal of information about device operation.

Finally, in this chapter we also learn to compute the equilibrium carrier concentrations in
situations where dopant distributions are non-uniform in space. In these instances, it is important
to realize that a dynamic balance between drift and diffusion exists with no net carrier flow.
Non-uniformly doped regions are pervasive and for the most part unavoidable in modern devices.
Often, device characteristics are tailored through the engineering of the doping profiles. The
aversion that reasonably extrinsic semiconductors have to the presence of volume charge implies
that in many practical circumstances, the majority carrier concentration closely tracks the doping
distribution. In other words, the semiconductor remains quasi-neutral. This greatly simplifies
the treatment of non-uniformly doped regions.

This is a chapter rich in concepts that will be extensively used throughout the rest of the
book. It is important to understand this material well before proceeding much further.

4.1 Thermal motion

In this section we look at the movement of carriers in a semiconductor in thermal equilibrium.
We first look at a very idealized situation of a perfectly periodic solid. We then introduce lattice
vibrations and other perturbations to this picture and consider their impact on carrier movement.

4.1.1  Thermal velocity

Let us consider a semiconductor in thermal equilibrium at a finite temperature. Let us assume
a pure semiconductor with a perfect crystalline periodicity in which nothing changes in space
(uniform situation) and all the surfaces are very far away. In Ch. 2 we learned how to compute




J. A. del Alamo 157

the electron and hole concentrations under a variety of conditions. In this chapter we take an
interest in the movement of electrons and holes in the lattice.

If we think of a perfectly ideal semiconductor in which electrons and holes can move around
without bumping into anything, at what velocity would they be traveling? We can certainly
answer right away that in thermal equihbrlum by definition, the average velomtv of the ensemble

“or hole w1th a certain energy above or below their reapectwe band Pdffe% is also zero. In fact we
have already discussed that the kinetic energy of carriers increases as they occupy states further
away from the corresponding band edge. This means that their velocity increases too.

In general, the relationship between velocity (or momentum) and energy for carriers in a
semiconductor is not simple. It can be computed in band calculations and the result is very specific
to each semiconductor. It is beyond the scope of this book to discuss the energy-momentum (E-k)
diagrams, as these relationships are often referred to. For the purposes of this book, we can go
quite far with a simple formalism that works reasonably well for most semiconductors close to
the bottom of the bands. In this approach, as in classical mechanics, the carrier kinetic energy
increases quadratically with velocity. This suggests that the electron velocity as a function of
energy above the conduction band edge follows a simple square-root expression given by:

2(E - E)

*
mC&

ve(E) = (4.1)

A similar equation can be written for holes with the kinetic energy increasing downwards from
the valence band edge.

In Eq. 4.1 m}. is known as the electron conductivity effective mass. This is the effective
mass that connects velocity and kinetic energy of an electron. The conductivity effective mass
is in general different from the free electron mass because in a semiconductor electrons are not
in vacuum but are immersed in the periodic potential of the lattice. Also, m/, is different from
the density of states effective mass discussed in Ch. 2. Appendix B at the end of the book lists
mp,/me and m?%, /m, for Si and GaAs.

Eq. 4.1 gives the magnitude of the velocity of an electron with a certain energy in the
conduction band. Electrons higher up in the conduction band move faster than those close to
the band edge. The average magnitude of the velocity for an electron population in thermal
equilibrium receives the name of thermal velocity. We can derive an expression for the thermal

velocity by appropriately averaging the velocities of all electrons in the conduction band in the
following way:

[ ve(E)n,(E) dE
[E. no(E) dE

Vihe = (42)

Here, n,(E) represents the electron distribution in energy in the conduction band as given by Eq.
2.21). Using this equation as well as Eq. 4.1, we can rewrite 4.2, as:
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Under Maxwell-Boltzmann statistics and redefining variables as in Sec. 2.4.2, we can rewrite
this expression as:

2kT  [7° ne~dn
mee Jo° n'/2e~ndn

Vthe = (4.4)

The integrals in Eq. 4.4 belong to a class called the Gamma function. This is defined in
Advanced Topic AT4.1 where some properties of this function are also given. Using the results
shown there, we can rewrite 4.4 as:

kT Tr(2) R kT
Ve = mp, T'( 3) = mk, (45)

A similar equation applies to holes. The temperature dependence that emerges in this equation
arises from the electron distribution in energy. The higher the temperature, the higher the average
energy of the electrons in the conduction band and the higher their average velocity.

Even though we have been discussing a highly idealized situation, the thermal velocity is an
important benchmark for carrier transport in semiconductors that will make frequent appearances
in this book. If one puts numbers in Eq. 4.3 for electrons in Si at room temperature (m;, =
0.28 my), one finds that the electron thermal velocity is about 2.0 x 107 cm/s. For holes (m}, =
0.41 m,), the thermal velocity is 1.7 x 107 em/s. Holes are somehow slower than electrons.

4.1.2  Scattering

A real semiconductor is quite different from the ideal unperturbed, perfectly periodic lattice that
we discussed in the previous section. As we detailed below, there are many perturbations to this
idealized picture that have the effect of causing collisions, also called scattering, to freely moving
carriers. A result of this is that carriers change directions and velocity frequently in a movement

that is called Brownian motion. On aver: age Just as before, carriers do not get anywhere.

—_—

Brownian motion is sketched in space in Ficr 4.1a) and in energy in Fig. 4.1b). The movement
of the carriers between collisions is graphe{l in the energy picture by horizontal (constant energy)
lines. Some collisions change the carrier’s energy. These events are represented in the energy
diagram by a step change in energy. Other collisions only change the carrier’s velocity but not
its energy. These cannot be represented very clearly in the flattened energy view.

There are many scattering mechanisms. At finite temperatures, the semiconductor atoms
vibrate about their equilibrium positions disrupting the otherwise perfect crystal potential. These
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Figure 4.1: Schematic diagram of carrier thermal or brownian motion in a semiconductor: a) in real space, b) in
the energy band diagram.

perturbations behave as scattering centers for the carriers. In the phonon view of lattice vibrations
introduced in Ch. 1, we can think of lattice scattering as a mechanical collision between the
carriers and massive particles called phonons, hence the name phonon scattering. Since the
phonons have fairly small energy, the energy exchanged in these collisions is relatively small. The
change in the direction of the carrier velocity can however be large. In fact, phonon scattering is an
effective randomizer of carrier velocity. A key feature of phonon scattering is that it increases with
temperature. Asthe temperature is increased, the higher energy phonon modes are proportionally
more populated. Or, in simpler terms, the higher the temperature, the greater the vibrations of
the lattice atoms about their equilibrium positions, and the more frequently carriers will scatter.

The introduction of an electrically charged impurity in a semiconductor lattice also upsets
the perfect periodicity of the crystal potential. The Coulombic interaction of a carrier with a
charged impurity constitutes an effective scattering mechanism. This is called ionized impurity
scattering. Naturally, ionized impurity scattering is more important the higher the impurity
concentration. Due to the Coulombic nature of the interaction, ionized impurity scattering does
not change the particle’s energy but it affects its velocity.

Although phonon scattering and ionized impurity scattering are the most important scatter-
ing mechanisms, there are others to be aware of. Any crystalline imperfection that results in a
disruption of the perfect periodic potential becomes a potential source of collision events. Such
are, for instance, interstitial atoms and lattice vacancies. Even neutral foreign atoms in a substi-
tutional position impose slight perturbations to the crystalline periodic potential as a result of
their electronic arrangement around the nucleus which is always different from that of the host
atom. This is called neutral impurity scattering.

Carriers can also collide with other carriers in a process known as carrier-carrier scattering.
This is particularly important when carrier concentrations are high. In a collision event between
two identical carriers, such as an electron with another electron, the carriers can exchange energy
and momentum. Since this process does not impact the average behavior of the ensemble of
carriers, we need not be concerned with it here. Electron-hole collisions do take place but, in
most circumstances, too infrequently to concern us here.
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In surface-type devices where carrier transport takes place very close to the semiconductor
surface such as in the case of the MOSFET, surface roughness scattering also plays a key
role. A surface represents a dramatic perturbation of the crystal periodicity of a semiconductor
lattice. As a result it is an effective source of scattering events for carriers in its vicinity, We will
deal with it when we treat transport in an inversion layer.

The main effect of all these scattering events is to change the direction of the carrier momentum
and not so much its energy. Intuitively, carriers are simply deflected but keep their energy intact.
Only in phonon scattering events does a carrier change its energy by a small amount, the phonon
energy. A carrier can acquire energy by absorbing a phonon or lose energy by emitting a phonon.
It is through the energy exchanges associated with phonon scattering that carriers achieve thermal
equilibrium with the lattice.

Scattering in a semiconductor is characterized by the scattering time, .. This is defined as
the average time between collisions. In general, the scattering time depends on the semiconduc-
tor itself, the scattering mechanism in question, and temperature. Models for scattering time
associated with the various scattering mechanisms have been developed from first principles, Un-
derstanding and working with these models is beyond our purpose in this book. Fortunately,
a first-order understanding of the physics of scattering can bring us very far in our quest for
designing and modeling microelectronic devices. We follow this approach here.

We can get quite far by realizing that, in general, the scattering time depends on the carrier
energy. Scattering becomes more likely the more states a carrier can scatter into. Therefore, the
frequency of scattering should increase with the density of states. In this simplistic model, the
scattering time goes as the inverse of the density of states. For electrons, we then have:

M

Tee(E) = E_E)”

(4.6)

where M is a constant. A similar equation applies to holes with the energy measured from the
top of the valence band and increasing downwards.

We can compute the average scattering time in thermal equilibrium following an approach
similar to that of the thermal velocity in Eq. 4.2. In doing this, we also obtain expressions in
terms of the Gamma function. The result is:

s a]

g i R[] 5 I 'rgz(E)nD(E) dE L2 M (4.7)
TEno(B) dB ° VakT
We refer to this average value, 7., as simply the scattering time. The temperature dependence
that emerges here is due to the fact that at higher temperatures, the average energy of electrons in
the conduction band increases and so does the frequency of scattering events. The value of M in a
specific situation depends on many factors (nature of semiconductor, doping level, temperature,

etc). We will learn below how to derive 7, from actual measurements in devices.

We complete the picture of thermal motion and scattering by introducing the notion of mean
free path, 1.. This is the average distance traveled by a carrier between collisions. For a given
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Figure 4.2: Left: schematic diagram of drift motion of an electron in an electric field. Right: time evolution of
net electron velocity in the direction of the electric field.

carrier with a certain energy, the mean free path is the product of its thermal velocity and
the corresponding scattering time. Working with electrons, since the thermal velocity goes as
(E — E,)'/? and the scattering time goes as (E — E.)"'/2, the mean free path ends up energy
independent. Hence, the mean free path for an entire electron distribution in thermal equilibrium
can simply be obtained by multiplying Eqs. 4.5 and 4.6:

2
*
Tee

Ice =

M= gumerw_ (4.8)

In this last expression, we have substituted M from Eq. 4.7 and used v, in Eq. 4.3. A similar
equation applies for holes.

As we will learn to appreciate, the mean-free path is an important length scale in semicon-
ductors. Traditionally, device dimensions have been much larger than the mean-free path and
carriers suffer many collisions as they travel through devices. It is under this assumption that the
transport formulation introduced in this chapter is valid. Today, advanced MOSFETS are getting
so small that this no longer is a good assumption. A new "ballistic” transport formulation is
required in this instance.

4.2 Drift

Since electrons and holes are charged particles, the application of an electric field onto a semi-
conductor affects them. As a carrier flies in between two scattering events in the presence of an
electric field, it becomes subject to a Coulombic force. As a result of this, it picks up a component
of velocity in the direction of the electric field. Every collision that a carrier suffers effectively
randomizes its velocity but in between collisions the carrier is under the influence of the electric
field. The impact of this is a relatively slow "drift” in the direction of the electric field. This is
sketched for an electron in Fig. 4.2. The average value of the net carrier velocity that results is
called the drift velocity. The net current that is produced is called the drift current. We examine
both in some detail in the next two subsections.
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4.2.1 Drift velocity

The drift velocity is the the average net velocity that carriers acquire in an electric field. Let us
develop a simple model for electrons. The electrostatic force that an electron experiences between
collisions is —¢€&, where £ is the electric field and ¢ is the absolute value of the electron charge.
This force imposes a constant acceleration in the electron given by a = —¢&€/m7.. The initial
velocity in the direction of the field is, on average. zero since a collision completely randomizes
the electron velocity. The maximum velocity that the electron acquires in the direction of the
field during a scattering time is then:

ylrift — —q‘g—T- (4.9)
mce

Since the velocity ramps up linearly between collisions, the average magnitude of the velocity
is actually half of this. However, our calculation here was made assuming that all collisions were
separated by a time 7. The fact is that shorter times occur more often than longer times but
make a proportionally smaller contribution to the average drift velocity. When one takes proper
account of this, Eq. 4.9 is obtained. A similar equation ean be derived for holes (with a positive

sign).

