

Mathematics of Data: From Theory to Computation

Prof. Volkan Cevher
volkan.cevher@epfl.ch

Supplementary Material: Stochastic compositional gradient methods & applications

Laboratory for Information and Inference Systems (LIONS)
École Polytechnique Fédérale de Lausanne (EPFL)

EE-556 (Fall 2024)

lions@epfl

aws

swisscom

HASLERSTIFTUNG

SDSC
ZEISS

FN
FONDS NATIONAL SUISSE
DEUTSCHER NATIONALFONDS
FONDO NAZIONALE SVIZZERO
SWISS NATIONAL SCIENCE FOUNDATION

EPFL

License Information for Mathematics of Data Slides

- ▶ This work is released under a [Creative Commons License](#) with the following terms:
- ▶ **Attribution**
 - ▶ The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the original authors credit.
- ▶ **Non-Commercial**
 - ▶ The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not use the work for commercial purposes – unless they get the licensor's permission.
- ▶ **Share Alike**
 - ▶ The licensor permits others to distribute derivative works only under a license identical to the one that governs the licensor's work.
- ▶ [Full Text of the License](#)

*Outline

- ▶ Reminder - Stochastic Optimization
- ▶ A more intricate matter - Stochastic Compositional problems
- ▶ Application: Model Agnostic Meta Learning
- ▶ Algorithms for stochastic compositional problems

* PhD material

Recall Lecture 3 - Statistical learning with streaming data

- Recall that statistical learning seeks to find a $h^* \in \mathcal{H}$ that minimizes the *expected* risk,

$$h^* \in \arg \min_{h \in \mathcal{H}} \left\{ R(h) := \mathbb{E}_{(\mathbf{a}, b)} [L(h(\mathbf{a}), b)] \right\}.$$

Abstract gradient method

$$h^{k+1} = h^k - \alpha_k \nabla R(h^k) = h^k - \alpha_k \mathbb{E}_{(\mathbf{a}, b)} [\nabla L(h^k(\mathbf{a}), b)].$$

Not implementable in practice as the distribution of (\mathbf{a}, b) is unknown \implies cannot compute $\mathbb{E}_{(\mathbf{a}, b)}$.

Recall Lecture 3 - Statistical learning with streaming data

- Recall that statistical learning seeks to find a $h^* \in \mathcal{H}$ that minimizes the *expected risk*,

$$h^* \in \arg \min_{h \in \mathcal{H}} \left\{ R(h) := \mathbb{E}_{(\mathbf{a}, b)} [L(h(\mathbf{a}), b)] \right\}.$$

Abstract gradient method

$$h^{k+1} = h^k - \alpha_k \nabla R(h^k) = h^k - \alpha_k \mathbb{E}_{(\mathbf{a}, b)} [\nabla L(h^k(\mathbf{a}), b)].$$

Not implementable in practice as the distribution of (\mathbf{a}, b) is unknown \implies cannot compute $\mathbb{E}_{(\mathbf{a}, b)}$.

- In practice, data can arrive in a *streaming* way.

A parametric example: Markowitz portfolio optimization

$$\mathbf{x}^* := \min_{\mathbf{x} \in \mathcal{X}} \left\{ \mathbb{E} [|b - \langle \mathbf{x}, \mathbf{a} \rangle|^2] \right\}$$

- $h_{\mathbf{x}}(\cdot) = \langle \mathbf{x}, \cdot \rangle$
- $b \in \mathbb{R}$ is the desired return & $\mathbf{a} \in \mathbb{R}^p$ are the stock returns
- \mathcal{X} is intersection of the standard simplex and the constraint: $\langle \mathbf{x}, \mathbb{E}[\mathbf{a}] \rangle \geq \rho$.

Recall Lecture 3 - Stochastic programming

Problem (Mathematical formulation)

Consider the following convex minimization problem:

$$f^* = \min_{\mathbf{x} \in \mathbb{R}^p} \{ f(\mathbf{x}) := \mathbb{E}[f(\mathbf{x}, \theta)] \}$$

- ▶ θ is a random vector whose probability distribution is supported on set Θ .
- ▶ $f(\mathbf{x}) := \mathbb{E}[f(\mathbf{x}, \theta)]$ is nonconvex, differentiable, bounded from below and L -smooth.
- ▶ The solution set $\mathcal{S}^* := \{ \mathbf{x}^* \in \text{dom}(f) : f(\mathbf{x}^*) = f^* \}$ is nonempty.

