
EE-556: MATHEMATICS OF DATA: FROM THEORY TO COMPUTATION
LABORATORY FOR INFORMATION AND INFERENCE SYSTEMS

FALL 2024

INSTRUCTOR: PROF. VOLKAN CEVHER HEAD TAS: YONGTAO WU, PEDRO ABRANCHES

HANDOUT 2

In this handout, we will go through pen and paper exercises to get familiar with fundamental concepts that will be used throughout
the course. We will take a look at convergence rates and smooth functions.

1 Interpreting convergence rates

Throughout the course, we will often compare the performance of different methods by looking at convergence plots of different
methods. It means that it is very important to be familiar with reading and drawing convergence rates. In the course, you will
be mostly confronted with sublinear, linear and quadratic rates of convergence. Assume that you are given a sequence of iterates
(xk) ∈ Rp, converging towards a vector x∗.

• Then, the sequence (xk) is said to converge sublinearly to x∗ if

lim
k→∞

∥xk+1 − x∗∥
∥xk − x∗∥

= 1

• The sequence (xk) is said to converge linearly to x∗ if, for some c ∈ (0, 1),

lim
k→∞

∥xk+1 − x∗∥
∥xk − x∗∥

= c

• The sequence (xk) is said to converge superlinearly to x∗ if,

lim
k→∞

∥xk+1 − x∗∥
∥xk − x∗∥

= 0

– The definition above can be refined by defining the order of convergence. The sequence (xk) is said to converge with order
q > 1 to x∗ if

lim
k→∞

∥xk+1 − x∗∥
∥xk − x∗∥q

< c

for some c > 0, not necessarily smaller than 1. In particular, with q = 2, we have quadratic convergence.

Problem 1: Convergence rate of different sequences.

For each of the following sequences, find the limit x∗ and the the convergence rate.

i) xk =
1

k + 1
ii) xk =

5k + log(k)
3k + 6

iii) xk =
3
2

exp(−k/4) iv) xk =
1

(3k)2 v) xk =
1

32k

Solution

i) We see immediately that x∗ = limk→∞
1

k+1 = 0. The sequence converges sublinearly because

lim
k→∞

∥xk+1 − x∗∥
∥xk − x∗∥

= lim
k→∞

1
k+2

1
k+1

= lim
k→∞

k + 1
k + 2

= 1

ii) We first compute x∗ = limk→∞
5k+log(k)

3k+6 = 5
3 . This is because limk→∞

log(k)
3k+6 = 0 through L’Hôpital’s rule. The sequences converges

sublinearly because

lim
k→∞

∥xk+1 − x∗∥
∥xk − x∗∥

= lim
k→∞

5(k+1)+log(k)
3(k+1)+6 − 5

3
5k+log(k)

3k+6 − 5
3

= lim
k→∞

5(k + 1) + log(k) − 5(k + 3)
3k + 9

3k + 6
5k + log(k) − 5(k + 2)

= lim
k→∞

3k + 6
3k + 9

= 1

LIONS @ EPFL Mathematics of Big Data Prof. Volkan Cevher

iii) We immediately see that x∗ = limk→∞
3
2 exp(−k/4) = 0. The sequences converges linearly because

lim
k→∞

∥xk+1 − x∗∥
∥xk − x∗∥

= lim
k→∞

3
2 exp(−(k + 1)/4)

3
2 exp(−k/4)

= lim
k→∞

exp
(
−

1
4

(k + 1 − k)
)
= exp

(
−

1
4

)
< 1

iv) We immediately see that x∗ = limk→∞
1

(3k)2 = 0. The sequence converges sublinearly because

lim
k→∞

∥xk+1 − x∗∥
∥xk − x∗∥

= lim
k→∞

1
(3k+1)2

1
(3k)2

= lim
k→∞

9k2

9k2 + 6k + 1
= 1

iv) We immediately see that x∗ = limk→∞
1

(3k)2 = 0. The sequence converges sublinearly because

lim
k→∞

∥xk+1 − x∗∥
∥xk − x∗∥

= lim
k→∞

1
(3k+1)2

1
(3k)2

= lim
k→∞

9k2

9k2 + 6k + 1
= 1

v) We immediately see that x∗ = limk→∞
1

32k = 0 (as 2k → +∞ as k → ∞). The sequence converges superlinearly because

lim
k→∞

∥xk+1 − x∗∥
∥xk − x∗∥

= lim
k→∞

1
32k+1

1
32k

= lim
k→∞

3−2k+1+2k
= lim

k→∞
32k(−2+1) = lim

k→∞
3−2k
= 0

However, the convergence can be characterized more precisely. It is in fact quadratic as

lim
k→∞

∥xk+1 − x∗∥
∥xk − x∗∥2

= lim
k→∞

1
32k+1

1
32·2k

= lim
k→∞

3−2k+1+2k+1
= 1

Problem 2: Drawing convergence rates

Draw the asymptotic rate of convergence ∥xk − x∗∥ for the following sequences on either of the graphs that feature different scales
(lin-lin, log-lin, log-log).