The drift velocity in Eq. 4.9 is proportional to the electric field £. The proportionality
constant is called the mobility and is usually represented as p, that is:

fhe = 4Tce
S
e

(4.10)

A similar equation applies to holes. The mobility is defined such that it is positive for both
electrons and holes. In terms of mobility, the electron and hole drift velocities can thus be
expressed as:

pdrift = € (4.11)
drift
v = € (4.12)

The mobility represents the "ease” by which a carrier drifts in an electric field. The mobility
is directly proportional to the scattering time and inversely proportional to the effective mass.
These dependencies make sense. The longer the time between scattering events, the faster it
drifts between collisions. The heavier the carrier is, the higher its inertia and the less velocity it
picks up between collisions.

The mobility is a very important physical parameter in semiconductor device engineering. The
fact that the mobility is directly proportional to the scattering time implies that its value depends
on the strength of the various scattering mechanisms. Fig. 4.3 shows the carrier mobilities in Si at
room temperature as a function of doping level. For low enough doping levels, phonon scattering
dominates and the mobility is independent of doping. The value of the phonon-scattering limited
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Figure 4.3: Minority and majority carrier mobility in Si at 300 K.

mobility is about a factor of three larger for electrons than for holes in Si. This ratio is about 20
for GaAs. Analytical expressions for the dependencies shown in Fig. 4.3 are given in Appendix
E.

As the doping level goes up, ionized impurity scattering becomes important and the mobility
decreases very quickly. Tonized impurity scattering is not a strong function of the specific dopant
atom provided that it is of the same "kind”. That is, electrons in Si doped with the same
concentration of P, As or Sb have nearly identical mobilities. This is not the case if the type
of dopant is reversed. For example, at high doping levels, the electron mobility in n-type Si is
different from that of electrons in p-type Si for an identical doping level. In fact, at high doping
levels and for both electrons and holes, the mobility is about a factor of two higher when the
carrier is a mmorlty carrier than when it is a ma, Jorltv carrier. _1_@_15 becaube in 10111Z(,d impurity

pcculla:r shape of the potentlal (the Yukawa potentlal) associated with an 10n17(,cl dopamt This
effect is irrelevant at low doping levels where phonon scattering dominates. For low enough
doping, the minority and majority carrier mobilities converge. Using the correct mobility for
minority carriers is crucial to computing certain important parameters such as the base transit
time in bipolar transistors.

As the temperature is reduced, phonon scattering becomes less important while ionized impu-

rity scattering is enhanced. This implies that a reduction of temperature increases the mobility
for low doping levels while it decreases it for high doping levels.
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Exercise 4.1: Estimate the electron scattering time and the mean-free path in an n-type Si sample
with Np = 1017 em=3 at room temperature.

For Np = 10'7 em~3, Fig. 4.3 gives p. = 700 ¢m?/V - 5. Solving for 7 in Eq. 4.10, we get:

_ Hetni,  T00 em?/V -5 % 0.28 x 5.69 x 10710 ¢V . 52 /emn?

Tee = . e =1.1x10""s=0.1 s

The mean-free path can be computed using Eq. 4.8:
. gvﬁmrw =2.0x 107 em/sx11x1078s=1.7x10"% em = 17 nm

This is substantially smaller than typical device dimensions although the gate length of modern
MOSFETS is approaching this value.

4.2.2 Velocity saturation

The linear relationship between the drift velocity and the electric field that we derived above,
Eq. 4.9, is found experimentally to break down for high fields. This equation was obtained under
the assumption of "near” thermal equilibrium or ”quasi-equilibrium.” That is, although thermal
equilibrium is disturbed by the application of an electric field, the disruption is minor and the
rates of the various scattering mechanisms remain unchanged from their thermal equilibrium
values. This is a reasonable assumption if the carriers do not acquire too much energy from
the electric field during their free flight between two collisions, or in other terms, when the drift
velocity is much smaller than the thermal velocity, vIrift Vg

At high fields, this assumption fails. Electrons and holes can acquire substantial energy from
a strong electric field. This has the effect of enhancing phonon scattering, in particular, phonon
emission. For high fields, the scattering time decreases proportionally to 1/€. This leads to a
saturation of the average drift velocity, as sketched in Fig. 4.4. The asymptotic value of velocity
is called saturated drift velocity or simply saturation velocity and is represented as v By
definition, vs, is always a positive quantity. For a given semiconductor, ve, only depends on
temperature (weakly) and is independent of the doping level. In Si at room temperature, vy, for
electrons is 1 x 107 em/s, while for holes it is 6 x 106 cm/s.

The overall behavior of the drift velocity with electric field is relatively well represented by
an equation of the form:

prift — ?ir
14 |=i

Vaat

(4.13)

where the minus sign applies to electrons and the plus sign to holes. Equation 4.13 has the correct
limits. For low fields it reduces to v¥rift = Fué. For high fields, it saturates to vgy.

An estimate of the magnitude of the electric field, &, beyond which saturation effects are
significant can be obtained from Eq. 4.13 by equating both terms in the denominator:
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Figure 4.4: Sketch of velocity-field characteristics showing velocity saturation at high electric fields.

£y S0t (4.14)
I

Reaching fields of the order of &4 is not difficult in modern devices. For example, in a region
of a Si device with a mobility of 500 cm?/V - s, Exq is 2 x 10 V/em. It only takes a voltage
of 2 V applied across a length of 1 pum to reach this electric field (if it is uniformly distributed
in space). The occurrence of velocity saturation, particularly for electrons, is very common in
today’s microelectronic devices.

For carriers to approach v@/t ~ v, the ficld has to be much higher than &.. If we denote

as Egqt the field required to attain 90% of vsee, for example, then we have that £, = 9&,.

The saturation field depends on mobility and is therefore a function of doping level. This
is clearly seen in Fig. 4.5 which shows the evolution of electron drift velocity in Si at room
temperature for different doping levels. As the doping level increases, the mobility decreases and
as a result, the magnitude of the field that is required to reach velocity saturation increases too.
In consequence, vy, effects are less likely to show up the higher the doping level. Holes display
a similar behavior. Advanced Topic AT4.2 discusses in more detail velocity saturation and other
"hot”-carrier effects.

4.2.3 Drift current

Carrier drift in response to an electric field produces an electric current. Once the drift velocity
is known, it is easy to derive an expression for the drift current. Before doing that, let us make
two important definitions that apply to any situation in which there is a net flow of particles from
one point to another. Particle flur is defined as the number of particles that cross a surface of
unit area placed normal to the particle flow every unit time. In this book, flux is represented by
F and has units of em ™2 - 571, The flux is obviously a vector pointing in the direction of particle
flow.
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Figure 4.5: Velocity-field characteristics of electrons in n-type Si at 300 K for several doping levels.

In semiconductors, we are particularly interested in charged particles or carriers. Carrier flux
hence results in an electric current. The current density, J, is defined as the amount of charge
that crosses a unit area placed normal to the carrier flow every unit time. The current density is
also a vector and its units are C-em=2-s~! = A/em?. There is obviously a direct relationship
between flux and current density. For electrons and holes, respectively:

J. = —qF. (4.15)
Jo = gqFh (4.16)

The carrier flux and the current density are directly related to the net velocity of the carriers.
Consider, for example, a portion of a semiconductor with n electrons per unit volume where the
electrons are moving with an average net velocity v.. Let us place our fictitious surface of unity
area normal to the direction of carrier movement, as sketched in Fig. 4.6. In a time interval dt,
there are nuv.dt electrons crossing through this surface. The electron fluz is then:

F, = nv, (4.17)

and the electron current density is therefore

Je = —qnv, (4.18)

For holes with a concentration p moving at an average net velocity vy, we analogously get:
P 1y g !
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Figure 4.6: Sketch of unity area surface placed normal to electron flow. In a time interval df, all particles inside
the enclosed volume cross the light-shaded surface.

Fy = puy, (4.19)

and

Jn = qpug (4.20)

Eqgs. 4.18 and 4.20 are rather fundamental expressions. In their derivation no assumptions
have been made as to the detailed physical origin of the force that acts on the carriers. These
equations state the simple fact that if an ensemble of carriers moves at a certain average velocity,
by virtue of the fact that they are charged, an electric current of a certain magnitude is produced.
This holds regardless of the physics of the force driving the particles.

We can now go back to the process of drift in which carriers move in response to an electric
field. For low electric fields, we can substitute Eqs. 4.11 and 4.12 in 4.18 and 4.20 to get:

Je = quené (4.21)
Jh = qunpE (4.22)

These are the expressions for the drift current densities for electrons and holes under low-field
conditions. Since in a semiconductor there are always electrons and holes, the total drift current
density is:

Jt = q(pen + pnp)€ (4.23)

This is simply Ohm’s law for a semiconductor. It is important to remember that this equation
applies only if the fields are not too high. In Ohm’s law, the proportionality constant is called the
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conductivity. The units of conductivity are Q7 '-em~1. 1 One can define separately a conductivity
due to electrons, another one due to holes and a total conductivity as follows:

e = QUen (4.24)
Oh = QGUpPp (4.25)
0 = q(pen+ pupp) (4.26)

The inverse of the conductivity is called the resistivity which is represented by the symbol
p and has units of Q - em. Both resistivity and conductivity are frequently used in a variety
of contexts in semiconductor engineering. For example, the resistivity is frequently quoted by
wafer vendors as a way to specify the doping level of their products. This is because it is easy to
measure p by contactless techniques and also because it is a very strong function of doping level.
In a doped semiconductor in equilibrium, the resistivity is determined by the concentration of
majority carriers which at room temperature is nearly equal to the doping level. Expressions for
the resistivity for fully ionized extrinsic n-type and p-type semiconductors are respectively:

1
~ 4.27
o q PleN D ( )
1
oL 4.28
PP = qunlNa (4.28)

Fig. 4.7 shows the resistivity of Si as a function of doping level for n- and p-type Si. In
both cases, the resistivity drops very quickly as the doping level increases. For an equivalent
doping level, the resistivity of p-type Si is always higher than the resistivity of n-type Si. This is
a consequence of the lower mobility of holes with respect to electrons that was presented in Fig.
4.3.

As the electric field increases, the linear relationships between current density and electric
field, Eqgs. 4.21. 4.22 and 4.23, do not hold anymore. In fact, as discussed above, for high enough
fields the carrier velocity saturates. At that point. the current density reaches a maximum value.
Plugging in vesq and wpsq respectively in Egs. 4.18 and 4.20, we get:

Jesat = —qMUesat (4.29)
Jhsat = qPVhsat (430)

These equations convey the important message that the only way to increase the drift current
density in a semiconductor that is under a high electric field is to increase the carrier density.
Increasing the magnitude of the field does not help at all.

'Sometimes Q7! is called Mho or Siemens (with symbol S). Hence, conductivity can also be given in Mho/cm

or Sfem.
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Figure 4.7: Resistivity of n- and p-type Si at 300 K.

Exercise 4.2: Consider an n-5i sample with a resistivity of 0.1 Q- cm. In a certain region of this
sample, there is an electric field of 1000 V/em. Estimate the electron and hole drift velocity and
the total drift current density in that region. '

From Fig. 4.7, the doping level of the sample is 9x 10'% em =2, The equilibrium hole concentration is
about 1.3x 10% em™3. From Fig. 4.3, the mobility of electrons in this sample is about 800 cmn?/V -s
and that of holes is 460 cm?/V - s. Let us assume that the field is small enough so that Eqgs. 4.11
and 4.12 apply. Then:

vt = & = —800 em?/V - 5 x 1000 V/em = —8 x 10° em/s

Uﬁriﬂ = up€ = 460 cm?/V - s x 1000 V/em = 4.6 x 10° em/s
where the minus sign of v#f* indicates that electrons are flowing against the electric field. The

drift velocities are much smaller than the saturation velocity. Therefore our initial assumption is
validated. This region is operating in the mobility regime.

Since we already have the carrier drift velocities, the drift current densities are easy to calculate
using Eqgs. 4.18 and 4.20:

Jo = —qnv?ft = 1.6 x 1071° C x 9 x 10'% em™3 x 8 x 10° em/s = 1.2 x 10* A/em?

I = qpvﬁ”ﬁ =16x10""P Cx1.3x%x10% em 3 x 4.6 x 10° em/s =96 x 10" Afem?

Clearly, since holes are minority carriers, the hole drift current density is negligible next to the
electron drift current density. In consequence, the total drift current density is the value given by
electron drift, about 1.2 x 10* A/em?.
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Ep=-q¢ ey

X

Figure 4.8: Sketch of electrostatic potential and potential energy associated with an clectric field in vacuum.

‘Jf‘- 4.2.4 Energy band diagram under electric field

Under the application of an electric field, the energy band diagram of a semiconductor needs to
be modified to account for the potential energy of the electric field. Before we learn how to do
this, let us review first the familiar situation in vacuum, as sketched in Fig. 4.8.

