Mathematics of Data: From Theory to Computation (Fall 2024)

Description:

Learning outcomes:

Prerequisites:

Language:

Class Times:

Mathematical Optimization offers a unified framework for obtaining numeri-
cal solutions to data analytics problems, oftentimes with provable statistical
guarantees of correctness at well-understood computational costs.

This course provides an overview of recent advances in mathematical opti-
mization and statistical analysis for machine learning. We review the emerg-
ing learning formulations and models as well as their guarantees, describe
scalable solution techniques and algorithms, and illustrate the trade-offs in-
volved.

By the end of the course, the students are expected to understand the so-
called time-data tradeoffs in data analytics. In particular, the students must
be able to:

1. Choose an appropriate convex or non-convex formulation for a data
analytics problem at hand;

2. Estimate the underlying data size requirements for the correctness of
its solution;

3. Implement an appropriate optimization algorithm based on the avail-
able computational platform;

4. Decide on a meaningful level of optimization accuracy for stopping the
algorithm;

5. Characterize the time required for their algorithm to obtain a numer-
ical solution with the chosen accuracy.

Previous coursework in calculus, linear algebra, and probability is required.
Familiarity with optimization is useful. Some familiarity with python, and
basic knowledge of one deep learning framework (Pytorch, TensorFlow, JAX)
is helpful.

English

Mondays 9:00-12:00 in CM 1 5, Fridays 16:00-19:00 in CM 1 1 (first three
weeks) and remotely on Zoom (https://go.epfl.ch/mod-zoom).


https://go.epfl.ch/mod-zoom

Lab & office hours:

Instructor:

Head TA:

Credits:
Course Website:

Resources:

Honor Code:

Grading:

Fridays (fourth week onward) 16:00-19:00 in CM 1 1 and, when necessary,
remotely on Zoom (https://go.epfl.ch/mod-zoom-1ab).

Prof. Volkan Cevher, ELE 233, volkan.cevher@epfl.ch

Yongtao Wu (yongtao.wuQepfl.ch)
Pedro Abranches (pedro.abranches@epfl.ch)

6
https://go.epfl.ch/mad-moodle

Reading resources will be provided during lectures. The recordings
of the lectures will be available on Mediaspace: https://go.epfl.ch/
mediaspaceMoD . It is possible to follow the course remotely.

The EPFL honor code applies to the course: https://polylex.epfl.ch/
wp-content/uploads/2019/01/2.3.1_ch_code_honor_en.pdfl

The default grade after registering for the course is 1. The first homework
is worth 2 points, second and third homeworks are 1 point each and the
written exam is 1 point.

e Three 3-week homework exercises.

e Your answers to the homework questions should be submitted via the
Moodle page before the due date. Late submissions are not allowed,
and you will get zero point for the corresponding homework.

e Discussing concepts with other students is OK; however, each home-
work exercise should be attempted and completed individually.

e Copying and cheating on homework will not be tolerated. The first
time results in zero point for the corresponding homework, and the
second time results in zero point for the whole course.
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Lecture 1:

Lecture 2:

Lecture 3:

Lecture 4:

Lecture 5:

Lecture 6:

Lecture 7:
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Lecture 9:

Lecture 10:

Lecture 11:

Lecture 12:

Lecture 13:

Lecture 14:

Lecture 15:

Course Outline

Introduction. The role of models and data. Maximum-likelihood formulations. Sample
complexity bounds for estimation and prediction.

Generalized linear models. Logistic regression.
Linear algebra reminders. Gradients. Reading convergence plots.

Optimization algorithms. Optimality measures. Structures in optimization. Gradient de-
scent. Gradient descent for smooth functions.

Optimality of convergence rates. Lower bounds. Accelerated gradient descent. Concept of
total complexity. Adaptive methods. Tensor methods.

Stochastic gradient descent. Concise signal models. Compressive sensing. Sample com-
plexity bounds for estimation and prediction. Challenges to optimization algorithms for

non-smooth optimization. Subgradient method.

Introduction to proximal-operators. Proximal gradient methods. Linear minimization ora-
cles. Conditional gradient method for constrained optimization.

Variance reduction. Introduction to deep learning. Challenges in deep learning theory and
applications.

Generalization through uniform convergence bounds. Rademacher complexity. Double
descent curves and over-parameterization. Implicit regularization. Generalization bounds
using stability.

Escaping saddle points. Adaptive gradient methods.

Adversarial machine learning and generative adversarial networks (GANs). Wasserstein
GAN. Difficulty of minimax optimization.

Robustness in deep learning. Diffusion models.

Primal-dual optimization I: Fundamentals of minimax problems. Fenchel conjugates. Du-
ality. Extra gradient method. Chambolle-Pock algorithm. Stochastic primal-dual methods.

Primal-dual optimization II: Augmented Lagrangian gradient methods. Semi-definite pro-
gramming. HCGM and CGAL algorithms.

Language models: Basis of language models. Self-attention and Transformer. GPT family.