Recall Lecture 3 - Stochastic programming

Problem (Mathematical formulation)

Consider the following convex minimization problem:

$$f^* = \min_{\mathbf{x} \in \mathbb{R}^p} \{ f(\mathbf{x}) := \mathbb{E}[f(\mathbf{x}, \theta)] \}$$

- θ is a random vector whose probability distribution is supported on set Θ .
- $f(\mathbf{x}) := \mathbb{E}[f(\mathbf{x}, \theta)]$ is nonconvex, differentiable, bounded from below and L -smooth.
- The solution set $\mathcal{S}^* := \{ \mathbf{x}^* \in \text{dom}(f) : f(\mathbf{x}^*) = f^* \}$ is nonempty.

Stochastic gradient descent (SGD)

1. Choose $\mathbf{x}^0 \in \mathbb{R}^p$ and $(\alpha_k)_{k \in \mathbb{N}} \in (0, +\infty)^{\mathbb{N}}$.
2. For $k = 0, 1, \dots$ perform:

$$\mathbf{x}^{k+1} = \mathbf{x}^k - \alpha_k G(\mathbf{x}^k, \theta_k).$$

Remarks:

- o $G(\mathbf{x}^k, \theta_k)$ is an unbiased estimate of $\nabla f(\mathbf{x}^k)$,
i.e. $\mathbb{E}[G(\mathbf{x}^k, \theta_k)] = \nabla f(\mathbf{x}^k)$.
- o Cost of computing $G(\mathbf{x}^k, \theta_k) <$ cost of $\nabla f(\mathbf{x}^k)$.
- o Sample complexity for $\mathbb{E} [\| \nabla F(\mathbf{x}) \|^2] \leq \epsilon$ is $\mathcal{O}(\epsilon^{-2})$ [3].

A more intricate template – Stochastic Compositional problems

A nested problem (Mathematical formulation)

$$f^* = \min_{\mathbf{x} \in \mathbb{R}^p} \left\{ F(\mathbf{x}) := \mathbb{E}[f(\mathbb{E}[g(\mathbf{x}, \theta_g)], \theta_f)] \right\}$$

- ▶ θ_f, θ_g are independent random vectors whose probability distribution is supported on set Θ .
- ▶ The solution set $\mathcal{S}^* := \{\mathbf{x}^* \in \text{dom}(f) : f(\mathbf{x}^*) = f^*\}$ is nonempty.

Questions:

- ▶ Why is this template relevant?
- ▶ How can we solve it?
- ▶ What convergence guarantees can we get?

Motivation (running example 1) – Meta Learning

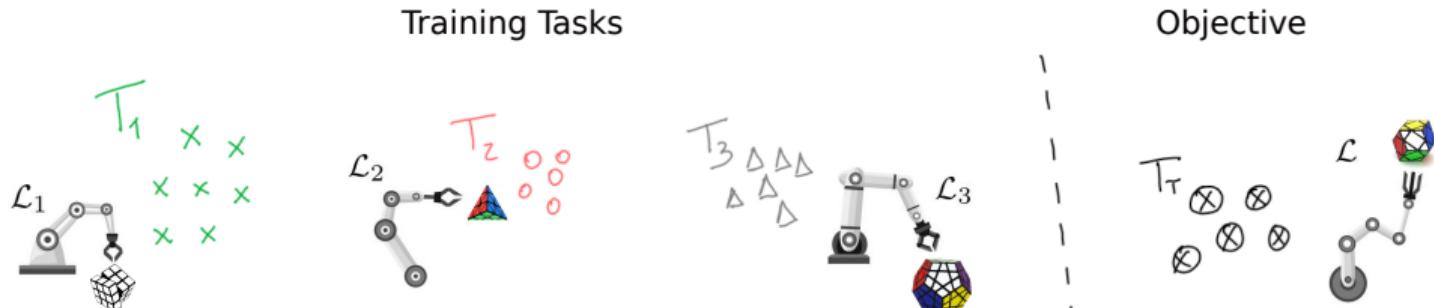
Meta Learning (Learning to learn fast)

Make use of previous tasks to learn new tasks **quickly**. Simplistically, a meta learning task can be defined:

$$\theta^* = \arg \min_{\theta} \mathbb{E}_{D \sim p(D)} [L_{\theta}(D)]$$

where, $p(D)$ is a distribution of datasets, L is a defined loss function and D is a dataset. A task \mathcal{T} is defined as the combination of dataset and specific loss function.