In Fig. 4.8 an electric field points from left to right in vacuum. The electrostatic potential, o,
associated with this field increases towards the left. The potential energy of the field, Ep = —q¢,
increases towards the right. As a result, an electron inside this field moves from right to left. The
electron trades potential energy for kinetic energy as it accelerates towards the left while its total
energy is left unchanged.

Consider now a similar situation inside a semiconductor. as in Fig. 4.9. The potential energy
due to the electric field needs to be added to the band diagram. When this is done, the bands
tilt as indicated in the figure. An electron inside this semiconductor drifts towards the left. In
between collisions, the electron exchanges potential energy for kinetic energy as it moves along a
constant energy trajectory. As an electron gains kinetic energy from the electric field, the balance

A between phonon emission and phonon absorption rates is broken: it becomes more likely to emit
than to absorb pth‘lOﬂb This is precisely the path to restorationof thermal equlhbrlum So, more
frequently than not, the electron emits a phonon and it looses some of its kinetic energy which is
given off to the lattice in the form of heat. The end result is that the electron "slides” down the
conduction band lowering its energy along the way. A hole drifting inside the same semiconductor
moves from left to right "bubbling up” the valence band. This intuitive view of carrier movement
in the energy domain is useful when dealing with complex energy band diagrams.

When an electric field exists inside a semiconductor, the conduction and valence bands bend
to reflect the change in potential energy. This is called band bending. The potential energy of an
electric field, as we saw above, is related to the electrostatic potential through the electron charge.
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Figure 4.9: Sketch of an energy band diagram in the presence of an electric field. Electrons "slide” down the
conduction band while holes "float” up the valence band.

Mathematically we can then write E.+ Ey.; = Ej = —q¢, where E,¢ is some arbitrary reference
energy. A similar equation applies to the valence band. The shape of the bands therefore reflects
the shape of ¢ upside down (with the proper units). In consequence:

_ d¢ 1dE. 1dE,
“(E_ dr ~ qdr q dr (4.31)

This is a useful equation that permits the computation of electric fields from band diagrams and
that allows the drawing of band diagrams in regions where an electric field is present.

- | Exercise 4.3: In a certain region of a semiconductor, the bands are bent as sketched in the figure
below. Calculate the magnitude and direction of the electric field that exists in that region.

Eq. 4.31 provides the answer. Note the special handling of the units:

g_1dB. _ 1 _ 09ev
Tgdr  1el0x10~%fem

=900 V/em

This field is positive since with the axis selected in the figure, the gradient of the bands is positive.
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Figure 4.10: Sketch of electron diffusion down a concentration gradient,.

4.3 Diffusion

Diffusion is the second physical mechanism that causes electrons and holes to flow inside semi-
conductors. The process of diffusion is very common in nature. It takes place whenever there
is a non-uniform concentration of particles. The spread of a drop of cream in a cup of coffee,
or perfume from an opened bottle in a room are familiar examples of diffusion. In diffusion,
the particles in question are knocked around by the medium matter. This causes them to flow
from regions where their concentration is high to regions where their concentration is low. If
there is nothing trying to maintain the concentration gradient, eventually the particles will be
spread evenly throughout the whole volume. In the case of a drop of cream in coffee, it is the
collisions of the cream molecules with those of water that disperse the cream. For perfume, it is

the air molecules that spread the perfume molecules around. In a semiconductor, carrier diffusion
takes place when electrons and holes get kicked around by the vibrating semiconductor atoms.
Temperature is essential in diffusion. At zero absolute temperature, there is no diffusion.

4.3.1 Fick’s first law

Let us look at the process of diffusion in more detail. Consider the one-dimensional situation
depicted in Fig. 4.10 where an electron gradient has somehow been established in a certain
region of a semiconductor. Let us attempt to compute the electron flow due to diffusion at a
certain location, such as x;. To the left of z;. there is a higher electron concentration than to
its right. If all electrons are randomly knocked around by the lattice atoms, on average, there
are more electrons that flow from the left of ; towards the right than the other way around. In
consequence, there is a net flow of electrons from left to right down the gradient.

We can easily derive a first order expression for the electron flux at z;. Let us assume
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that in the vicinity of x; all electrons are scattered about by the semiconductor atoms at two
precise locations half a mean-free path away from z; on either side. Let us denote the electron
concentration at z1 — lee/2, and @) + l/2, as n~ and n™ respectively. If all n~ electrons are
knocked randomly at x1 — [./2, then on average n~ /2 electrons get scattered towards the right,
and n~ /2 get scattered towards the left. Since n= > n™, it is clear that at @, there is a net flow
of electrons towards the right which is given by:

L

3 n- n 1 _
L F#)= T'Uthe = ?@H}.e = —§t'r.he(n+ = (4.32)

where v, is the thermal velocity for the electrons. Since the mean-free path is rather short in
comparison with the dimensions of typical problems we are concerned with, it is advantageous to
write the difference in electron concentrations n™ — n~ in terms of the electron gradient at x;:

d
| nt—n" = ‘d_;|zl'fc:e (4.33)

Plugging this result into the expression for the flux, we get:

1 dn
Fe(:cl) = '—E'L’thelr_‘eﬁhl (434)

There are a number of important dependences in this result. First, the flow of electrons is
proportional to the gradient of their concentration. It is the difference in carrier concentrations
that drives diffusion. This is a very fundamental result of general applicability. It applies to
electrons and holes in semiconductors as well as to molecules of cream in coffee and to perfume in
air. The minus sign that is obtained in Eq. 4.34 makes good physical sense. As Fig. 4.10 shows,
electrons diffuse down the gradient.

The second important dependence of Eq. 4.34 is that the diffusion flux is proportional to
the thermal velocity. This makes sense. The faster carriers travel between scattering events, the
higher the net flux at a given location.

The third dependence involves the mean free path: the longer this is, the higher the diffusion
flux becomes. As Eq. 4.33 indicates, what drives diffusion is the difference of carrier concentration
in the scale of the mean free path. Given a certain gradient of electron concentration, the longer
the mean free path, the bigger the difference between left-going and right-going fluxes becomes.

The combined prefactor multiplying the gradient of electron concentration in Eq. 4.34 is
called the diffusion coefficient, with symbol D, and units of cm?/s:

| D. = %’Uthclr_‘e (435)
| .

In terms of the diffusion coeflicient, we can write the electron flux as:
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Fo= Doy (4.36)

This is called Fick’s first law which is derived more rigorously in many solid-state books.
Similarly, for holes, we have:

d.
\ Fi= —th—i (4.37)

The diffusion coefficient gives a sense of the "case” by which electrons diffuse in a semiconduc-
tor. For a given concentration gradient, the higher D is the higher the diffusion flux. The value
of the diffusion coefficient embodies the strength of the scattering mechanisms that carriers suffer
as well as the nature of the carriers. It also depends on temperature through the temperature
dependence of the thermal velocity and that of the scattering time.

4.3.2 The Einstein relation

Since the diffusion coefficient is intimately tied to scattering, it is reasonable to expect that it
bears some relationship to the mobility which itself reflects carrier scattering in the presence of
an electric field. This relationship is in fact very fundamental and is known as the Einstein
relation. Using Eqs. 4.34, 4.3, 4.8, 4.10, and 4.35 we can easily find:

[ De_*T (4.38)
He q
The Einstein relation for holes can be derived in a similar way:
P BE (4.39)
Hh q

The ratio kT'/q is referred to as the thermal voltage. This is an important "tickmark” in the
voltage scale that is pervasive in the analysis of semiconductor devices. 2

The Einstein relation is quite general and is in fact valid for all systems that obey Maxwell-
Boltzmann statistics. Interestingly, the Einstein relation does not depend on doping, only on
temperature. The Einstein relation can also be derived for a degenerate carrier gas. In this case,
a doping dependence arises (see Problem 4.9).

The Einstein relation provides a connection between mobility and diffusion coefficient in ther-
mal equilibrium. Outside equilibrium, the Einstein relation is expected to hold if the disturbance
from equilibrium is not so high that the scattering rates are modified. A good working criterion

®In some books and articles, the thermal voltage is denoted as Vi, or Vip. This notation can easily lead to
confusion with the threshold voltage of a MOSFET and it will not be followed in this book.
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is that the electric fields must be low enough so that there is a linear proportionality between
drift current and electric field.

Exercise 4.4: Estimate the electron and hole diffusion coefficients i 0.1 - em p-5i at room
temperature.

The first step is to find the doping level of this sample. From Fig. 4.7 we find that p-type Si with
a resistivity of 0.1 €2 - em has a doping level of about N4 = 3 x 1017 em 2.

The second step is to obtain the corresponding mobilities for electrons and holes. Holes are majority
carriers in p-5i. Electrons are minority carriers. Care has to be exercised to select the proper curve
in Fig. 4.3. For holes we find that for N4 = 3 x 107 em ™3, the mobility is ps ~ 240 em?/V - s.
For electrons, we find p. >~ 530 cm?/V - 8,

The diffusion coefficients are obtained using Einstein’s relation. For holes:

kT 0.026 eV
— = ————

Dy =
h qh Tx

240 em?/V -5 =6.2 em?/s

Similarly, for electrons we find D, = 13.8 cm?/s.

4.3.3 Diffusion current

Since electrons and holes are charged particles, their diffusion produces an electric current. Mul-

tiplying the expressions for carrier flux by the respective carrier charges, the current densities
due to diffusion are obtained:

dn
) Je = Q‘Dea (4.40)
»t T = —gth—i (4.41)

Rather than trying to remember the signs of Eqs. 4.40 and 4.41, it is much easier to derive
them in an intuitive way. Consider the sketches of Fig. 4.11. In the presence of a positive gradient
of electron concentration, such as the one pictured on the left of Fig. 4.11, electrons flow down
the gradient towards the left. The electron flux is then negative, as Eq. 4.36 indicates. Since
the electrons are negatively charged, the electron current will flow from left to right, in the same
direction as the axis and it is then positive, in agreement with Eq. 4.40. In the presence of a
similar gradient, the hole flux is also negative but the hole current is negative too since the hole
charge is positive (right sketch in Fig. 4.11).
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Figure 4.11: Sketch of relationship between fluxes and diffusion current densities for electrons and holes.
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Exercise 4.5: In a certain region of a semiconductor characterized by 0 < x (um) < 1, there
is an electron concentration that follows a profile n(z) = 10'7(1 + 10z) em™3 with « in pm. At
x =0, calculate the electron diffusion flux, the electron diffusion current density, and the electron
diffusion velocity. Assume an electron diffusion coefficient of 10 em?/s.

Before doing any calculations, it is convenient to homogenize the units in the equation that de-
scribes the electron profile. In this equation, = needs to be given in um. If instead we want to
use x in cm, then we need to change x into 10%z. Hence the electron profile can be described as
n(z) = 1017(1 + 10%z) em~? with z in em.

At & = 0, the electron diffusion flux is given by Eq. 4.36:

d I .
Fol it = —Def]mo = —10 x 107 x 10° = —1023 ¢m~25"
a.r

The minus sign indicates that the electron flux takes place against the axis .

The electron current density is simply obtained by multiplying the flux by the electron charge (Eq.
4.40):

Jo=—qF,=16x10719 x 10 = 1.6 x 104 Afem?

The electron velocity can be obtained from the fundamental relationship that relates carrier flux
and carrier velocity, Eq. 4.17:

23
ydiff _ Fe _ 10

108 emn/s

no 1017

The minus sign indicates that the electrons are traveling in a direction contrary to .

vl

4.4 Transit time (oo

As discussed above, if in a semiconductor region there is a concentration gradient or an electric
field, there is net movement of carriers in space. It is often of interest to compute the time that
it takes for a carrier, on average, to get from one point in space to another. This is called the
transit time. Since the carrier velocity in general depends on location, the most general way of
calculating the transit time in one dimension is by integrating the differential of time required
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Figure 4.12: Two simple examples of electron flow and the resulting transit times from z = 0 to = = L: (a)
diffusion down a linear gradient, (b) drift in a uniform electric field. In both cases, electrons flow from the left
towards the right.

to travel through a differential of space. In integral form, then, the transit time from a point at
z =0 to a point x = L is given by :

n:/ﬂ“dt:f;% (4.42)

The net carrier velocity v(z) might be due to drift, diffusion or a combination of the two. It
is useful to separately examine these two cases.

For a purely diffusive case, the combination of Eqs. 4.18 and 4.40 gives an expression for the
electron diffusion velocity:

vdiff = _Df’;?x (4.43)
Inserting this in Eq. 4.42 yields:
1 [Ln
o= ] 4.44
B==me I I T (4.44)

This is the most general expression of the transit time due to electron diffusion. It depends
solely on the electron concentration profile and the electron diffusion coefficient. A simple case
helps to see the leading dependences.

