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Recall Lecture 3 - Statistical learning with streaming data
◦ Recall that statistical learning seeks to find a h⋆ ∈ H that minimizes the expected risk,

h⋆ ∈ arg min
h∈H

{
R(h) := E(a,b) [L(h(a), b)]

}
.

Abstract gradient method

hk+1 = hk − αk∇R(hk) = hk − αkE(a,b)[∇L(hk(a), b)].

Not implementable in practice as the distribution of (a, b) is unknown =⇒ cannot compute E(a,b).

◦ In practice, data can arrive in a streaming way.

A parametric example: Markowitz portfolio optimization

x⋆ := min
x∈X

{
E
[
|b− ⟨x, a⟩|2

]}
▶ hx(·) = ⟨x, ·⟩
▶ b ∈ R is the desired return & a ∈ Rp are the stock returns
▶ X is intersection of the standard simplex and the constraint: ⟨x,E[a]⟩ ≥ ρ.
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Recall Lecture 3 - Stochastic programming

Problem (Mathematical formulation)
Consider the following convex minimization problem:

f⋆ = min
x∈Rp

{
f(x) := E[f(x, θ)]

}
▶ θ is a random vector whose probability distribution is supported on set Θ.
▶ f(x) := E[f(x, θ)] is nonconvex, differentiable, bounded from below and L-smooth.
▶ The solution set S⋆ := {x⋆ ∈ dom (f) : f(x⋆) = f⋆} is nonempty.

Stochastic gradient descent (SGD)

1. Choose x0 ∈ Rp and (αk)k∈N ∈ (0, +∞)N.
2. For k = 0, 1, . . . perform:

xk+1 = xk − αkG(xk
, θk).

Remarks:

◦ G(xk, θk) is an unbiased estimate of ∇f(xk),
i.e. E[G(xk, θk)] = ∇f(xk).

◦ Cost of computing G(xk, θk) < cost of ∇f(xk).

◦ Sample complexity for E
[

∥ ∇F (x) ∥2
]

≤ ϵ is O(ϵ−2) [3].
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A more intricate template – Stochastic Compositional problems

A nested problem (Mathematical formulation)

f⋆ = min
x∈Rp

{
F (x) := E[f(E[g(x, θg)], θf )]

}
▶ θf , θg are independent random vectors whose probability distribution is supported on set Θ.
▶ The solution set S⋆ := {x⋆ ∈ dom (f) : f(x⋆) = f⋆} is nonempty.

Questions:
▶ Why is this template relevant?
▶ How can we solve it?
▶ What convergence guarantees can we get?
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Motivation (running example 1) – Meta Learning

Meta Learning (Learning to learn fast)
Make use of previous tasks to learn new tasks quickly. Simplistically, a meta learning task can be defined:

θ∗ = arg min
θ
ED∼p(D)[Lθ(D)]

where, p(D) is a distribution of datasets, L is a defined loss function and D is a dataset. A task T is defined as
the combination of dataset and specific loss function.
◦ Why it is important (examples): Healthcare situations where data is sparse. Deployment of robotic workers
which need fast adaptation.

Training Tasks Objective

Probabilistic view of meta learning
Extract prior knowledge from a set of tasks that allows efficient learning of new tasks.
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Applications of stochastic compositional optimization problems

Optimization based meta learning
Goal : Use optimization to extract meta knowledge about the task we are trying to solve.

Learn a meta-initialization model parameter
Consider a model represented by fθ. The function’s optimal parameters, θ′

i, change depending on the task, Ti,
its trying to solve.
Concretely, having a distribution of tasks p(T ), we optimize the models parameters as:

min
θ

∑
Ti∼p(T )

LTi
(fθ′

i
) =

∑
Ti∼p(T )

LTi
(fθ−α∇θLTi

(fθ))

where α, β are hyperparameters.