i)
1

k + 1
ii)

1
k3 + 4

iii)
3
2

exp(−k/4) iv)
1

(3k)2

Note. Each of the sequences can be naturally drawn on one of the scales. By natural, we mean that on some scale, the asymptotic
behaviour of the sequence will be displayed as a line. For instance, a line in a log-log plot means that log(∥xk − x∗∥) is a linear function
of log(k).

2

LIONS @ EPFL Mathematics of Big Data Prof. Volkan Cevher

0 200 400 600 800 1000

2

4

6

8

10
lin-lin scale

0 200 400 600 800 1000
10 6

10 5

10 4

10 3

10 2

10 1

100

101
log-lin scale

100 101 102 103 104
10 6

10 5

10 4

10 3

10 2

10 1

100

101
log-log scale

Solution

i) Starting with ∥xk − x∗∥ ≤ 1
k+1 , we notice that log

(
1

k+1

)
= − log(k + 1) ≈ − log(k) as k → ∞. So this means that taking the

log(∥xk − x∗∥) ⪅ − log(k). This means that taking the log of the precision, we are upper bounded by a function of the log of
the iterates. This makes for a natural representation on a log-log plot, where our bound will be a line of slope −1.

ii) Starting with ∥xk − x∗∥ ≤ 1
k3+4 , we notice that log

(
1

k3+4

)
= − log(k3 + 4) ≈ − log(k3) as k → ∞. So this means that taking the

log(∥xk − x∗∥) ⪅ −3 log(k). This means that taking the log of the precision, we are upper bounded by a function of the log of
the iterates. This makes for a natural representation on a log-log plot, where our bound will be a line of slope −3.

iii) Starting with ∥xk − x∗∥ ≤ 3
2 exp(−k/4), we notice that log

(
3
2 exp(−k/4)

)
. Here, we come across our first problem as the basis

usually used for a log plot is the basis 10, so we will need to change our basis. We have

log
(

3
2

exp(−k/4)
)
= log

(
3
2

)
− log10

(
exp(−k/4)

)
= log

(
3
2

)
+ log10

(
10− log10(e)k/4

)
= log

(
3
2

)
−

log10(e)
4

k.

This means that taking the log(∥xk − x∗∥) ≤ log
(

3
2

)
−

log10(e)
4 k. This means that taking the log of the precision, we are upper

bounded by a linear function of the of the iterates. This makes for a natural representation on a log-lin plot, where our
bound will be a line of slope − log10(e)

4 ≈ −0.15 with the ordinate at the origin being log
(

3
2

)
.

iv) Starting with ∥xk − x∗∥ ≤ 1
(3k)2 , we notice that log

(
1

(3k)2

)
= − log((3k)2) = log(9) − 2 log(k) as k → ∞. So this means that taking

the log(∥xk − x∗∥) ≤ log(9) − 2 log(k). This means that taking the log of the precision, we are upper bounded by a function of
the log of the iterates. This makes for a natural representation on a log-log plot, where our bound will be a line of slope −2
with the ordinate at 1 being log(9).

All the sequences are displayed below.

3

LIONS @ EPFL Mathematics of Big Data Prof. Volkan Cevher

Problem 3: Reading convergence plots

On plots 1 and 2 below, the convergence rates of 5 methods are displayed (method 1 is displayed on both plots).

1. Characterize the rate of convergence (sublinear, linear, or quadratic) for each of the methods. Justify your answer.

2. Establish more precisely the order of convergence of methods 1, 3, 4 and 5 by reading the plots.
Hint. Find the slopes of the different lines and map, and use the scale of the plot to write the rate of convergence of the method.

3. Rank methods 1 to 5 from the slowest to the fastest asymptotic rate of convergence, using the fact that method 1 is displayed on
both plots.