Consider a linear electron concentration profile in space such as the one depicted in Fig.
4.12a). At z = 0 the electron concentration is nj, and at x = L the electron concentration goes
to zero. This is not as unphysical a situation as it might seem. The boundary condition at ¢ = L
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ressembles the base edge of the base-collector junction of a bipolar transistor in the forward active
regime. An analytical expression for this electron profile is n(z) = n;(1— 7). Plugging this profile
into Eq. 4.44 yields after some simple algebra:

L‘Z
= oD,

(4.45)

This is an interesting result. The transit time due to electron diffusion goes as the square
of the length of the region through which the carriers diffuse and is inversely proportional to
the diffusion coeflicient. The inverse proportionality on diffusion coefficient is readily expected.
The quadratic dependence on L also makes good sense. For a given value of ny, if L increases,
the electron gradient decreases proportionately and the distance that the carriers have to travel
increases by the same amount. Hence, a 7; ~ L? dependence results.

Consider now a case of pure electron drift. Eq. 4.11 gives an expression for the electron drift
velocity in terms of the electric field for small fields. Plugging this into Eq. 4.42 yields the transit
time due to electron drift:

1 1L de
= —— — 4.46
= He JO 5(37) ( )

This depends on electron mobility and the field distribution in space.

Let us examine the simple example depicted in Fig. 4.12b) in which a uniform electric field of
magnitude €, is set up in a certain region in space. The clectric field is negative in sign so that
electrons drift from left to right. For this case, since the electric field is uniform, & can be taken
out of the integral in 4.46 to vield:

L
- ﬂegl

Tt (447)

The transit time due to drift is linear in L and inversely proportional to &, as expected from
physical arguments.

Identical results can be obtained for the transit time for holes under similar circumstances.
In situations with more complex carrier concentration or electric field profiles, the transit time
expression might well be more complicated and perhaps take a non-analytical form. The physics,
however, is unchanged.

Situations that combine drift and diffusion are also straightforward to handle. In the case
of electrons, for example, the total current is the sum of a drift contribution plus a diffusion
contribution:

Jy=Jorft | geits (4.48)

The electron velocity in this case can be obtained using Eq. 4.18:
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ve = —pe€ — D, ;i—” ydrift 4 ydifs (4.49)

In order to compute the transit time in a situation like this, the sum of the carrier drift and
diffusion velocities must be used in Eq. 4.42.

4.5 Non-uniformly doped semiconductor in thermal equilibrium

/ In thermal equilibrium, there are situations in which it is possible for an electric field to exist
|\ inside a semiconductor without applying a voltage from the outside. This is the case, for example,
~ when the doping level inside a semiconductor region changes in space. This is quite common in
devices since most doping techniques result in non-uniform impurity profiles. We study these
situations here because even in thermal equilibrium, they bring into play both drift and diffusion
simultaneously. Our analysis is also the basis for a future treatment of carrier behavior outside
equilibrium in non-uniformly doped semiconductors.

This section introduces a number of important new concepts. The starting point is a review
of one of Maxwell’s equations that plays a key role in semiconductor devices: Gauss’ law.

4.5.1 Gauss’ law

Gauss’ law states that the divergence of the electric field at a certain point is equal to the volume
charge density at that same point divided by the perrﬂlttwlty of the material. In one dimension,
Gauss’ law can be written as:

a& p -
= (4.50)

where p is the volume charge density ? and e is the permitivity of the semiconductor.

It is important to understand Gauss’ law well. If the volume charge density at a certain point
is zero, it does not follow that the electric field is ?ero too. For example, in between the plates of \
a capacitor with air as dielectric and a \roltage apphed the volume charge is zero but the electric
field is not. The charge at the plates of the capacitor generates an electric field. If p is zero inside
the capacitor, then d€/dz is zero at every point and £ does not change from point to point. In
order to have an electric field at a certain point, there is no need to have charge at that same
locatlon

In semiconductors there are several sources of volume charge. There is the mobile charge that
arises from electrons and holes. There is also fized charge that results from the ionized dopants

It is unfortunate that in the semiconductor literature, the symbol p is used for both resistivity and volume
charge density. Since this is common practice, this notation will be followed in this book. The context and the
units help identify which variable the symbol refers to in any particular equation.
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- ionized donors are positively charged and ionized acceptors are negatively charged. A general
expression for the net volume charge density in a semiconductor is then:

p=q(p-n+ Nj—- Ny) (4.51)

Throughout this book we will assume that the working temperature is high enough for all
dopants to be ionized. Thus N, ~ Np and N, =~ Nj. Combining this with equations 4.50 and
4.51, we get:

dé .
g(p —n+ Np—Nja) (4.52)

e

Under thermal equilibrium conditions, in the bulk of a uniformly-doped semiconductor suf- _
ﬁmM& charge n neutmhty prevails. This is because every dopant
releases a carrier of the contrary charge sign. In a charge-neutral situation, Eq. 4.52 states that
the electric field cannot change in space. Furthermore, since in thermal equilibrium no electric
fields are applied from the outside, we can conclude that £, = 0 everywhere (the subindex o is
used to denote thermal equilibrium).

The situation is quite different in the presence of a non-uniformly doped semiconductor in
thermal equilibrium. To illustrate the issues involved in a simple way, let us consider a long bar
with a gradient of donors along its length as sketched in Fig. 4.13. If we can assume that nothing
changes in the other two dimensions, a one dimensional treatment should be adequate. Let us
also assume that the semiconductor is sufficiently extrinsic so that we need not account for the
tiny charge contribution of the minority holes. Under these conditions, Eq. 4.52 can be simplified

to: T WY !'}v".'--L.-'*u-.‘
-
&,
f: g(ND — 1) L

where we have made explicit the thermal equilibrinm situation by adding the subindex o to &
and n.

At first sight, it may seemn reasonable to expect that the electron concentration replicates
exactly the donor concentration since each donor releases one electron, that is, n,(z) = Np(z).
This assures precise charge neutrality at every point of space. If that were the case, however, the
electron distribution would end up being non uniform. The electron concentration gradient would
then produce a diffusion of electrons from the right where the initial concentration is high to the
left where it is smaller and current would accordingly flow. This is clearly not an equilibrium
situation.

We may be tempted to conclude then that as a result of carrier diffusion, electrons will flow
until the electron concentration is uniform everywhere. If that were the case, on the right side
of the bar there would be a certain amount of positive charge resulting from the unbalanced
concentrations of ionized donors and electrons. On the left, there would be net negative charge
since the electron concentration is larger there than the donor concentration. Following Eq. 4.53,
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Figure 4.13: Non-uniformly doped semiconductor bar in thermal equilibrium: (a) doping level and resulting
carrier concentration, (b) volume charge density, (c) electric field, (d) electrostatic potential, and (e) energy band
diagram.
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this charge distribution would result in an electric field that would pull electrons back to the right
and away from the left region. This again is not an equilibrium situation.

The two extreme electron distributions that we have discussed are not possible in equilibrium.
When no(z) = Np(z), charge neutrality at every point results in an electron diffusion current. If
n, is uniform in space, the presence of net volume charge results in a drift current. The one thing
that we know must be fulfilled in thermal equilibrium is that the total electron current be zero
everywhere. This implies that electron d;;ft and diffusion must precisely balance out at every
pgint, For a drift current to flow, we need an clectric field. This can be generated if a non-uniform
electron distribution is established that is somehow different from the donor concentration, 1.e.
no(z) # Np(x). The electron gradient associated with the non-uniform electron distribution
results in a diffusion current. The equilibrium carrier profile is the one for which the drift and
diffusion currents cancel out at every point. This is sketched in Fig. 4.13.

The mismatch between electron concentration and donor concentration in the non-uniformly-
doped bar leads to a dipole of charge, as sketched in Fig. 4.13. There is net positive charge
towards the right and net negative charge towards the left. This dipole of charge produces an
electric field that points from right to left. With our choice of axis, £, is negative. An equivalent
way of expressing this is through an electrostatic potential ¢, that increases from left to right, as
also sketched. The energy band diagram, in consequence, shows substantial bending. However,
the Fermi level is flat throughout to reflect thermal equilibrium.

Our goal for the remainder of this section is to learn how to calculate the carrier profiles, and
_to solve the complete electrostatic problem given an_arbitrary doping distribution. Before that,

“we introduce a very important set of relationships connecting ('qulllbnum carrier concentrations
and electrostatic potential.

4.5.2 The Boltzmann relations

The application of the principle of detailed balance to a non-uniformly doped semiconductor in
thermal equilibrium demands that the electron and hole currents be separately zero everywhere.
This may appear obvious but it is instructive to consider what would happen if this were not the
case (see Fig. 4.14). Assume a non-uniformly doped bar in which the electron current happens
to balance out precisely the hole current so as to have net zero current. In this instance since the
two carrier types have charges of the contrary sign, electrons and holes must flow in the same
direction from one side of the semiconductor to the other. In order to sustain this, electron-hole
pairs must continuously be generated at one side of the bar and recombine at the other. This
would imply that one side of the semiconductor is cooling down while the other is heating up.
Clearly this is not an equilibrium situation. The conclusion is that in thermal equilibrium, both
carrier currents must be zero separately.

Coming back to the non-uniformly doped bar in thermal equilibrium depicted in Fig. 4.13, we
Just concluded that the total electron current must be zero. If the electric field resulting from the
non-uniform dopant distribution is not too high, Eq. 4.21 can be used for the drift component of
the current density. The total electron current density can then be written as:
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energy energy

Figure 4.14: Sketch of impossible thermal equilibrium situation with J. = —Jr # 0. The net carrier currents
result in spontaneous absorption of energy at one end of the bar and emission of energy at the other. This cannot
happen in thermal equilibrium.

d
Je = qpteno€o + qDe % =0 (4.54)

where the electron concentration has been explicitly denoted as n, to indicate that this is an
equilibrium situation. In general, n, depends on position.

Eq. 4.54 suggests that in thermal equilibrium there is a direct connection between the equilib-
rium carrier concentration and the electric field. The electric field drives drift, the concentration
-gradlent drives diffusion and they both must be in perfect balance in thermal equilibrium. Hence
n, and &, should be in some kind of relationship.

If we solve for &, in Eq. 4.54, we get:

T 1 dny
q ng dx

Eo=— (4.55)

where we have used the Einstein relation (Eq. 4.38).

If we apply an equivalent procedure to the minority carrier, in this case holes, we arrive at a
similar equation:

&= %Tpi% (4.56)
[¢]

This equation can also be derived directly from 4.55 by invoking the fact that nop, = n?.

Eqgs. 4.55 and 4.56 are useful expressions since they allow the calculation of the electric field
in a certain region of a semiconductor provided that either n, or p, are known. Equations 4.55
and 4.56 can also be used to derive a relationship between the electrostatic potential in thermal
equilibrium ¢, and the equilibrium carrier concentration. From Eq. 4.55, for example, one gets
the differential equation:
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dpo kT d(Inn,) _
dr ~ q dx (4.57}
which after integration results in:
kKT | no(x)
o Te l 2 .
$o(z) — ¢ i R 'no(ref) i (4 58)

Had we started from Eq. 4.56 and proceeded in a parallel way, we would have reached the
following result:

kT In Pe (ref)

Go(x) — Dref = Pol2)

(4.59)

These equations give a relationship between the ratio of the equilibrium carrier concentr ation
at two different points and the difference in the electrostatic potential between the same two
points. If the carrier concentration between two regions changes by a factor of 10, for example,
the electrostatic potential differs by (k7'/¢)In10. At room temperature this is about 60 millivolts
per decade or simply mV/dec, a handy number to remember.

¢res is in principle not set and in consequence, ¢,(z) is not completely specified. This should
not be a source of difficulty since in electrostatic problems the physics is always in the potential
difference and not in its absolute value. In any one problem, one is free to choose the reference for
potentials. A common choice consists on assigning the value of ¢,. r =0 to the intrinsic carrier
concentration ng(ref) = n;. With this choice, Eqs. 4.58 and 4.58 respectively become:

qdo ,
Mo = mexpis (4.60)
Po = T €xp _k?;)o (4.61)

Note that these equation satisfy the thermal equilibrium requirement that NaPo:= N2

Both Egs. 4.60 and 4.61 give a relationship between the equilibrium carrier concentration
and the electrostatic potential in a case in which we have selected Oref = 0 at the intrinsic point
ne, = po = n;. The relationship is exponential. These equations are known as the Boltzmann

relations. If either one of them is known, the other one is straightforward to derive.

It cannot be stressed enough the fact that these equations are reference sensitive. A different
choice of potential reference results in expressions that look different. The physics of the problem
is not changed, but its mathematical expression is. The resulting equations, in all cases, are
known as the Boltzmann relations. A useful corollary is that clever choice of reference might lead
to a simpler mathematical formulation. In this book we will make different choices in different
circumstances. You have to be ready to work with a menu of equivalent expressions.
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Exercise 4.6: Derive equivalent Boltzmann relations as Eqs. 4.60 and 4.61 above for a reference
choice that assigns ¢,..p = 0 to a point where the equilibrium hole concentration is Na.