Model Agnostic Meta Learning (MAML) [2]
1. Randomly initialize θ and sample batch Ti ∼ p(T ):
2. For all Ti perform:

θ′
i = θ − α∇θLTi(f(θ))︸                     ︷︷                     ︸

gradient step

3. Update θ ← θ − β∇θ

∑
Ti∼p(T ) LTi

(fθ′
i
)
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Applications of stochastic compositional optimization problems

Reducing MAML to a stochastic compositional optimization problem
Remembering our formulation:

f⋆ = min
x∈Rp

{
F (x) := E[f(E[g(x, θg)], θf )]

}
Looking at MAML in the following way:

min
θ

L(fθ) :=
1

M

M∑
i=1

Li(fθ′
i
) with θ′

i = θ − α∇θLTi(f(θ))

Specifically:

E[f(..., θf )]→ L(fθ)
E[g(x, θg)]→ θ′

i = θ − α∇θLTi(f(θ))

This is a multi level problem that stochastic compositional methods can address.
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Motivation (running example 2) – Reinforcement Learning

Goal of Reinforcement Learning
In on-policy reinforcement learning, we aim to learn the value function V π(s), representing the expected return
starting from state s and following policy π:

V π(s) = E

[
∞∑

t=0

γtrt

∣∣∣∣∣s0 = s, at ∼ π

]
where γ ∈ [0, 1] is the discount factor, and rt is the reward at time t.

Bellman Equation Formulation
The value function V π satisfies the Bellman equation:

V π = rπ + γP πV π

where P π is the transition matrix and rπ is the expected reward. Solving the Bellman equation requires
estimating P π and rπ , both of which are often unknown.
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Applications of stochastic compositional optimization problems

Reinforcement Learning (Learning State Values)
On-policy reinforcement learning seeks to estimate the value-per-state in a stochastic system by interacting with
it and observing outcomes.
▶ We aim to solve a Bellman equation for the value function V π :

γP πV π + rπ = V π ,

where P π is the transition probability matrix and rπ is the reward vector, both unknown.
▶ On-policy learning aims to solve Bellman equation via blackbox simulation.
▶ Reformulate it as a stochastic compositional optimization problem:

min
x
E[fv(E[gw(x)])]↔ min

x∈RS
∥E[A]x− E[b]∥2,

where E[A] = I − γP π and E[b] = rπ .

Probabilistic View of Reinforcement Learning
Treating RL as a stochastic optimization problem enables using sampling-based methods for value estimation.
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Applications of stochastic compositional optimization problems

Optimization in Reinforcement Learning
Goal : Apply stochastic optimization to learn the value function efficiently in large or complex environments.

Compositional Formulation of RL
To estimate the value function V π , we can minimize a compositional objective:

min
x
Efv [fv (Egw [gw(x)])]↔ min

x
∥E[A]x− E[b]∥2,

where:

fv(x) = ∥Ax− b∥2,

gw(x) = sampled estimates based on γP π and rπ .

This objective involves nested expectations, suitable for stochastic compositional optimization.
▶ Outer expectation Efv : Represents the dependency on policy-driven transition dynamics.
▶ Inner expectation Egw : Represents the stochastic transitions and reward estimates.
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Solving stochastic compositional optimization problems - First attempt

A first, natural idea: apply the machinery of SGD
1.1.1. Use the following unbiased gradient estimator:

G(xk, θk) = ∇g
(

xk, θk
g

)
∇f

(
Eθg

[
g(xk, θg)

]
, θk

f

)
,

and replace update in step 2. of SGD (slide 5) become

xk+1 = xk − αk∇g
(

xk, θk
g

)
∇f

(
Eθg

[
g(xk, θg)

]
, θk

f

)
.

Problem: we don’t know the distribution of θg and even if we do, the inner expectation is costly.

2.2.2. What about removing the inner E by using a stochastic sample

G(xk, θk) = ∇g
(

xk, θk
g

)
∇f

(
g(xk, θk

g ), θf

)
?

Problem: gradient estimator is biased =⇒ theoretical machinery of SGD doesn’t give guarantees.

Question:
▶ How can Eθg

[
g(xk, θg)

]
be estimated efficiently?
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Solving stochastic compositional optimization problems - Second attempt

Idea of [4]: add new variable yk to ‘approximate’ Eθg

[
g(xk, θg)

]
Replace step 2. of SGD with:

yk+1 = (1− βk)yk − βkg
(

xk, θk
g

)
←− track expectation via exponential averaging (1)

xk+1 = xk − αk∇g
(

xk, θk
g

)
∇f

(
yk+1, θk

f

)
, (2)

where {αk}, {βk} are stepsize sequences such that

αk =
1

k3/4 and βk =
1

k1/2 . (3)

Remarks: ◦ αk and βk decrease at different rates, with xk being relatively static w.r.t yk.

