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Recall Lecture 3 - Statistical learning with streaming data

o Recall that statistical learning seeks to find a h* € H that minimizes the expected risk,
h* € arg min {R =E(au [L b)]}
heH
Abstract gradient method
R = hF — a VR(WF) = hF — ayEa 1) [VL(R"(a),b)].

Not implementable in practice as the distribution of (a,b) is unknown = cannot compute E(a,b)-
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o Recall that statistical learning seeks to find a h* € H that minimizes the expected risk,

h* € arg min {R =E(au [L b)]}
heH

Abstract gradient method

R = hF — a VR(WF) = hF — ayEa 1) [VL(R"(a),b)].

Not implementable in practice as the distribution of (a,b) is unknown = cannot compute E(a,b)-

o In practice, data can arrive in a streaming way.
A parametric example: Markowitz portfolio optimization
x* := min {E[|b — (x,a)|?
min {51b— (x )]}
> hx() = <X7 )
> b € R is the desired return & a € RP are the stock returns

> X is intersection of the standard simplex and the constraint: (x,E[a]) > p
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Recall Lecture 3 - Stochastic programming

Problem (Mathematical formulation)

Consider the followmg convex minimization problem.‘
* — min x) := E[f(x, 0
! ain {f( ) [f( )]}

> 0 is a random vector whose probability distribution is supported on set ©.
> f(x):=E[f(x,0)] is nonconvex, differentiable, bounded from below and L-smooth.

> The solution set S* := {x* € dom (f) : f(x*) = f*} is nonempty.
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Problem (Mathematical formulation)

Consider the followmg convex minimization problem.‘
* — min x) := E[f(x, 0
! ain {f( ) [f( )]}

> 0 is a random vector whose probability distribution is supported on set ©.
> f(x):=E[f(x,0)] is nonconvex, differentiable, bounded from below and L-smooth.

> The solution set S* := {x* € dom (f) : f(x*) = f*} is nonempty.

Stochastic gradient descent (SGD) Remarks:
1. Choose x° € R” and (ak)ken € (0, +00)". o G(x*,6y) is an unbiased estimate of V f(x"),
2. For k=0,1,... perform: ie. B[G(x®,0,)] = Vf(x").
xFL = xF akG(xk, 0k). o Cost of computing G(x",0;) < cost of V f(x").

o Sample complexity for E [H VF(x) HQ] <eis O(e7?) 3]
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A more intricate template — Stochastic Compositional problems

A nested problem (Mathematical formulation)

fr :ﬁ]l.‘«r}) F(x) := E[f( [;/fx.()h,):,()/)]}

> 0,04 are independent random vectors whose probability distribution is supported on set ©.
> The solution set S* := {x* € dom (f) : f(x*) = f*} is nonempty.

Questions:

> Why is this template relevant?
> How can we solve it?

> What convergence guarantees can we get?
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Motivation (running example 1) — Meta Learning

Meta Learning (Learning to learn fast)

Make use of previous tasks to learn new tasks quickly. Simplistically, a meta learning task can be defined:

0* = arg meinEDNP(D) [Lo(D)]

where, p(D) is a distribution of datasets, L is a defined loss function and D is a dataset. A task 7 is defined as

the combination of dataset and specific loss function.
o Why it is important (examples): Healthcare situations where data is sparse. Deployment of robotic workers
which need fast adaptation.

Training Tasks Objective

\
1 |
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Probabilistic view of meta learning
Extract prior knowledge from a set of tasks that allows efficient learning of new tasks.
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Applications of stochastic compositional optimization problems

Optimization based meta learning

Goal: Use optimization to extract meta knowledge about the task we are trying to solve.