- o *Why it is important (examples):* Healthcare situations where data is sparse. Deployment of robotic workers which need fast adaptation.



Probabilistic view of meta learning

Extract prior knowledge from a set of tasks that allows efficient learning of new tasks.

Applications of stochastic compositional optimization problems

Optimization based meta learning

Goal: Use optimization to extract meta knowledge about the task we are trying to solve.

Learn a meta-initialization model parameter

Consider a model represented by f_θ . The function's optimal parameters, θ'_i , change depending on the task, \mathcal{T}_i , it's trying to solve.

Concretely, having a distribution of tasks $p(\mathcal{T})$, we optimize the models parameters as:

$$\min_{\theta} \sum_{\mathcal{T}_i \sim p(\mathcal{T})} L_{\mathcal{T}_i}(f_{\theta'_i}) = \sum_{\mathcal{T}_i \sim p(\mathcal{T})} L_{\mathcal{T}_i}(f_{\theta - \alpha \nabla_{\theta} L_{\mathcal{T}_i}(f_{\theta})})$$

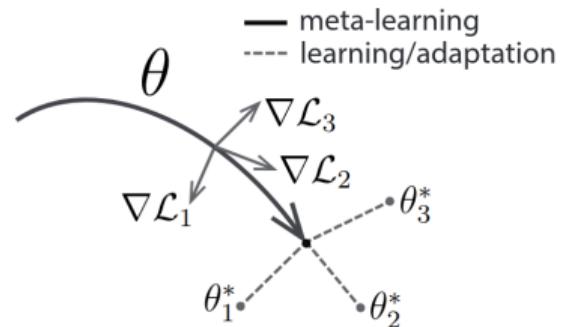
where α, β are hyperparameters.

Model Agnostic Meta Learning (MAML) [2]

1. Randomly initialize θ and sample batch $\mathcal{T}_i \sim p(\mathcal{T})$:
2. For all \mathcal{T}_i perform:

$$\theta'_i = \underbrace{\theta - \alpha \nabla_{\theta} L_{\mathcal{T}_i}(f(\theta))}_{\text{gradient step}}$$

3. Update $\theta \leftarrow \theta - \beta \nabla_{\theta} \sum_{\mathcal{T}_i \sim p(\mathcal{T})} L_{\mathcal{T}_i}(f_{\theta'_i})$



Applications of stochastic compositional optimization problems

Reducing MAML to a stochastic compositional optimization problem

Remembering our formulation:

$$f^* = \min_{\mathbf{x} \in \mathbb{R}^p} \left\{ F(\mathbf{x}) := \mathbb{E}[f(\mathbb{E}[g(\mathbf{x}, \theta_g)], \theta_f)] \right\}$$

Looking at MAML in the following way:

$$\min_{\theta} L(f_{\theta}) := \frac{1}{M} \sum_{i=1}^M L_i(f_{\theta'_i}) \text{ with } \theta'_i = \theta - \alpha \nabla_{\theta} L_{\mathcal{T}_i(f(\theta))}$$

Specifically:

$$\mathbb{E}[f(\dots, \theta_f)] \rightarrow L(f_{\theta})$$

$$\mathbb{E}[g(\mathbf{x}, \theta_g)] \rightarrow \theta'_i = \theta - \alpha \nabla_{\theta} L_{\mathcal{T}_i(f(\theta))}$$

This is a multi level problem that stochastic compositional methods can address.

Motivation (running example 2) – Reinforcement Learning

Goal of Reinforcement Learning

In on-policy reinforcement learning, we aim to learn the value function $V^\pi(s)$, representing the expected return starting from state s and following policy π :

$$V^\pi(s) = \mathbb{E} \left[\sum_{t=0}^{\infty} \gamma^t r_t \middle| s_0 = s, a_t \sim \pi \right]$$

where $\gamma \in [0, 1]$ is the discount factor, and r_t is the reward at time t .

Bellman Equation Formulation

The value function V^π satisfies the Bellman equation:

$$V^\pi = r^\pi + \gamma P^\pi V^\pi$$

where P^π is the transition matrix and r^π is the expected reward. Solving the Bellman equation requires estimating P^π and r^π , both of which are often unknown.