◦ Sample complexity when f ◦ g convex/nonconvex is O(ϵ−4) (Theorems 6, 8).

◦ Rates can be accelerated (details omitted) but are still worse than O(ϵ−2) achieved by SGD.
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Is there a better way of estimating Eθg

[
g(xk, θg)

]
?

Correct the estimator yk

◦ Problem: Slower timescale updates for xk+1 relative to yk+1 =⇒ suboptimal convergence rates.

◦ Observation: yk+1 uses outdated information from yk, which demands αk < βk.

◦ Idea [1]: ‘Correct’ yk+1 updates to alleviate the problem:

yk+1 = (1− βk)
(

yk +∇g(xk, θg
k

)(xk − xk−1)
)
− βkg

(
xk, θk

g

)
. (4)

=⇒ the contribution of yk to yk+1 is corrected.

Intuition – why would (4) work?
◦ yk+1 should be as close to g(xk) as possible. By first order Taylor approximation:

g(xk) ≈ g(xk−1)︸      ︷︷      ︸
≈yk

+∇g(xk−1)
(

xk − xk−1
)

,

so the term in blue nudges yk more in the right direction.

◦ A more mathematically-involved explanation based on the gradient flow view is given in Section 2.2 of [1].
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The algorithm and its assumptions

Stochastically Corrected Stochastic Compositional Gradient (SCSC)
1. Choose x0, y0 ∈ Rp and stepsizes α0, β0.

2. For k = 0, 1, . . . perform:

2.a Randomly select θk
g and compute g(xk, θk

g ) and ∇g(xk, θk
g )

2.b Update yk+1 via (4)

2.c Randomly select θk
f and compute ∇f(yk+1, θk

f )

2.d Update variable xk+1 via (2)

Assumption
A1. Functions f and g are Lf and Lg-smooth, respectively.

A2. Norms of stochastic gradients ∥∇f(x, θf ) ∥2 and ∥∇g(x, θg) ∥2 are bounded in expectation

A3. The sampling oracle satisfies i) E [g(x, θg)] = g(x) and ii) E
[
∇g(x, θg)∇f(y, θf )

]
= ∇g(x)∇f(y).

A4. Function g has bounded variance: ∃Vg > 0 s.t. E
[
∥ g(x, θg)− g(x) ∥2

]
≤ V 2

g .
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Convergence guarantees of SCSC Cont’d

Convergence Theorem (simplified statement of Theorem 1 in [1])
Assuming A1.–A4. and choosing αk, βk ∈ O(1/

√
k), the iterates of SCSC satisfy:

1
K

K∑
i=0

E
[
∥∇F (xk) ∥2

]
∈ O

( 1
√

K

)

Remarks: ◦ αk and βk are of the same order =⇒ we can get optimal sample complexity.

◦ SCSC can be extended to many compositions with the same convergence guarantees.

f⋆ := min
x∈Rp

{
F (x) := fN (fN−1(. . . f1(x) . . .))

}
with fn(·) := E [fn(·, θn)] , for n = 1 . . . N

◦ SCSC also works with Adam-type updates and preserves the convergence guarantees of the
non-compositional counterpart.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 17/ 19



MAML experiments [1]

◦ Tasks: regress from input to output of sine wave s(θ; a, ϕ) = a sin(θ + ϕ), where a, ϕ vary across tasks.

◦ Use NN with 2 hidden layers & RelU activations, weights x and output ŝ(θ; x).

◦ Define the task loss to be Fm(x) = Eθ

[
∥ ŝ(θ; x)− s(θ; am, ϕm) ∥2

]
.

◦ Formulating it as SCSC: let g(x) =
[
gT

1 (x), . . . gT
M (x)

]T with gm(x) = x−∇Fm(x) tracked by ym and
define f as f(x) := 1

M

∑M

m=1 Fm(ym).
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