Learn a meta-initialization model parameter

Consider a model represented by fg. The function’s optimal parameters, 9;, change depending on the task, 7;,
its trying to solve.
Concretely, having a distribution of tasks p(7), we optimize the models parameters as:

e Z L7, (for) = Z L7, (fo-aveLz, (£5))

Ti~p(T) Ti~p(T)
where «, 8 are hyperparameters.
Model Agnostic Meta Learning (MAML) [2] — meta-learning
1. Randomly initialize § and sample batch T; ~ p(T): 9 -=== learning/adaptation
2. For all 7; perform: VL,
0; =0 — VL7 (s(6) VL,
~— VL s .93;
gradient step o
3. Update § < 6 — 3V Zn~p(7> Lﬂ(feg) " \.95
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Applications of stochastic compositional optimization problems

Reducing MAML to a stochastic compositional optimization problem

Remembering our formulation:

f* :)?61]1:5) F(x) = L[v/'(i[‘z/\X.Hw):,H,)]}

Looking at MAML in the following way:
1 M
mein L(fg) := Vi E Ll(fgi) with 9; =0 - OéVgLTi(f(g))

i=1
Specifically:

E[f(...,00)] = L(fs)
[9(x,04)] = 0; = 6 — aVo LT, (f8))

This is a multi level problem that stochastic compositional methods can address.
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Motivation (running example 2) — Reinforcement Learning

Goal of Reinforcement Learning

In on-policy reinforcement learning, we aim to learn the value function V7 (s), representing the expected return
starting from state s and following policy :

T(s)=E E Yrilso =s,ar ~ 7

where « € [0, 1] is the discount factor, and r¢ is the reward at time ¢.

Bellman Equation Formulation

The value function V™ satisfies the Bellman equation:

where P™ is the transition matrix and »™ is the expected reward. Solving the Bellman equation requires
estimating P™ and r™, both of which are often unknown.
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Applications of stochastic compositional optimization problems

Reinforcement Learning (Learning State Values)

On-policy reinforcement learning seeks to estimate the value-per-state in a stochastic system by interacting with
it and observing outcomes.

> We aim to solve a Bellman equation for the value function V™
,yPﬂ'Vﬂ' + TT\' = ‘/7\’7

where P™ is the transition probability matrix and r™ is the reward vector, both unknown.
> On-policy learning aims to solve Bellman equation via blackbox simulation.

> Reformulate it as a stochastic compositional optimization problem:
min E[f, (Elgw(2)))] < min |E[A]lz - E[b]|?,
a® z€RS
where E[A] = I — yP™ and E[b] = r".

Probabilistic View of Reinforcement Learning

Treating RL as a stochastic optimization problem enables using sampling-based methods for value estimation.
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Applications of stochastic compositional optimization problems

Optimization in Reinforcement Learning

Goal: Apply stochastic optimization to learn the value function efficiently in large or complex environments.

Compositional Formulation of RL

To estimate the value function V™, we can minimize a compositional objective:

min By, [fo (Bg,, [gw(@)])] ¢ min |[E[4]z — E[b]1%,

where:
fo(x) = || Az — b||?,
gw(x) = sampled estimates based on vP™ and r™.

This objective involves nested expectations, suitable for stochastic compositional optimization.
> Quter expectation Ef, : Represents the dependency on policy-driven transition dynamics.

> Inner expectation E;  : Represents the stochastic transitions and reward estimates.

lions@epfl Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 12/ 19



Solving stochastic compositional optimization problems - First attempt

A first, natural idea: apply the machinery of SGD

1. Use the following unbiased gradient estimator:
G(x*,0,) = Vg (x*,65) Vf (B, [9(x*,04)] . 0%) .
and replace update in step 2. of SGD (slide 5) become
xFtL = xk — apVg (xk,Olg“) Vf (Egg [g(xk,ag)] ,0’;) .

Problem: we don't know the distribution of 6, and even if we do, the inner expectation is costly.

2. What about removing the inner E by using a stochastic sample
G(x*,0,) = Vg (x*,05) Vf (9(x",05),0¢)?

Problem: gradient estimator is biased = theoretical machinery of SGD doesn’t give guarantees.