We can do this using Eq. 4.58 directly, or deriving an equivalent one from 4.56. Through either
path, one gets the same result. If we proceed through the first route, at a point where the
equilibrium hole concentration is Ny, the equilibrium electron concentration is n?/N. At this
point we select ¢.r = 0. Plugging this in Eq. 4.58, we get:

2 |
T q@y
e ; 4.62
Ro= Wy P g #82)
Using again n,p, = n?, we get:
—qo
po = Nsexp A—To (4.63)

As an additional algebraic exercise, show that you get the same equations starting from Eq. 4.56.

The Boltzmann relations, as described here, are nothing but expressions of a fundamental
law of statistical mechanics known as Boltzmann’s law. In its most generality, Boltzmann’s law
applies to any system of ideal particles immersed in a field of conservative forces (i.e. a field of
forces that can be described by a potential) in thermal equilibrium. Boltzmann’s law states that_
the probability of finding particles in a given spatial arrangement varies exponentially with the
Fnégative of the potential energy of that arrangement, divided by kT'. For particle concentration,
Boltzmann’s law can be expressed as:

n o< e Er/kT (4.64)

where E, is the potential energy.

This law applies to many other systems in nature. One particular system, the distribution
of molecules in the ideal atmosphere, provides us with an intuitive and visual analogy. Imagine
an ideal atmosphere that is characterized by a constant temperature (in our real atmosphere it
gets colder as we go up in altitude). All gas molecules of this ideal atmosphere are subject to
the gravitational force. It is then clear that the weight of the gas column extending from a given
altitude to infinity decreases as we go up in the atmosphere. The atmosphere gets "thinner”
the higher we go. The concentration of molecules in height in this ideal atmosphere follows
Boltzmann’s law, that is, it decreases exponentially.

We can exploit this analogy to visualize the electron distribution in the conduction band of a
semiconductor in thermal equilibrium. If the semiconductor is non degenerate, at any location,
electrons obey the Maxwell-Boltzmann distribution function, that is, the probability of finding
an electron at a certain energy inside the conduction band goes down as we go up in energy inside
the conduction band. This follows the law exp(—E/kT). At the same time, if the doping level
is non uniform, the total electron concentration (the integral of a "vertical column” of electrons
in the atmosphere analogy) also changes from point to point as exp(qo/kT) = exp(—Ep/kT).
Hence we can think of this non-uniform doped semiconductor in thermal equilibrium as having a
“stratified” distribution of electron occupation probability in the conduction band much as the gas
concentration would be in an ideal atmosphere if there is a landscape in the terrain underneath.
This is pictorially illustrated in Fig. 4.15. One can think of the electrostatic potential landscape
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Figure 4.15: Pictorial view of electron concentration in conduction band of non-uniformly doped semiconductor
in thermal equilibrium.

as "carving out” the electron probability distribution in the conduction band. The same applies
for holes in the valence band, but the picture is upside down, that is, the higher in energy, the
denser the hole concentration is.

A final point to be made about the Boltzmann relations is that they have been derived under
the assumption of Maxwell-Boltzmann statistics which apply to non-degenerate carrier situations.
In the case of carrier degeneracy, the Einstein relation takes on a different form (see Problem
4.9) and as consequence, the Boltzmann relations become somehow more complex. Still the basic
fact remains that in thermal equilibrium, there is a one-to-one relationship between changes in
electrostatic potential and changes in carrier concentration.

4.5.3 Equilibrium carrier concentration

We are finally in a position to formalize an approach to calculating the equilibrium carrier con-
centration in a non-uniformly doped semiconductor in thermal equilibrium. If we substitute Eq.
4.55 into Gauss’ law 4.53, we get:

ﬂdz(lnnn)

& & e~ (4.65)

Given a certain doping distribution Np(z), the solution of this second-order non-linear differential
equation provides the spatial distribution of electrons in thermal equilibrium n,(z). Everything
else in this equation is known. Once n,(z) is known, it is straightforward to compute polz),
Eo(T), ¢o(x) and the energy band diagram in space.

As it turns out, 4.65 is a fairly challenging differential equation to solve. Analytical solutions
are only available for a small set of simple cases. In most situations, this equation needs to be
solved through numerical techniques. We study next a particularly simple example that brings
some important issues associated with solutions to this differential equation.
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Figure 4.16: Schematic of delta doping. A sheet of n-type dopants with an areal density Ny is inserted in an
otherwise uniformly doped n-type semiconductor. All the surfaces are very far away.

Example 1: delta doping

Delta doping is illustrated in Fig. 4.16. This figures sketches an extrinsic n-type semiconductor
doped with a uniform doping concentration Np. At a certain location that we label 2 = 0, there
is an additional sheet of n-type dopants with a concentration Nj (per unit area). The situation
depicted in Fig. 4.16 is of a 1D nature and all the surfaces are very far away. We are interested in
calculating the equilibrium electron concentration n, throughout this sample. Technologically, it
is possible to fabricate these kind of delta-doped layers using modern epitaxial techniques. They
are widely used in GaAs High-Electron Mobility Transistors (HEMTs).

In the absence of the delta-doped layer, charge neutrality dictates that the electron concen-
tration everywhere be exactly equal to Np. The delta-doped layer introduces more dopants and
more electrons into the system. The dopants are positively charged and remain stuck in the lattice
in a sheet-like distribution. The electrons are free to roam around. In thermal equilibrium, the
balance between drift and diffusion leads to an electron distribution that is a somehow smeared
version of the delta function, as indicated in Fig. 4.16. At a sufficient distance away from z = 0,
we expect n, to approach Np.

The picture shown in Fig. 4.16 suggests that while there is overall charge neutrality in the
system, there are regions with net charge. At x = 0, there is a sheet of positively charged donors
with an areal density Ns. Surrounding this, there is a region with net negative charge that decays
the further away we move from the delta-doped layer. The charge imbalance creates an electric
field and a potential build-up. A sketch of the complete electrostatic problem, including the
energy band diagram, is shown in Fig. 4.17.

Simple as this problem seems, an analytical solution can only be obtained if the delta doping
concentration is not too high with respect to the background doping level. We make this assump-

tion below. After solving the problem, we study the limits imposed by this assumption on the
value of Nj.

It is easiest to work with the differential equation expressed in terms of the equilibrium
electrostatic potential ¢,. If we choose as origin of potentials the value that corresponds to
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Figure 4.17: Sketch of solution to delta doping problem of Fig. 4.16. From top to hottom: electron concentration,
charge density, electric field, electrostatic potential and energy band diagram.
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ne = Np, then following a procedure similar to that of Exercise 4.6, n, can be written as
ny(x) = Npexp(qoo,/kT). In terms of ¢,, we can rewrite Gauss’ law in Eq. 4.53 as:

a2, - qN_D(P 400
daz? €

X -1 4.66
P b (4.66)

This equation does not include the donor charge of the delta doped layer and therefore applies
only for x > 07 and x < 0~. We treat the charge associated with the donors in the delta-doped
r = 0 as a boundary condition to the solution of the differential equation.

This equation cannot be solved analytically in a general case. However, if the doping in
the delta doped layer is not too high, the electrostatic potential in the semiconductor will be
everywhere small enough in the scale of kT'/q for us to be able to expand the exponential in Eq.
4.66 around ¢, = 0 and select its first two terms (see Taylor series expansion in Appendix D).
When we do this, the differential equation is simplified to:

oo ¢o

—_— 4.
dz? — L5 (67)

where Lp has units of length and is defined as:

[ kT
Lo =\| x> (4.68)

A general solution to Eq. 4.67 can be written as:

‘We discuss the physics of Lp below.

x

¢o(z) = AeIp + Be Ip (4.69)

If we focus on & > 0" (the solution for # < 0~ can be easily obtained by symmetry), the
coefficient A must be equal to zero since we know that ¢, must decay away with x. We obtain
the value of B by matching boundary conditions at z = 0. At that location, we can create a
Gaussian pill box with sides located at z = 0~ and z = 07. Due to the symmetry of the problem,
the field emerging through the right side of the pill box is given by:

.oty W5 _ _ddo e
Eole=0")= 5" = —— le=or = 7 (4.70)

We solve for B here and insert the result into 4.69, to get:

gNsLp - .=
=

do(x) 5 Ip  forxz >0" (4.71)

From this, the electric field can be obtained as:
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doy _ aNs -z

Eolz) =— = z—e_rﬁ forz>07 (4.79)

The volume charge density is given by:

T = f— = —__ L_ ar +
polx) =€ v Lo e ‘o forz>0 (4.73)
Finally, n, is given by:
) — Po Ns T z +
no(z)=Np-L22=Np+—2¢"T5 forz>0 (4.74)
q 2Lp

You can now verify that the integral of n,(z) from x = 0% to infinity adds up to Np + Ns/2,
as it should be. All these results are sketched in Fig. 4.17.

There is a condition that needs to be fulfilled for our solution to be acceptable. The truncated
Taylor series expansion of exp(q¢,/kT) is reasonably valid if ¢, is not too high in the scale of
kT/q. The maximum value of ¢, occurs at & = 0. If we accept that the maximum tolerable
value for ¢, is kT'/q, then, from Eq. 4.71, we can conclude that Nj < 2NpLp. For higher values
than this, our analytical solution is suspect and we need to use numerical techniques to solve this
problem.

To summarize, we see that the delta doped layer gives rise to a distribution of volume charge

denslty that has a peculiar_ shape. . At the location of the delta- doped layer, there is a spike of

positive charge that arises from the donors. This is surrounded by a cloud of negative charge that
is associated with an electron concentration that exceeds the background uniform volume doping
level. The region with net charge is limited in space. Sufficiently far away from the delta doped
layer, neutrality is reestablished. The solution to the problem exhibits a characteristic length
that is given by Lp. The region with substantial volume charge density is confined to a few Lp
lengths around z = 0.

Lp emerges as the key characteristic length in many electrostatics problems in semiconductors.
It is called the Debye length®. From this p10blem we can see that the Debye length has to do
vﬂt_h_ the ability of a semiconductor region to ”screen” volume charge. Notice from its expression

in Eq. 4.68 that Lp is a property of the bemICOHdUCtOI‘ region surrounding the delta-doped layer

and temperature. In this lightly doped limit for N5 that we are discussing, Lp is not a function
of Nj.

This example illustrates the notion that Lp reflects the balance between drift and diffusion
that must exist in a semiconductor in thermal equilibrium. If for some reason, there is net fixed
charge in a semiconductor region, carriers redistribute themselves around this region in an effort to
screen out the charge as much as possible. The more carriers there are, the more effective they are

YLp as defined in Eq. 4.68 is actnally called the extrinsic Dehye length. It is also possible to define an intrinsic
Debye length in an intrinsic semiconductor. Since we will not use this later parameter in this book, here we will
refer to Lp as simply the Debye length.
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Figure 4.18: Debye length for Si at room temperature as a function of doping level.

at this. This explains the doping dependence of Lp. What works against perfect screening of net
fixed charge is diffusion. As carriers pile up around the fixed charge, the concentration gradient
that ensues drives them away through diffusion. As the temperature is increased, diffusion gets
comparatively stronger (through the Einstein relation) and the Debye length increases. It is the
balance between drift and diffusion that sets the value of the Debye length.

Fig. 4.18 graphs the Debye length for Si at room temperature. The Debye length is the same
regardless of the doping type. For typical doping levels the Debye length is quite short, of order
10-100 nm. As the doping level increases, the Debye length gets very short. It highly doped
regions, any disturbances from neutrality are confined to fairly small dimensions.

Our use of Boltzmann statistics makes the expression for Debye length in Eq. 4.68 and the
plot of Fig. 4.18 to not be valid in the degenerate regime. New expressions can be derived that
adequately deal with Fermi-Dirac statistics.

Quasi-neutral situations

The example in the previous section leaves clear how unwieldy differential equation 4.65 (or 4.66)
is. Analytical solutions are difficult even in relatively simple situations. There is an important
class of problems, however, that readily yields analytical solutions. We study them in this section.

Suppose that Np is a function of space that changes rather slowly with z. In this case, it is
reasonable to expect that n, also displays a slowly changing spatial dependence. In fact, we saw
in the delta doped example, that n, is a somehow "blunter” version of the doping distribution.
Under these circumstances, it is possible for the left-hand side term of Eq. 4.65 to be much
smaller than either term on the right hand side. If so, it then follows that:
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no(x) ~ Np(x) (4.75)

Expressed in a different way, if the doping profile changes slowly enough with position, the
equilibrium majority carrier concentration closely tracks the doping concentration in space. In
such a case, the net volume charge density is very small everywhere. It is because of this that
these are called quasi-neutral situations.

Once we postulate n,(z) through Eq. 4.75, the electric field can be obtained from Eq. 4.55,
the electrostatic potential by integration of the electric field, and the volume charge density by
using Gauss’ law in Eq. 4.50. Note that it would be inappropriate to conclude that Eq. 4.75
implies that p, = 0. p, is small, that is what the ”quasi” in quasi-neutrality means, but not zero.