100 200 300 400 500
10 6

10 5

10 4

10 3

10 2

10 1

100

101
Plot 1

1
2
3

100 101 102 103 104
10 6

10 5

10 4

10 3

10 2

10 1

100

101
Plot 2

1
4
5

4

LIONS @ EPFL Mathematics of Big Data Prof. Volkan Cevher

Solution

From the previous problem, we’ve established that on a log-lin plot, linearly-converging sequences will be displayed as lines,
and that on a log-log plot, sublinearly-converging sequences will be represented as a line. We’ve also seen how to relate the slope
of the line to a typical function: a log-lin plot with a line of slope −q will correspond to a convergence rate of the order c10−qk.
Similarly, a log-log plot with a line of slope −q will correspond to a convergence rate of the order c1

1
(k+c2)q .

With this information, we see on plot 1 that the method 1 has a slope −q ≈ − 3
400 , as it descends 3 order of magnitudes in

400 iterations, its convergence rate is then c10−
3k

400 .. On plot 1 as well, we see that method 2 converges superlinearly, as it is not
displayed as a line on the log-lin plot. Similarly, we see that method 3 has a slope −q ≈ − 4

100 , its convergence rate is then c10−
4k

100 .
Then, reading from plot 2, we can see that method 4 has a slope −q = −1, as it descends 1 order of magnitude and advances 1

order of magnitude at once. Its rate is then of the form c1
1

(k+c2) . Finally, even though method 5 oscillates, one can see that there is
an average slope of −q = −2 and so its convergence rate is of the form c

′

1
1

(k+c′2)2

Based on the convergence rates and on method 1 represented on both plots, we can sort the asymptotic speeds of convergence
of the methods as follows:

4 < 5 < 1 < 3 < 2

5

LIONS @ EPFL Mathematics of Big Data Prof. Volkan Cevher

Problem 4: Convergence in accuracy against convergence in iterations

Up to now, we have considered convergence in iteration, as a function of k. However, it is common to view the convergence as a
function of the time require to reach a given accuracy ϵ. If we know that the ∥xk − x∗∥ ≤ 1

k+1 , the convergence in ϵ tries to characterize
the order of convergence as a function of the desired accuracy instead of the number of iterations. In practice, this amounts to find
K(ϵ) such that ∀k ∈ N, k ≥ K(ϵ)⇒ ∥xk+1 − x∗∥ ≤ ϵ.

Given the convergence rate ∥xk − x∗∥ of a sequence, express the number of iterations required to reach a accuracy ϵ for

i)
1

k + 1
ii)

1
k3 + 4

iii)
3
2

exp(−k/4) iv)
1

(3k)2 v)
1

3−2k vi)
4

√
k + 3

Solution

Convergence in iterations and in accuracy are simply inversely related to each other. We can generally proceed as follows: Start
from the fact that for some f , ∥xk − x∗∥ ≤ 1

k+1 ≤ f (k) ≤ ϵ ∀k ∈ N and for some ϵ. Then, invert the condition f (k) ≤ ϵ to find k ≥ K(ϵ)
with K(·) = f −1(·) (the sign reverts because k and ϵ are inversely related to each other). We then have

i) K(ϵ) = 1
ϵ
− 1 = O

(
ϵ−1

)
ii) K(ϵ) = 3

√
1
ϵ
− 4 = O

(
ϵ−1/3

)
iii) K(ϵ) = 1

4 log
(

3
2ϵ

)
= O

(
log ϵ−1

)
iv) K(ϵ) = 1

3

√
1
ϵ
= O

(
ϵ−1/2

)
v) K(ϵ) = log2(log3(ϵ)) = O

(
log(log(ϵ))

)
vi) K(ϵ) =

(
4
ϵ

)2
− 3 = O

(
ϵ−2

)
2 Smooth functions

Throughout the course, we will frequently encounter L-smooth functions.

Definition. A function f : Q → R is said to be L-smooth with respect to a pair of dual norms (∥ · ∥, ∥ · ∥∗) if there exists some L > 0 such
that

∥∇ f (x) − ∇ f (y)∥∗ ≤ L∥x − y∥ ∀x,y ∈ Q. (1)

The Lipschitz constant of the the gradient L, also called the smoothness constant, can be computed in several ways, and we will
explore different ways to obtain it in the following exercises.

Problem 5: Lipschitz gradient in the one-dimensional case

In a single dimensional case, we have a function f : Q ⊆ R→ R. The equation (1) can be restated as

| f ′(x) − f ′(y)| ≤ L|x − y| ∀x,y ∈ Q.