Question:

> How can Ep, [g(xk,eg)] be estimated efficiently?
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Solving stochastic compositional optimization problems - Second attempt
Idea of [4]: add new variable y* to ‘approximate’ Eq, [g(x*,0,)]
Replace step 2. of SGD with:

yEtl = == ﬁk)yk — Brg (xk,Glg) <— track expectation via exponential averaging (1)
X = x* —a Vg (x4,05) Vf (v, 05) @)

where {ag}, {8k} are stepsize sequences such that

1 1
ap = m and ﬁk = m (3)
Remarks: o ay, and By decrease at different rates, with x* being relatively static w.r.t y*.

o Sample complexity when f o g convex/nonconvex is O(e~%) (Theorems 6, 8).

o Rates can be accelerated (details omitted) but are still worse than O(e~2) achieved by SGD.
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Is there a better way of estimating Ey, [g(x",0,)]?

Correct the estimator y*

k+1 — suboptimal convergence rates.

o Problem: Slower timescale updates for x**1 relative to y
o Observation: y**1 uses outdated information from y*, which demands oy, < fs.

o Idea [1]: ‘Correct’ y*+1 updates to alleviate the problem:
YR = (1= Be) (v* + Va(x*, 0) (x" — x 1)) — Brg (x*,0%) . )
= the contribution of y* to y**1 is corrected.

Intuition — why would (4) work?

o y**1 should be as close to g(x*) as possible. By first order Taylor approximation:

g(x*) m g(x* ) +Vg(xF 1) (xF —xF 1),

vk
Ry
so the term in blue nudges y* more in the right direction.

o A more mathematically-involved explanation based on the gradient flow view is given in Section 2.2 of [1].
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The algorithm and its assumptions

Stochastically Corrected Stochastic Compositional Gradient (SCSC)
1. Choose x°,y" € RP and stepsizes g, Bo.

2. For k =0,1,... perform:
2.a Randomly select 0’; and compute g(x, 93) and Vg(x*, 95)
2.b Update y**1 via (4)
2.c Randomly select 9’; and compute Vf(yk+1, 9’;)
2.d Update variable x**? via (2)

Assumption

Al. Functions f and g are Ly and Lg-smooth, respectively.
A2. Norms of stochastic gradients || V f(x,0¢) [|? and || Vg(x,0y) ||? are bounded in expectation
A3. The sampling oracle satisfies i) E [g(x,04)] = g(x) and ii) E [Vg(x,Gg)Vf(y, Gf)] =Vgx)Vf(y).

A4. Function g has bounded variance: 3Vy > 0 s.t. E [|| g(x,04) — g(x) H2] < Vg2.
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Convergence guarantees of SCSC Cont'd

Convergence Theorem (simplified statement of Theorem 1 in [1])
Assuming Al.—A4. and choosing ay, 8, € O(1/Vk), the iterates of SCSC satisfy:

Remarks:

K
% ;E [IVFe*) 2] € 0 (%)

o ay and By are of the same order = we can get optimal sample complexity.

o SCSC can be extended to many compositions with the same convergence guarantees.

= min {F )= fn(fn-a(e. (X)))}

xERP
with frn(-) :=E[fn(-,0™)], forn=1...N

o SCSC also works with Adam-type updates and preserves the convergence guarantees of the
non-compositional counterpart.
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MAML experiments [1]

=+ SCGD ==+ Adam SCSC ASC
— = SCSC —— Adam -+ SGD

meta test loss

e~ — =

0.0 0.2 0.4 0.6 0.8 17‘0 8 10

0 2 4 6
# of samples x10 # of gradient steps

o Tasks: regress from input to output of sine wave s(0;a, ¢) = asin(f + ¢), where a, ¢ vary across tasks.

o Use NN with 2 hidden layers & RelU activations, weights x and output 3(6;x).

o Define the task loss to be Fy,(x) = Eg [H 3(0;x) — s(0; am, pm) ||2] .

o Formulating it as SCSC: let g(x) = [¢7 (x),.. .gﬁ(x)]T With gm (x) = x — VF,, (x) tracked by ym, and
define f as f(x) := ﬁ Zi‘:{zl Fr(ym)-
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