How can we assess if we are in front of a quasi-neutral situation? Eq. 4.65 allows us to derive
a mathematical condition. If Eq. 4.75 holds, then the following inequality has to be fulfilled:

kT d?(In N
|C—QZ—#D—)| < Np (4.76)
or, equivalently:
o — N
|RT£J <1 (477)
D

Eq. 4.76 gives a condition that one can a priori check in a given impurity profile. This can
be expressed in a more compact way in terms of the Debye length. Using Eq. 4.68 in 4.76, we
can write:

; d2(lll Np)
Lhl—=—| <« 1 4.78
D| A2 | ( )
We can understand the physical meaning of this condition by inserting Eq. 4.55 in Eq. 4.77

to get:

d& kT
z — 4.
= | < : (4.79)

L)

Lpl|d€,/dz| represents the change in the electric field over a Debye length. In consequence, if
&, is small, L%|d€,/dz| is roughly the change of the electrostatic potential over a Debye length.
Eq. 4.79 then leads to a practical rough guideline for quasi-neutrality: For a non-uniformly doped
profile to be quasi-neutral in thermal equilibrium, the change of the electrostatic potential over a
Debye length must be much smaller than the thermal voltage.

This understanding helps us to figure out when is appropriate to consider non-uniformly doped
situations as quasi-neutral. What we need is for the doping profile not to change too fast in the
scale of Lp. So, the gentler the profile, the less volume charge density is going to appear and the
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more likely it is that the quasi-neutrality assumption applies. Also, the shorter the Debye length,
the sharper the profile can be before the quasi-neutrality approximation becomes inappropriate.
From looking at the reduction of Lp with doping level in Fig. 4.18, we can conclude that the
higher the doping level, the more likely it is that non-uniformly doped regions can be considered
quasi-neutral. This is relevant because in modern microelectronic devices, size reduction and the
need to obtain low parasitic resistance has meant that doping levels have been increasing over
time. In many devices, moderately and heavily doped regions can be considered quasi-neutral.
This greatly facilitates their analysis.

The following example illustrates how the quasi-neutrality assumption is to be used in a
non-uniformly doped situation in thermal equilibrium.

Example 2: a hyperbolic doping distribution

Consider an n-type semiconductor with a doping distribution in space given by:

x

Np(z) = Np, + ANptanh 17

(4.80)

Depending on the relative values of Np,, ANp and L., this profile can be quite steep or
rather gradual. An example is shown in Fig. 4.19 for Np, = 1016 ¢rm—3, ANp =5 x 1015 em ™3
and various values of L. spanning from 10 to 200 nm.

The figure shows also the electron concentration that results from this donor profile. This is
obtained by numerically solving differential equation 4.65. As expected, the electron profile is a
somehow smeared version of the donor profile. It is interesting to see the role of the characteristic
length of this donor distribution, L., in the resulting electron concentration. A short value of L.
means that the donor concentration changes rather abruptly in space. In this case, the electron
profile ends up being quite different from the donor profile. For long values of L., the electron
concentration approaches the donor concentration.

The relative discrepancy between n,(x) and Np(ax) is plotted in the figure below. For the
shortest value of L., the discrepancy is found to be quite large, as high as 50%. This is clearly
a situation with substantial volume charge density in space. For the longest value of L., the
discrepancy is as small as a few percentage points. This is a quasi-neutral situation.

The Debye length corresponding to the mean doping level of this profile of Np, = 10'% ¢m ™2
is about 40 nm. It is clear, then, that when L. > Lp, the profile can be considered quasi-neutral.
Otherwise, it cannot.

Under the assumption of quasi-neutrality, it is rather straightforward to solve this problem
analytically. The electron concentration is approximately equal to the doping level everywhere:

no(z) =~ Np(z) = Npo + ANptanh Li (4.81)

C

The electric field can be easily calculated using Eq. 4.55:
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Figure 4.19: Example of non-uniform n-type doping situation. The doping profile is given by Eq. 4.80 with
values of Np = 10'® em ™2 ANp = 5 x 10'° em~3 and various values of Lc spanning from 10 to 200 nm. Top:
doping profile and resulting electron concentration. Bottom: relative imbalance between electron concentration
and donor concentration (calculations and graphics courtesy of Ling Xia).

kT 1 ANp 1
e~ KT 1 ) 4.82
g q Le Npo cosh? -+ 2%%)% sinh % | )

If we select as origin of potentials ¢(n;) = 0, the electrostatic potential distribution is easily
obtained from Eq. 4.60:

KT 1 :
8o(@) = - In = (Npo + ANp tanh Li) (4.83)

1 [

Finally, the volume charge distribution can be obtained from Gauss’ law, Eq. 4.50:
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kT ANp Nposinh f + ANp cosh %—z s
Bt o — c : & .
= ¢ L2 (Npocosh® £ + &5 sinh 22)2

For x > 0, p, is positive since there are a few more donors than electrons. For z < 0, there
are more electrons than donors and p, is negative. All these results are graphed in Fig. 4.20.

We can now check the quasi-neutrality condition. From Eq. 4.77, quasi-neutrality prevails
when:

3 24 AN 2
o L ThaNs SmEiEehE
Np Np g L% Npo (cosh? i+ —D-i‘i‘\",\ll) > sinh i—f)z

The fraction with the hyperbolic functions is at most unity. We can then rewrite the quasi-
neutrality condition as:

Ny — ND
Np

Lp
L,

4 ANp

I
NDo

| &=

<1 (4.86)

In a case in which ANp is of the same order as Np,, quasi-neutrality is satisfied when the
characteristic length L. over which the doping profile changes is somehow larger than the Debye
length Lp. This is precisely what we found in the numerical results above.

This example illustrates how in spite of assuming n,(x) ~ Np(z) in the quasi-neutral approx-
imation, we can still derive a first-order expression for the electric field and charge distribution
in space that result from the small imbalance that exists between n,(z) and Np(z).

4.6 Quasi-Fermi levels and quasi-equilibrium

In Ch. 2 we learned that the Fermi level in a semiconductor uniquely characterizes the electron
and hole densities in equilibrium as well as their energy distributions in their respective bands.
Eqgs. 2.10 and 2.20 related the equilibrium carrier densities to the effective density of states in
the corresponding bands. A single value of E'r established this connection for both electrons and
holes simultaneously. '

In general, outside equilibrium the carrier densities are different from their equilibrium values.
It is then not possible to find a single value of Er that simultaneously relates n with N, and p
with N, in the manner that Egs. 2.27 and 2.35 do. We can however define two ”quasi-Fermi
levels,” one for electrons and another one for holes such that the functional relationships between
carrier densities and effective density of states given in Eqs. 2.27 and 2.35 are preserved, i.e.:

Efe? - E(‘

n= NCF]_/Q( kT ) ) (487)
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Figure 4.20: Example of quasi-neutral doping profile given by Np(z) = Np, + ANp tanh i

bottom: Np, E. @0, and p, as a function of the normalized space coordinate z/L..
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For clarity, we first simplity Eqs. 4.87 and 4.88 for non-degenerate situations:

j n = N.exp %
E‘u — h
p= N,exp Tf_

Integrated Microelectronic Devices: Physics and Modeling

From top to

(4.88)

(4.89)

(4.90)

The quasi-Fermi levels defined in this way serve as excellent visualization tools for carrier
concentrations and generation and recombination in semiconductors out of equilibrium. By their
very definition, carrier concentrations are directly related to the distance of each quasi-Fermi
level to its corresponding band edge through Eqgs. 4.89 and 4.90. The usefulness of these two

equations goes beyond this. Note that we can write the np product as:
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F igure 4.21: Tlustration of the location of the Fermi level and quasi-Fermi levels in an n-type sample under four
different situations: thermal equilibrium, low-level injection, high-level injection, and extraction.

2 Efe“th

np =mn; exp ——- (4.91)

This implies that if Fy. is drawn above Efp, then np > n?. This is a situation outside

equilibrium with excess carrier concentrations where net recombination is taking place. On the
other hand, if Ef. < Efp, then np < n'f and the semiconductor is below equilibrium. Net
generation is taking place. If the two quasi-Fermi levels coincide, then np = nf and the carrier
concentrations are in thermal equilibrium. All these facts can be quickly verified in a band

diagram by checking the relative position of the two quasi-Fermi levels.

As an illustration, Fig. 4.21 sketches four different energy band diagrams depicting different
situations. The diagram on the left corresponds to an n-type sample in thermal equilibrium.
In this case, there is only one Fermi level. The next diagram depicts a situation in which the
same sample is under low-level injection resulting, for example, from external light illumination.
Since under low-level injection n ~ Np, the quasi-Fermi level for electrons has not moved from
its equilibrium position. The quasi-Fermi level for holes, on the other hand, moves towards the
valence band because p = p,. Note also that Fy. is above Ey;. This means that net recombination
is taking place in this region of the semiconductor.

The third diagram is under high-level injection conditions, in which both carrier concentrations
are increased from their equilibrium values. In consequence, both quasi-Fermi levels move towards
their respective bands. If the sample remains quasi-neutral (as is usually the case), the distance
between each quasi-Fermi level and its corresponding band is about the same (we are assuming
here that the effective density of states of the conduction and valence bands are not too different
from each other).

The diagram on the far right represents the same sample in extraction, with the carrier
concentrations below their equilibrium values. In the energy band diagram, this is depicted by

the quasi-Fermi levels becoming further away from their respective bands. In extraction, Eyy is
above Ef. and net generation prevails.
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Exercise 4.7: Calculate the relative location with respect to the band edges of the Fermi level or
quasi-Fermi levels, as appropriate, for a uniformly-doped n-type Si sample with Np = 1016 g3
at room temperature in the following situations: i) in equilibrium; i) in low-level mjection such
that there are 10" em™ holes; iii) in high-level injection such that there are 1018 3 electrons;
and iv) in extraction where the equilibrium carrier concentrations have been reduced by 10 orders
of magnitude.

i) In thermal equilibrium, n, ~ Np = 1016 ¢m=3 and Po = n2/n, ~ 101 em=3, Using Eq. 2.30,
the Fermi level is found to be:

N, 2.9 x 101?
Ba=Br=hT1n2 = 0026222 107 _ o1 avr
T, 1016

it) In low-level injection with p = 10" c¢m~2, the electron concentration does not change from
its equilibrium value. In consequence, Ef, is located with respect to E. just where Er was in
equilibrium. Hence, E. — Fy, = 0.21 ¢V. The location of Efp can be obtained from Eq. 4.90:

N, 3.1 12
Egp — B, = kTIn =% = 0.026 z-nd—lim_ =0.33 eV
P

pl4

#z) Under high-level injection conditions with n = 10'® ¢m=3, p takes the same value. In conse-
£

quence,
) N, 2.9 % 109
bc = Efc =kTn ? = 0.026 IH—TJT = 0.088 eV
Epi— By = k102" — 00260312107 _ o089 ev
fh v =R 1 2 = . TJ.—]‘OT- = u. c

Both quasi-Fermi levels approach their respective bands.

iv) Under extraction conditions with ten orders of magnitude fewer carriers than in equilibrium,
the location of the quasi-Fermi levels is:

N, 2.9 x 1019
E.—Ef=kTIn T 0.026 ln-l—DG— =0.81 eV
e 3.1 x 1019
Ey, —E,=kTIn gp_ = 0.026 Zn——])a_—b. =1.53 eV

Notice that E;. has gotten rather close to the valence band edge while Ey;, has penetrated into
the conduction band.

Quasi-Fermi levels are not only great tools to visualize carrier concentrations and generation
and recombination, but also they help us picture carrier flow. To realize this, let us examine the
expressions of the carrier currents outside thermal equilibrium. Let us do it first for electrons. If
the electric field is not very high, from Eqgs. 4.21 and 4.40, the electron current is given by:

dn
Je = quen€ + QDeE (4.92)

This equation can be rewritten in a very interesting way. Taking the derivative with respect
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to x in Eq. 4.89, we find:

dn n dEy. q
el PR -y 4.93
== de "' (4.98)

Substituting this into Eq. 4.92 and using the Einstein relation Eq. 4.38, we finally obtain:

dEf.
dz

Jo = len (4.94)

Had we carried out an identical exercise for holes, we would have obtained an equivalent
expression:

dE
Jh = Hnp da{h (4.95)

Egs. 4.94 and 4.95 are extremely important and useful relationships. They state that the
gradient of the quasi-Fermi levels can be viewed as a sort of unified driving force for carrier flow
that combines drift and diffusion. The reason behind this is made obvious if we equate Egs. 4.94
and 4.95, respectively, to the fundamental current relationships 4.18 and 4.20. Solving for the
gradient of the quasi-Fermi level we find:

dEf. q

S et 4.
dz “e’Ue. (4.96)
S o A, (4.97)
dz Hh

For both electrons and holes, we find that the gradient of the quasi-Fermi level is proportional
to the carrier velocity, indeed, a very fundamental property of a carrier ensemble. It should not
be surprising, then, that even though equations 4.94 and 4.95 were derived under fairly restrictive
conditions (low-ficld and Maxwell-Boltzmann statistics), they are in fact very general. The same
expressions can be obtained in a degenerate semiconductor and also in the presence of high electric
fields.