Prove that the smoothness constant L can be computed as the maximum of the absolute value of the second derivative, i.e. L =
maxz∈Q | f ′′(z)|.

HINT. Use the mean value theorem.
REMARK. This statement can be extended to higher dimensional cases, but one needs to be careful to appropriately define the

norms that will be used.

Solution

Recall the mean-value theorem, expressed directly for f ′.

Theorem 2.1. if f ′ is a continuous function on the closed interval [x, y] and differentiable on the open interval (x, y), then there exists a point

6

LIONS @ EPFL Mathematics of Big Data Prof. Volkan Cevher

z in (x, y) such that
f ′(x) − f ′(y)

x − y
= f ′′(z)

We can note immediately that taking the absolute value on both sides, we have∣∣∣∣∣ f ′(x) − f ′(y)
x − y

∣∣∣∣∣ = | f ′(x) − f ′(y)|
|x − y|

= | f ′′(z)|.

Now starting from the definition of the Lipschitz-gradient, we notice that the case |x − y| = 0 is trivial, as any L will satisfy the
requirement. We can then restrict ourselves to the case |x − y| , 0. Dividing on both sides by |x − y|, we have

| f ′(x) − f ′(y)|
|x − y|

≤ L ∀x,y ∈ Q.

From the mean-value theorem, there exists a z ∈ [x, y] such that

| f ′(x) − f ′(y)|
|x − y|

= | f ′′(z)|

Looking now at the right hand side, for z ∈ [x, y], we have | f ′′(z)| ≤ maxz∈[x,y] | f ′′(z)| ≤ maxz∈Q | f ′′(z)|. Setting L = maxz∈Q | f ′′(z)|, we
obtain the desired statement.

Problem 6: Lipschitz gradient in the quadratic case

We now move to a multidimensional case, where we have f : Rp → R defined as f (x) = 1
2 x⊤Ax, where A is a positive semi-definite

matrix. We will explore a different way to compute the Lipschitz constant of the gradient in this setting.
Given a pair of dual norms (∥ · ∥p, ∥ · ∥q) with 1

p +
1
q = 1, prove that when

∥∇ f (x) − ∇ f (y)∥q ≤ L∥x − y∥p ∀x,y ∈ Q,

then L = ∥A∥p→q.

HINT. Recall the definition of the operator norm from the lecture.

∥A∥p→q := sup
x:∥x∥p≤1

∥Ax∥q

Solution

First of all, we need to compute ∇ f (x) = Ax. We start from the definition of the Lipschitz gradient (1), provided the given pair of
dual norms, we have

∥∇ f (x) − ∇ f (y)∥q ≤ L∥x − y∥p ∀x,y ∈ Q.

Substituting the gradient of f , we have ∥A(x−y)∥q ≤ L∥x−y∥p. Setting z = x−y, and considering the case z , 0 (the case z = 0 leads
to a trivial setting where any L can be chosen), we can divide by ∥z∥p on both sides. Then, we can upper bound the left-hand side
by maximizing over z. Noting that the formulation is equivalent to the definition of the operator norm, we can identify the RHS
expression with L for the desired result:

∥Az∥q
∥z∥p

≤ sup
z′:z′,0

∥Az′∥q
∥z′∥p

= sup
z′:z′,0
∥z′∥p≤1

∥Az′∥q =: ∥A∥p→q =: L

Problem 7: Operator norms in action

1. Given A ∈ Rm×n and a⊤i the i-th row of A, prove that the operator norm ∥A∥1→∞ = maxi∈{1,...,m} ∥ai∥∞.

2. Consider the matrix

A =


2 − 1

√
2
−1

1
√

2
3 − 1

√
2

−1 − 1
√

2
2

 .
Compute the Lipschitz constant of the gradient of f (x) = x⊤Ax in the following settings.

7

LIONS @ EPFL Mathematics of Big Data Prof. Volkan Cevher

∥∇ f (x) − ∇ f (y)∥∞ ≤ L∥x − y∥1 ∥∇ f (x) − ∇ f (y)∥2 ≤ L∥x − y∥2

Are the values of L equal? How do you interpret the result?