Applications of stochastic compositional optimization problems

Reinforcement Learning (Learning State Values)

On-policy reinforcement learning seeks to estimate the value-per-state in a stochastic system by interacting with it and observing outcomes.

- ▶ We aim to solve a Bellman equation for the value function V^π :

$$\gamma P^\pi V^\pi + r^\pi = V^\pi,$$

where P^π is the transition probability matrix and r^π is the reward vector, both unknown.

- ▶ On-policy learning aims to solve Bellman equation via blackbox simulation.
- ▶ Reformulate it as a stochastic compositional optimization problem:

$$\min_x \mathbb{E}[f_v(\mathbb{E}[g_w(x)])] \leftrightarrow \min_{x \in \mathbb{R}^S} \|\mathbb{E}[A]x - \mathbb{E}[b]\|^2,$$

where $\mathbb{E}[A] = I - \gamma P^\pi$ and $\mathbb{E}[b] = r^\pi$.

Probabilistic View of Reinforcement Learning

Treating RL as a stochastic optimization problem enables using sampling-based methods for value estimation.

Applications of stochastic compositional optimization problems

Optimization in Reinforcement Learning

Goal: Apply stochastic optimization to learn the value function efficiently in large or complex environments.

Compositional Formulation of RL

To estimate the value function V^π , we can minimize a compositional objective:

$$\min_x \mathbb{E}_{f_v} [\mathbb{E}_{g_w} [g_w(x)]] \leftrightarrow \min_x \|\mathbb{E}[A]x - \mathbb{E}[b]\|^2,$$

where:

$$f_v(x) = \|Ax - b\|^2,$$

$g_w(x)$ = sampled estimates based on γP^π and r^π .

This objective involves nested expectations, suitable for stochastic compositional optimization.

- ▶ **Outer expectation \mathbb{E}_{f_v} :** Represents the dependency on policy-driven transition dynamics.
- ▶ **Inner expectation \mathbb{E}_{g_w} :** Represents the stochastic transitions and reward estimates.

Solving stochastic compositional optimization problems - First attempt

A first, natural idea: apply the machinery of SGD

1. Use the following unbiased gradient estimator:

$$G(\mathbf{x}^k, \theta_k) = \nabla g(\mathbf{x}^k, \theta_g^k) \nabla f(\mathbb{E}_{\theta_g} [g(\mathbf{x}^k, \theta_g)], \theta_f^k),$$

and replace update in **step 2.** of SGD (slide 5) become

$$\mathbf{x}^{k+1} = \mathbf{x}^k - \alpha_k \nabla g(\mathbf{x}^k, \theta_g^k) \nabla f(\mathbb{E}_{\theta_g} [g(\mathbf{x}^k, \theta_g)], \theta_f^k).$$

Problem: we don't know the distribution of θ_g and even if we do, the inner expectation is costly.

2. What about removing the inner \mathbb{E} by using a stochastic sample

$$G(\mathbf{x}^k, \theta_k) = \nabla g(\mathbf{x}^k, \theta_g^k) \nabla f(g(\mathbf{x}^k, \theta_g^k), \theta_f) ?$$

Problem: gradient estimator is biased \implies theoretical machinery of SGD doesn't give guarantees.

Question:

- ▶ How can $\mathbb{E}_{\theta_g} [g(\mathbf{x}^k, \theta_g)]$ be estimated efficiently?

Solving stochastic compositional optimization problems - Second attempt

Idea of [4]: add new variable \mathbf{y}^k to 'approximate' $\mathbb{E}_{\theta_g} [g(\mathbf{x}^k, \theta_g)]$

Replace step 2. of SGD with:

$$\mathbf{y}^{k+1} = (1 - \beta_k) \mathbf{y}^k - \beta_k g(\mathbf{x}^k, \theta_g^k) \leftarrow \text{track expectation via exponential averaging} \quad (1)$$

$$\mathbf{x}^{k+1} = \mathbf{x}^k - \alpha_k \nabla g(\mathbf{x}^k, \theta_g^k) \nabla f(\mathbf{y}^{k+1}, \theta_f^k), \quad (2)$$

where $\{\alpha_k\}$, $\{\beta_k\}$ are stepsize sequences such that

$$\alpha_k = \frac{1}{k^{3/4}} \text{ and } \beta_k = \frac{1}{k^{1/2}}. \quad (3)$$

Remarks:

- α_k and β_k decrease at different rates, with \mathbf{x}^k being relatively static w.r.t \mathbf{y}^k .
- Sample complexity when $f \circ g$ convex/nonconvex is $\mathcal{O}(\epsilon^{-4})$ (Theorems 6, 8).
- Rates can be accelerated (details omitted) but are still worse than $\mathcal{O}(\epsilon^{-2})$ achieved by SGD.