The quasi-Fermi levels provide great insight into carrier flow in a variety of situations. In the
presence of a complex situation with drift and diffusion simultaneously taking place, the behavior
of the quasi-Fermi levels quickly indicates such things as the net direction of carrier flow and the
relative magnitude of carrier velocity. This can be understood by examining Eqs. 4.96 and 4.97
which state that the gradient of the quasi-Fermi level is proportional to the corresponding carrier
velocity. This suggests that if in a certain region a quasi-Fermi level is depicted as flat, then the

correspondlng carrier velocity is zero or very. small. If a cﬁmm-Furm level exhibits a slope, then

carriers are ﬂomng The carrier velocity is proportional to the slope of the quasi-Fermi level in
the band diagram.
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thermal equilibrium under bias
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Figure 4.22: Tlustration of current visualization in energy band diagrams through quasi-Fermi levels. Top two
diagrams depict a uniformly-doped n-type semiconductor in thermal equilibrium (left) and under bias (right).
Bottom two diagrams show a uniformly-doped p-type semiconductor in thermal equilibrium (left) and under bias
(right).

Fig. 4.22 shows several examples. The top left diagram shows a uniformly-doped n-type
semiconductor in thermal equilibrium. We can judge that this is the case because the Fermi
level is labeled Er and it is sketched flat. To the right, is the same semiconductor under bias.
We understand this because the conduction and valence bands are shown inclined in space. We
also see the quasi-Fermi level for electrons running parallel to them. With an imaginary x-axis
running from left to right in this diagram, the gradient of Ey, would be positive, and therefore
Eq. 4.96 would suggest that the electron velocity is negative, that is, electrons flow from right to
left down the conduction band. -

The two figures underneath depict similar situations for a uniformly-doped p-type semicon-
ductor under thermal equilibrium (on the left) and under bias (on the right). In this last case,
hole current flows also from left to right which corresponds to a hole flow from left to right.
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Exercise 4.8: FEstimate the current density flowing through a Si sample with the energy band
diagram sketched below at room temperature.

2
1.8 -
1.6 -
1.4
1.2+

E (eV)

x (um}

This energy band diagram reveals a sample with a uniform electric field applied to it. We could
compute the current density from the drift expression Eq. 4.23. As we have just learned in this
section, we can also use Eqs. 4.94 and 4.95. Let us proceed this way.

In the diagram, the two quasi-Fermi levels overlap. They are also fairly close to the conduction
band but quite far away from the valence band. This implies that n = p and we only need to
account for electron current. The electron concentration can be estimated from the 0.1 eV distance
between E. and Ey.. As we learned in Ch. 2, this yields:

Eyf. —
I—F-— =29x% 10¥exp

17
KT 00259'61><10

n = N.exp

This is then an n-type sample with Np ~ 6.1 x 10!7 em™2. For this doping level, Fig. 4.3 shows
that the electron mobility is about 300 em?/V.s.

The gradient of Ey, is:

dEse 0.9 eV -
de  10x 102 em 900 eV/em

Putting it all together into Eq. 4.94, we finally get:

Je =300 ecm?/V.s x 6.1 x 1077 em™ x 900 eV/em = 1.7 x 102 ¢/em? - s = 2.6 x 10* A/em?

The concept of quasi-Fermi level hinges on the notion of quasa -equilibrium. Basically, even
though we are dealing with situations outside equilibrium, the carrier distribution in energy never
departs too far from thermal equilibrium. The fundamental reason for this is the fact that the
scattering time, or average time between collisions, is several orders of magnitude smaller than
the time scales that characterize dynamic carrier behavior in semiconductor devices (depending
on the particular device, this would be the carrier lifetime or the transit time due to drift or
diffusion, as we will see in the next chapter). Thus, on time scales of interest to us, carriers
undergo many scattering events that keep their energy - distribution in close thermal equilibrium
with the lattice. It is for this reason that it is possible to define a quasi-Fermi level that plays
a role equivalent to the Fermi level in strict thermal equilibrium. Often, this near equilibrium
carrier distribution in energy is called a Mazwellian distribution.

Figure 4.23 helps to clarify the concept of quasi-equilibrium in a situation with excess carriers.
The figure shows the sequence of events that follows the sudden generation of electron-hole pairs
by a pulse of energetic photons. Let us assume that the energy of the photon beam is high
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(1) generation (2} thermalization  (3) recombination

Figure 4.23: Sketch illustrating the applicability of the notion of quasi-equilibrium to describe the recombination
process that follows a burst of hot carrier generation by a pulse of energetic photons. Hot electrons and holes loge
their extra energy on a time scale much shorter than the recombination lifetime. As a result, recombination takes
place among carriers that have reached a quasi-equilibrium state with the lattice and are well described by their
respective quasi-Fermi levels.

enough so that right after the generation event hot electrons and hot holes with kinetic energies
substantially higher than the thermal energy have been produced (left diagram). Right after this
burst of carrier generation, two things are going to happen. First, electrons and holes will start
losmg excess energy | by phonon emission, a pmcasa that is knowu as ”thermallzatlon = In addition,
under typical mtuatlonb, the time 1t takes to’ thermahze” the hot carriers (a few scattering times,
or < 1 ps) is much shorter than the recombination lifetimes (s —ms). Therefore, thermalization
takes place first (middle diagram) and recombination occurs after that (right diagram). In this
scenario, recombination events mostly involve excess electrons and holes that have reached a
quasi-equilibrium state with the lattice. The recombination dynamics can therefore be studied
with the electron and hole distributions described through their respective quasi-Fermi levels.

In the situation described here, while recombination is taking place, the electrons are in near

equilibrium among themselves and with the lattice (meaning, they suffer many collisions with the
lattice in the time scale of the carrier lifetime). Similarly, holes are also near equilibrium among
themselves and with the lattice. However, the electrons are not in equilibrium with _the holes.
That is what the process of recombination is trying to correct and it will take several lifetimes for
equilibrium to be established. It is for this reason that we need to define two different quasi-Fermi

levels that characterize the Maxwellian distributions of electrons and holes separately.

It is important to also think about the implications and constraints of quasi-equilibrium in a
different situation, one in which drift is the dominant mechanism. Consider a semiconductor bar
with a certain electron concentration and an electric field applied (we study how to do this in the
next chapter). In steady state, as electrons drift, they pick up kinetic energy from the electric
field and release it to the lattice through phonon emission. Quasi-equilibrium means that the
electron distribution does not significantly depart from the equilibrium one. We can ensure this
if in the time scale in which carriers would pick up a thermal energy worth of kinetic energy from
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Figure 4.24: Sketch illustrating the applicability of the notion of quasi-equilibrium to describe electron drift in
an electric field. For quasi-equilibrium to apply, electrons must not gain more than about a kT worth of kinetic
energy from the electric field in a mean free path.

the electric field, they suffer many collisions that dissipate this energy into the lattice through
phonon emission. This applies if the distance over which the potential energy changes by an
amount k7" is much longer than a mean free path. This is the relevant distance because if carriers
suffered no energy dissipating collisions, as the potential energy associated with the electric field
drops by KT, their kinetic energy increases by the same amount (Fig. 4.24).

Let’s define this distance as Ayp. We need that Agp > .. Since, to the first order, Ak =
kT/E, we must then require that &€ < kT/l.. ls. depends on doping level. For the value
determined in Exercise 4.1, l.. = 17 nim, the constraint on the electric field is £ < 1.5x10* V/em.
Higher electric field values are tolerable if the mean-free path is shorter. The order of magnitude
of this maximum electric field is quite small for electrons in Si at room temperature. This
means that in many Si devices today, carriers in an electric field can get quite "hot” and quasi-
equilibrium is not an appropriate concept. When this happens, the use of the quasi-Fermi level is
suspect. We will still use this concept to sketch energy band diagrams in these situations mostly
~ for convenience. It is important to realize that we are really operating beyond the usability of
this concept.

4.7 Summary

* Electrons and holes are charged particles that can move in a semiconductor (”carriers”).
If they do, an electric current flows. The current density that is produced is directly
proportional fo the carrier concentration and the carrier velocity:

Jei= —qnve Jp = qPUh

e Carriers drift in response to the application of an electric field. If the electric field is small

enough, carriers drift with a velocity that is proportional to the field. The current density
is then:
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Ji = qlpen + pnp)€
For high enough fields, a saturation velocity is reached. The current density becomes:

Jt.smt = Q('fl’chac =T p’”h.asat)

Carriers diffuse as a result of concentration gradients. The diffusion currents for electrons
and holes are, respectively:
dn

dp
Jp = —qDp—
d K Qh:r:

d

Detailed balance in thermal equilibrium demands that J, = .J, = 0 everywhere.

In a non-uniformly doped semiconductor in thermal equilibrium, a balance between carrier
drift and diffusion results in a majority carrier profile in space that in general is different
from the doping concentration distribution. This results in a spatial charge and an electric
field inside the semiconductor. The electrostatic potential distribution is given by:

, KT . ng(x) KT po(ref)
P s = e~ 0 " @)

For a reasonably extrinsic semiconductor, if the doping distribution does not change too
abruptly in space, the semiconductor remains "quasi-neutral” and the majority carrier
concentration closely tracks the doping level.

The time scale over which carriers can have energy distributions that are very different from
equilibrium is much shorter than the time scales of interest in typical device operation, such
as carrier lifetimes or transit times. For practical purposes, the carrier energy distributions
can be considered close to equilibrium.

Outside equilibrium, it is useful to define electron and hole quasi-Fermi levels as follows:

Efc =5 Ec
kT

E‘L.‘ _th

= J?\rr:]'-llfz( k’,T

) p = NuFy ol )

Gradients of quasi-Fermi levels can be considered as unified driving forces for carrier flow,
regardless of whether the carriers move by drift, diffusion, or a combination of both pro-
cesses:

dEfp
dz

Jh. = UnDP

The gradient of the quasi-Fermi level is linearly proportional to the net carrier velocity.
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4.8 Further reading

There are several books with material relevant to this chapter.

The Feynman Lectures on Physics, Volume I by R. P. Feynman, R. B. Leighton, and
M. Sands, Addison-Wesley 1963 (ISBN 0-201-02116-1-P, QC23.F435). Ch. 14 discusses forces
and potential energy. Ch. 40 introduces the Boltzmann law and the velocity distribution of
ideal particles. Ch. 43 contains an intuitive and easy to understand discussion about thermal
motion, drift, and diffusion of gas ions and molecules. These chapters make easy but extremely
illuminating reading. Highly recommended.

Introduction to Semiconductor Physics by R. B. Adler, A. C. Smith, and R. L. Longini,
Wiley, 1964 (ISBN 0-471-00887-7, QC612.54.S471 v.1). The first volume of the pioneering SEEC
(Semiconductor Electronics Education Committee) series is nothing but a masterpiece. To this
date, the clarity of the explanations and the physical insight that this little book provides has
remained unmatched by any other textbook. In spite of its age, the selection of topics is still
relevant and of high priority reading for serious students of semiconductor device physics. Material
that is significant to this chapter is presented in sections 3.6 (non-uniformly doped situations)
and 4.2 (Gauss’ law and charge neutrality).

Fundamentals of Solid-State Electronics by C.-T. Sah, World Scientific, 1991 (ISBN
9810206372, TK7871.85.823). In addition to other topics relevant to other chapters, Ch. 3 of
Sah’s book describes in detail drift, diffusion and the quasi-Fermi levels. In particular, there
is a fairly thorough and quantitative presentation of the various scattering mechanisms. The
discussion surrounding the introduction of the quasi-Fermi levels is insightful.

Fundamentals of Semiconductor Theory and Device Physics by S. Wang, Prentice
Hall, 1989 (ISBN 0-13-344409-0, QC611.W32). Always at a substantially higher level, Wang’s
book has a lot of material that merits reading, even if ignoring the math. The scattering mech-
anisms are carefully and rigorously described in §6.7. §§10.2 and 10.8 have excellent discussions
on velocity saturation. §§10.3 and 10.9 describe the electron transfer effect and the peculiar
velocity-field characteristics of TII-V semiconductors.

Fundamentals of Carrier Transport by M. Lundstrom, 2nd Edition, Cambridge Uni-
versity Press, 2000 (ISBN 0-521-63134-3). This is an excellent treatment of carrier transport
in semiconductors far more rigorous and at a substantially higher level than the present text.
Particularly relevant here are Ch. 2 on carrier scattering, Ch. 3 on the Boltzmann transport
equation, and Ch. 4 on low-field transport.
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AT4.1 Selected properties of the Gamma function

The Gamma function is defined as:

m .
T(p) = / P~le dn (4.98)
0

In situations involving semiconductors, the Gamma function typically makes an appearance
for a few positive integer or fractional values of p.