Solution

1. Let A ∈ Rn×n and a⊤i denote i-th row of A. Let us first prove that the norm ∥A∥1→∞ = maxi∈{1,...,n} ∥ai∥1

∥Ax∥∞ = max
i∈{1,...,m}

|⟨ai, x⟩| ≤ max
i∈{1,...,m}

∥ai∥p∥x∥q ≤ max
i∈{1,...,m}

∥ai∥p,

where p is such that ∥ · ∥p is the dual norm of ∥ · ∥q. When q = 1, we get p = ∞, which implies that we take the maximal ℓ∞
norm of a row. This amounts to taking the maximum entry of the matrix.

Note. The proof for ∥A∥2→2 is a more involved, but we also provide it for completeness..
∥A∥2→2 = sup

∥x∥2≤1
∥Ax∥2 = sup

∥x∥2≤1
∥UΣVT x∥2 (using SVD of A)

= sup
∥x∥2≤1

∥ΣVT x∥2 (rotational invariance of ∥ · ∥2)

= sup
∥z∥2≤1

∥Σz∥2 (letting VT x = z)

= sup
∥z∥2≤1

√√√min(n,p)∑
i=1

σ2
i z2

i = σmax = ∥A∥

2. For our particular application, we directly see that ∥A∥1→∞ = 3, and by taking a singular value decomposition of the matrix,
we obtain ∥A∥2→2 = 4. We see then that different norm can give us more or less flat landscapes. This can impact the speed
of convergence of gradient methods, where the step size is given by 1

L . A small L will mean that the method will be able to
take larger steps.

Problem 8: The importance of choosing the smoothness norm

1. During the lectures we saw that the L-smoothness of a function f gives rise to local quadratic upper-bounds. The iterative
minimization of these upper bounds recovers the well-known Gradient Descent (GD) method. As a warm-up, let us remind
ourselves of the computation.

Let f : Rd → R be convex and L2-smooth and recall from the lecture that this implies

f (y) ≤ f (x) + ⟨∇ f (x), y − x⟩ +
L2

2
∥x − y∥22, ∀x, y ∈ Rd. (2)

Show that the minimizer in y of the right-hand side of (2) is

y∗ = x −
1
L2
∇ f (x). (3)

Observe that setting x = xk and letting xk+1 := y∗ in (3) results precisely in the update rule of GD.

Solution

Note that the RHS is strongly-convex in y and thus has a unique minimum. Thee first order optimality condition gives us:

∇ f (x) − L2(x − y∗) = 0 ⇐⇒ y∗ = x −
1
L2
∇ f (x)

2. In point 1. we arrive at the GD update rule by considering the smoothness of f with respect to the Euclidean norm. However,
smoothness may be considered with respect to arbitrary norms ∥ · ∥p, and its general expression is given by

∥∇ f (x) − ∇ f (y)∥q ≤ Lp∥x − y∥p, (4)

8

LIONS @ EPFL Mathematics of Big Data Prof. Volkan Cevher

where ∥z∥q := max∥t∥p≤1⟨z, t⟩ is the dual norm of ∥ · ∥p. As in the case of smoothness with respect to ∥ · ∥2, smoothness with respect
to ∥ · ∥p induces a local quadratic upper bound as follows:

f (y) ≤ f (x) + ⟨∇ f (x), y − x⟩ +
Lp

2
∥x − y∥2p, ∀x, y ∈ Rd. (5)

By iteratively minimizing the right-hand side of (5) and depending on the chosen p, one arrives at various non-Euclidean gradi-
ent methods. The choice of norm is important as it can result in asymptotically faster gradient methods than the traditional GD.
An example can be found in the work of [3], who leveraged smoothness with respect to ∥ · ∥∞ to obtain superior convergence for
the maximum s-t flow and maximum concurrent multicommodity flow problems.

In the following, we will guide you in discovering the update rule that emerges from considering smoothness in the ℓ∞-norm.
Let f : Rd → R be convex with L∞-Lipschitz gradient ∥∇ f (x) − ∇ f (y)∥1 ≤ L∞∥x − y∥∞.

(a) Define

[x]# := arg max
s∈Rd

{
⟨x, s⟩ −

1
2
∥s∥2∞

}
. (6)

Show that ∥x∥1 sgn(x) ∈ [x]# , i.e. that it is a maximizer of the expression in (6).

Hint: You can use Hölder’s inequality below to find an upper bound, then show that it is correspondingly attained.

|⟨x, y⟩| ≤ ∥x∥p∥y∥q ∀p, q ∈ [1,∞] s.t.
1
p
+

1
q
= 1 (with the convention that

1
∞
= 0).