Is there a better way of estimating $\mathbb{E}_{\theta_g} [g(\mathbf{x}^k, \theta_g)]$?

Correct the estimator \mathbf{y}^k

- **Problem:** Slower timescale updates for \mathbf{x}^{k+1} relative to $\mathbf{y}^{k+1} \implies$ suboptimal convergence rates.
- **Observation:** \mathbf{y}^{k+1} uses outdated information from \mathbf{y}^k , which demands $\alpha_k < \beta_k$.
- **Idea [1]:** 'Correct' \mathbf{y}^{k+1} updates to alleviate the problem:

$$\mathbf{y}^{k+1} = (1 - \beta_k) \left(\mathbf{y}^k + \nabla g(\mathbf{x}^k, \theta_g^k) (\mathbf{x}^k - \mathbf{x}^{k-1}) \right) - \beta_k g(\mathbf{x}^k, \theta_g^k). \quad (4)$$

\implies the contribution of \mathbf{y}^k to \mathbf{y}^{k+1} is **corrected**.

Intuition – why would (4) work?

- \mathbf{y}^{k+1} should be as close to $g(\mathbf{x}^k)$ as possible. By first order Taylor approximation:

$$g(\mathbf{x}^k) \approx \underbrace{g(\mathbf{x}^{k-1})}_{\approx \mathbf{y}^k} + \nabla g(\mathbf{x}^{k-1}) (\mathbf{x}^k - \mathbf{x}^{k-1}),$$

so the term in **blue** nudges \mathbf{y}^k more in the right direction.

- A more mathematically-involved explanation based on the gradient flow view is given in Section 2.2 of [1].

The algorithm and its assumptions

Stochastically Corrected Stochastic Compositional Gradient (SCSC)

1. Choose $\mathbf{x}^0, \mathbf{y}^0 \in \mathbb{R}^p$ and stepsizes α_0, β_0 .
2. For $k = 0, 1, \dots$ perform:
 - 2.a Randomly select θ_g^k and compute $g(\mathbf{x}_k, \theta_g^k)$ and $\nabla g(\mathbf{x}_k, \theta_g^k)$
 - 2.b Update \mathbf{y}^{k+1} via (4)
 - 2.c Randomly select θ_f^k and compute $\nabla f(\mathbf{y}^{k+1}, \theta_f^k)$
 - 2.d Update variable \mathbf{x}^{k+1} via (2)

Assumption

- A1. Functions f and g are L_f and L_g -smooth, respectively.
- A2. Norms of stochastic gradients $\|\nabla f(\mathbf{x}, \theta_f)\|^2$ and $\|\nabla g(\mathbf{x}, \theta_g)\|^2$ are bounded in expectation
- A3. The sampling oracle satisfies i) $\mathbb{E}[g(\mathbf{x}, \theta_g)] = g(\mathbf{x})$ and ii) $\mathbb{E}[\nabla g(\mathbf{x}, \theta_g) \nabla f(\mathbf{y}, \theta_f)] = \nabla g(\mathbf{x}) \nabla f(\mathbf{y})$.
- A4. Function g has bounded variance: $\exists V_g > 0$ s.t. $\mathbb{E}[\|g(\mathbf{x}, \theta_g) - g(\mathbf{x})\|^2] \leq V_g^2$.

Convergence guarantees of SCSC Cont'd

Convergence Theorem (simplified statement of Theorem 1 in [1])

Assuming **A1.–A4.** and choosing $\alpha_k, \beta_k \in \mathcal{O}(1/\sqrt{k})$, the iterates of SCSC satisfy:

$$\frac{1}{K} \sum_{i=0}^K \mathbb{E} [\| \nabla F(\mathbf{x}^k) \|^2] \in \mathcal{O} \left(\frac{1}{\sqrt{K}} \right)$$

Remarks:

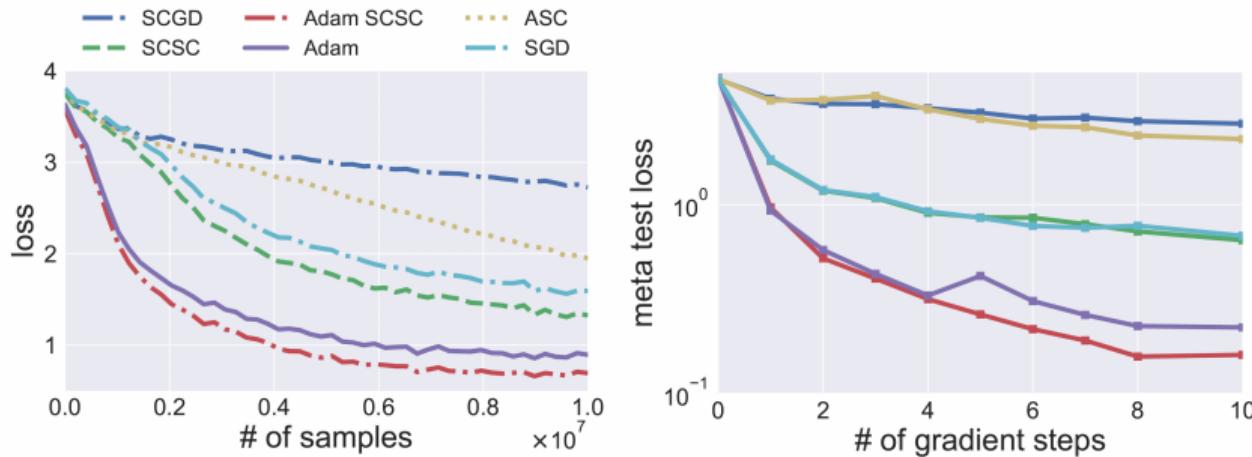
- α_k and β_k are of the same order \implies we can get optimal sample complexity.
- SCSC can be extended to many compositions with the same convergence guarantees.

$$f^* := \min_{\mathbf{x} \in \mathbb{R}^p} \{ F(\mathbf{x}) := f_N(f_{N-1}(\dots f_1(\mathbf{x}) \dots)) \}$$

$$\text{with } f_n(\cdot) := \mathbb{E}[f_n(\cdot, \theta^n)], \text{ for } n = 1 \dots N$$

- SCSC also works with Adam-type updates and preserves the convergence guarantees of the non-compositional counterpart.

MAML experiments [1]



- **Tasks:** regress from input to output of sine wave $s(\theta; a, \phi) = a \sin(\theta + \phi)$, where a, ϕ vary across tasks.
- Use NN with 2 hidden layers & ReLU activations, weights \mathbf{x} and output $\hat{s}(\theta; \mathbf{x})$.
- Define the task loss to be $F_m(\mathbf{x}) = \mathbb{E}_\theta \left[\|\hat{s}(\theta; \mathbf{x}) - s(\theta; a_m, \phi_m)\|^2 \right]$.
- Formulating it as SCSC: let $g(\mathbf{x}) = [g_1^T(\mathbf{x}), \dots, g_M^T(\mathbf{x})]^T$ with $g_m(\mathbf{x}) = \mathbf{x} - \nabla F_m(\mathbf{x})$ tracked by \mathbf{y}_m and define f as $f(\mathbf{x}) := \frac{1}{M} \sum_{m=1}^M F_m(\mathbf{y}_m)$.

References I

- [1] Tianyi Chen, Yuejiao Sun, and Wotao Yin.
Solving stochastic compositional optimization is nearly as easy as solving stochastic optimization.
arXiv preprint arXiv:2008.10847, 2021.
(Cited on pages 17, 19, and 20.)
- [2] Chelsea Finn, Pieter Abbeel, and Sergey Levine.
Model-agnostic meta-learning for fast adaptation of deep networks.
In *International Conference on Machine Learning*, pages 1126–1135. PMLR, 2017.
(Cited on page 10.)
- [3] Saeed Ghadimi and Guanghui Lan.
Stochastic first-and zeroth-order methods for nonconvex stochastic programming.
SIAM Journal on Optimization, 23(4):2341–2368, 2013.
(Cited on pages 6 and 7.)
- [4] Mengdi Wang, Ethan X Fang, and Han Liu.
Stochastic compositional gradient descent: algorithms for minimizing compositions of expected-value functions.
Mathematical Programming, 161(1-2):419–449, 2017.
(Cited on page 16.)