For real values of p (other than zero or negative integers), the gamma function has the following
property:

T(p+1) =pI(p) (4.99)

For positive integer values of p, let us refer to them as n, the Gamma function has the following
property:

I'(n) = (n—1)! (4.100)

Commonly used values of the Gamma function are:

ra) = 1 (4.101)
1"(%) = Vr (4.102)

Using these and the properties in Eqs. 4.99 and 4.100. other common values of the Gamma
function can be easily derived.

AT4.2 Hot carrier effects

A charged particle immersed in an electric field drifts due to the electrostatic force that acts upon
it. Between two scattering events, the carrier acquires a velocity component in the direction of
the electric field. At the same time, the particle extracts kinetic energy from the potential energy
of the field. If the additional kinetic energy is much smaller than the thermal energy, then the
average energy of the particle is not much affected and the scattering rates are insignificantly
upset from their equilibrium values. This is a quasi-equilibrium situation. If the particle acquires
a kinetic energy from the field that is comparable or exceeds the thermal energy, the physics of
the situation change substantially. This is known as the "hot”-carrier regime.
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When carriers become hot, interesting effects occur. Earlier in this chapter we mentioned
velocity saturation. In Ch. 3, we briefly described impact ionization, avalanche multiplication,
and avalanche breakdown. These are all hot-carrier effects. The study of the physics of hot
carriers is a rich field with a plethora of activity. As microelectronic devices shrink in size,
the magnitude of the electric fields inside tends to increase and hot-carrier effects become more
prominent and worrysome. Device designers ignore them at their own peril!

The aim of this Advanced Topics Section is to outline some of the underlying physics of hot-
carrier effects and some of the most important consequences for microelectronic device designers.
In order to do this, we must first look in more detail at the physics of phonon scattering. This
leads into a discussion about the criteria for the onset of hot-carrier effects. We then study
in more detail two important effects: hot-carrier transport and impact ionization. Two related
physical phenomena, avalanche multiplication and avalanche breakdown are discussed in Ch. 5.

AT4.2.1 Energy relaxation vs. momentum relaxation

In asolid, not all phonons are created equal. A complex lattice, such as the one of a semiconductor,
allows many vibrational modes. All of these modes are very effective in exchanging momentum
with carriers, that is, in randomizing a carrier’'s velocity. Some of these modes, however, are
more effective than others in exchanging energy with carriers. In typical semiconductors, such as
Si and GaAs, the most frequent collisions between phonons and carriers succeed in randomizing
the velocity of the carrier but exchange little energy (a few meV). Only collisions with special
kinds of phonons, the so-called optical phonons, exchange a sizable amount of energy, the optical
phonon energy, Eqp. a few tens of eV,

This important distinction is captured in two definitions: the momentum relaxation time, T)s,
and the energy relazation time, Tp. Ty is the average time required to randomize the momentum
of a carrier. 7 is the average time required for a carrier to lose any excess energy it might have
over the thermal energy. In most semiconductors 73y < 7. In lowly-doped Si, for example, under
quasi-equilibrium conditions (for low fields), 7y =~ 0.2 ps, while 75 =~ 0.5 ps.

When a carrier is immersed in an electric field, this distinction between momentum and energy
relaxation matters a lot. As we discussed above, between two collisions, a carrier picks up not
only velocity (or momentum) in the direction of the electric field, but also kinetic energy. A
momentum-exchanging collision randomizes the velocity, and therefore affects the net forward
velocity of the carrier, but only absorbs a small amount of energy. In consequence, the average
energy of the carriers can build up. When this energy is high enough, optical phonon emission
becomes more likely and the release of energy to the lattice is enhanced. Eventually a steady
state situation is reached in which on average the carrier ensemble does not change its kinetic
energy. The time that it takes for this steady state situation to be established is on the order of
the energy relaxation time. If the electric field is suddenly turned off, it will take a time of a few
times 7 for the carriers to thermalize by releasing their excess kinetic energy to the lattice.

The steady-state kinetic energy acquired by the carriers from an electric field is easy to
estimate. Let us consider a chunk of uniformly-doped n-type semiconductor of cross-sectional
area A and length L (similar arguments apply for a p-type semiconductor). With a voltage V'



208 Integrated Microelectronic Devices: Physics and Modeling

applied to it, a current I flows. The power dissipated in this piece of semiconductor is:

W=|IV]= qn-?;g”ﬁALE (4.103)

where we have used Eq. 4.18 and we have assumed that the electric field is uniform along the
length of the sample.

Since nAL is the total number of electrons in the sample, the power dissipated per electron
is:

w = qt:fﬂftg (4.104)

For an electron it takes a mean time 75 to release its extra kinetic energy to the latice. On
average, then, the kinetic energy picked up from the field by one electron is:

AEg = quirftery (4.105)

This result indicates that the excess kinetic energy is linearly proportional to the electric field.
This is actually what is found if detailed calculations are performed, as shown in Fig. 4.25. This
figure shows the average kinetic energy of electrons, Ef, in Si at room temperature in a uniform
electric field, as a function of the electric field, as calculated using a Monte Carlo technique by
Fischetti. Below a field of about 8 kV/em, the average energy of the electrons is equal to the
thermal energy. Above this field, the average energy increases rapidly. For a field of 200 kV/cm,
for example, the average energy is about 1 eV above the thermal energy.

When the excess kinetic energy is comparable to the thermal energy, hot-electron effects
become important. For n-type Si, for example, using a value of 75 ~ 0.5 ps, a value of £ =
7.8 kV/em is required for AEg to equal the thermal energy ,—ng = 39 meV at room temperature.

The energy relaxation time depends slightly on the average energy. Fig. 4.26 shows its
dependence on the magnitude of a uniform electric field in Si, also calculated by Fischetti. A
consequence of the weak dependence of 7g on &, is that the average energy increases nearly
linearly with electric field, as shown in Fig. 4.25.

AT4.2.2 Hot-electron transport

An important consequence of carriers acquiring additional kinetic energy in an electric field is that
the likelihood of velocity randomizing collisions increases. This is because the higher the energy,
the larger the density of states of the bands and the more states the carriers can scatter into. In
consequence, the momentum relaxation time decreases as the average carrier energy increases.
At high enough energy, 7ps ~ 1/Ek (this is a consequence of g(E) ~ v/E). In a uniform electric
field, since Ex ~ &, then Tpy ~ 1/, as seen in Fig. 4.26.
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Figure 4.25: Average kinetic energy of electrons in uniform electric field in Si at room temperature as a function
of the electric field [data courtesy of M. Fischetti, IBM].
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Figure 4.26: Energy and momentum relaxation times for electrons immersed in a uniform electric field in Si at
room temperature as a function of electric field [data courtesy of M. Fischetti, IBM].
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A decrease in p; brings with it, according with Eq. 4.10, a reduction in the mobility. Even-
tually, at high enough fields, since tay ~ 1/, the mobility drops also as ~ 1/, and the drift
velocity saturates.

A rough estimate of the saturation velocity can be obtained from the following simple argu-
ment. At high electric fields under steady-state conditions, the kinetic energy acquired from the
electric field by a carrier in between two collisions must, on average, be entirely released at the
next collision. If that were not the case, the average carrier energy would still be increasing and
a steady state situation would not be reached. The maximum energy that a collision with the
lattice can release, as discussed in Ch. 1, is the optical phonon energy, Eope. In consequence,
equating the kinetic energy acquired between collisions to Eqy, yields (within a small numerical
factor):

Vsat = 1| o —2 (4.106)

The factor of 8/37 takes care of the statistical distribution of the carrier velocities. This
equation is derived under the assumption of an ideal parabolic band. At high energies, the bands
of Si and GaAs are more complicated than this simple picture. In spite of that, Eq. 4.106 predicts
values of v, for electrons and holes in Si and GaAs that are fairly close to the measured ones.

Eq 4.106 suggests that the saturation velocity is temperature independent. Experimentally,
however, it is found that there is a weak but noticeable negative temperature dependence to it.
The higher the temperature, the lower the saturation velocity. The reason for this temperature
dependence is not difficult to understand. The probability that an electron with energy higher
than E,; emits an optical phonon is not unity but it increases the higher the energy in excess
of Eypt. At higher temperatures the electron energy distibution is more spread out and there are
proportionally more electrons at high energies. As a result, at high temperatures, the probability
of phonon emission increases as F increases over Eqpt, bringing down with it the saturation
velocity.

AT4.2.3 Impact ionization

If a carrier that is sufficiently hot collides with the lattice, it can donate the kinetic energy that
it has acquired from the electric field in the generation of an electron-hole pair. This is the
process of impact ionization briefly discussed in Ch. 3. Impact ionization can be viewed in two
ways, as a generation mechanism as in Ch. 3, or as a scattering mechanism that modifies the
momentum and the energy of the impact ionizing carrier. For most purposes, we are interested
in the first picture since the impact generated carriers contribute to the total current which
gets in consequence multiplied. The scattering picture is less relevant because phonon emission
dominates the scattering rates of hot electrons at all energies but the highest ones.

Impact ionization is quantified by defining an impact ionization coefficient, o, as the average
number of ionizations per unit length per carrier. It has the units of em™!. The inverse of the
impact ionization coefficient can be thought of as the average distance traveled by a carrier in the
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Figure 4.27: Impact ionization coefficient of electrons and holes as a function of electric field for Si at room
temperature,

field direction between two impact ionizing collisions. a is a strong function of the electric field.
Fig. 4.27 shows the room temperature impact ionization coefficients of electrons and holes in Si
under a uniform electric field. This is a semilogarithmic plot as a function of the inverse electric
field. This plot reveals that both a,. and a4, follow a law of the form:

o~ Aexp(—%) (4.107)

with A and B two constants that depend slightly on the electric field. The values of A and B are
given in Appendix E.

This functional relationship makes reasonable physical sense. In order for a carrier immersed
in an electric field to produce an impact ionization event, it must first acquire sufficient energy
from the electric field. This minimum value is known as the impact ionization threshold energy,
Ei;. For a carrier to acquire this energy, it must at least travel a distance l;; = E;i/e€ inside
the electric field. The likelihood of a carrier traveling this distance without undergoing a single
collision is P(l;;) = exp(—l;;/l.), where . is the mean free path. In consequence, the ionization
rate should go as: :

1 i
o~ ;exp(—i—;) = grJgexp(—

Eii

) (4.108)

This equation, in spite of the simplifying assumptions that were made in its derivation, cap-
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tures several key dependencies that are observed in experiments. First, it reveals the inverse
exponential dependence on the electric field. Second, it shows an exponential dependence, with
a minus sign, on the threshold energy E;;. This is consistent with the observation that semi-
conductors with a wide bandgap and a higher value of Ej; exhibit lower values of a. Finally,
the dependence on the mean free path in the expression is consistent with the observation that
the impact ionization coeflicient decreases with temperature. The higher the temperature, the
shorter the mean free path and the harder it is for a carrier to acquire the required threshold
energy.

The proper value of E;; and its relationship with the bandgap of the semiconductor has been
a matter of discussion among researchers in the field. This is not merely an academic issue. For
a long time it was believed that E;; ~ 1.5E,. This suggested that using voltages below about
1.5 V or so in scaled-down Si MOSFETSs would completely eliminate impact ionization which is
a major reliability concern. Recently, impact ionization has been observed all the way down to
sub-bandgap voltages. The reason is two-fold. On the one hand, the carrier distribution has a
high energy tail. On the other hand, it is possible for the impact ionization event to coincide with
a phonon collision. In this way, Ej; can be as low as E,. The way to view Ej; is not so much as
a hard threshold below which impact ionization is impossible, but a pragmatic threshold energy
above which impact ionization becomes significant. Consistent with this approach. a value of E;
for Si equal to the bandgap is sensible choice.

Tmpact ionization is a generation mechanism. When carriers drift in an electric field, some
of the energy that they acquire from the electric field can be spent in generating electron-hole
pairs. Naturally, the generation rate must depend on the carrier drift lux. In fact, it should be
linear in the flux, that is, the higher the flux of carriers that drift in an electric field, the higher
the generation rate due to impact ionization.

The relationship between the generation rate (in units of em™3 - s71) and drift flux (with
units of em ™2 - s71), is easy to derive. Let us do it for electrons. Looking back at Fig. 4.6,
in an elemental time dt, electrons drift a distance v */tdt, where v@"/t is the electron drift
velocity. The probability that an electron undergoes an impact ionization event in this distance
is acvg’""f tdt. If the concentration of electrons is n. the total number of generation events in time
dt is naevd™/'dt. Per unit time, then, the generation rate is simply no.vi™/* = a.F.(drift).
Using similar arguments, it is easy to derive an expression for the generation rate due to impact
ionization of holes. In both cases, the generation rate must be a positive number, regardless of
the sign of the drift flux. The total generation rate due to impact ionization is then:

Gii = ae|Fe(drift)] + ap|Fy(drift)] (4.109)

where the absolute symbols are used to insure that Gy; is always positive independently of the
choice that is made for the axis.

Eq. 4.109 is the basis for the treatment of carrier multiplication and avalanche breakdown
that is presented in Ch. 5.