Solution

Note that if x = 0, then arg maxs∈Rd

{
⟨x, s⟩ − 1

2 ∥s∥
2
∞

}
= 0 = ∥x∥1 sgn(x).

Otherwise, we proceed by first deriving an upper-bound using Hölder’s inequality:

⟨x, s⟩ −
1
2
∥s∥2∞ ≤ ∥x∥1∥s∥∞ −

1
2
∥s∥2∞

= −
1
2

(∥s∥∞ − ∥x∥1)2 +
1
2
∥x∥21

≤
1
2
∥x∥21 ∀s ∈ Rd

Next we show that, replacing s with ∥x∥1 sgn(x) attains the above upper bound:

⟨ x, ∥x∥1 sgn(x) ⟩ −
1
2
∥ ∥x∥1 sgn(x) ∥2∞ = ∥x∥1 ⟨ x, sgn(x) ⟩︸ ︷︷ ︸

=∥x∥1

−
∥x∥21

2
∥ sgn(x) ∥2∞︸ ︷︷ ︸

=1

=
∥x∥21

2

We conclude thus that ∥x∥1 sgn(x) is a maximizer of the expression in (6).

(b) Using inequality (5) adapted to the ∥ · ∥∞ norm, show that the minimizer in y of its right-hand side is given by

y∗ = x −
1

L∞
∥∇ f (x)∥1sgn (∇ f (x)) .

Similar to point 1., observe how letting x = xk and xk+1 := y∗ gives us an update rule. This type of update pertains to the
so-called SignGD method.

Hint: Write down the relevant arg min expression and then try to transform it equivalently such that the arg max formulation
from (6) appears.
Remark: For those interested in doing further reading on the topic, [2] and [1] are good places to start.

9

LIONS @ EPFL Mathematics of Big Data Prof. Volkan Cevher

Solution

The induced quadratic upper bound is:

f (y) ≤ f (x) + ⟨∇ f (x), y − x⟩ +
L∞
2
∥x − y∥2∞︸ ︷︷ ︸

=RHS

, ∀x, y ∈ Rd. (7)

We now seek to find the y∗ = arg min
y∈Rd

{RHS }:

y∗ = arg min
y∈Rd

{
f (x) + ⟨∇ f (x), y − x⟩ +

L∞
2
∥x − y∥2∞

}
= arg min

y∈Rd

{
⟨∇ f (x), y − x⟩ +

L∞
2
∥x − y∥2∞

}
= arg max

y∈Rd

{
−⟨∇ f (x), y − x⟩ −

L∞
2
∥x − y∥2∞

}
= arg max

y∈Rd

{
⟨∇ f (x), x − y⟩ −

L∞
2
∥x − y∥2∞

}
= arg max

y∈Rd

{〈
1

L∞
∇ f (x), x − y

〉
−

1
2
∥x − y∥2∞

}

Note that, since the maximization is done over the entire space Rd and x is an arbitrary and fixed point, we have that:

max
y∈Rd

{〈
1

L∞
∇ f (x), x − y

〉
−

1
2
∥x − y∥2∞

}
= max

s∈Rd

{〈
1

L∞
∇ f (x), s

〉
−

1
2
∥s∥2∞

}
, (8)

where we defined s := x − y.

From point (a) we know that s∗ = ∥ 1
L∞
∇ f (x)∥1 sgn(1

L∞
∇ f (x)) L∞≥0

= 1
L∞
∥∇ f (x)∥1 sgn(∇ f (x)) is a maximizer for the right-hand

side expression in (8). Since s∗ = x − y∗ (as x is fixed), we obtain that y∗ = x − 1
L∞
∥∇ f (x)∥1 sgn(∇ f (x)) , as required.

References

[1] J. Bernstein, Y.-X. Wang, K. Azizzadenesheli, and A. Anandkumar. signsgd: Compressed optimisation for non-convex problems.
arXiv preprint arXiv:1802.04434, 2018.

[2] D. E. Carlson, E. Collins, Y.-P. Hsieh, L. Carin, and V. Cevher. Preconditioned spectral descent for deep learning. In Advances in
Neural Information Processing Systems, pages 2971–2979, 2015.

[3] J. A. Kelner, Y. T. Lee, L. Orecchia, and A. Sidford. An almost-linear-time algorithm for approximate max flow in undirected graphs,
and its multicommodity generalizations. In Proceedings of the twenty-fifth annual ACM-SIAM symposium on Discrete algorithms, pages
217–226. SIAM, 2014.

10

