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We review probability theory and statistics in this handout. We will also have a basic introduction to Stochastic Gradient Descent,
an extremely important algorithm for machine learning.

1 Basic Probability

PROBLEM 1: THE MOST USEFUL BOUND IN PROBABILITY THEORY

Recall the definition of a probability measure. In this problem, we will rigorously prove the most useful bound in probability
theory, the Union Bound, stating that given any n events E1, E2, ..., En, we have

P(∪n
i=1Ei) ≤

n∑
i=1

P(Ei).

Prove the following statements.

(a) For any two events A and B such that A ⊆ B, prove that P(A) ≤ P(B).

Solution: Let A, B be any two events. Then B = (A ∩ B) ∪ (Ac ∩ B), where Ac is the complement of the set A. Notice that this is a
union of two disjoint sets, so we can apply the additivity axiom of probability measures and find that P(B) = P(A∩ B)+ P(Ac ∩ B).
Since A ⊆ B, we have A ∩ B = A. The last step is to apply the positivity axiom stating that P(C) ≥ 0 for any event C, and therefore
P(B) = P(A) + P(Ac ∩ B) ≥ P(A).

(b) Prove the union bound P(∪n
i=1Ei) ≤

∑n
i=1 P(Ei).

(Hint: For any two events E1 and E2, prove that P(E1 ∪ E2) ≤ P(E1) + P(E2). For this, you can use a useful decomposition rule of
sets: E1 ∪ E2 = (E1 ∩ Ec

2) ∪ E2. Applying this bound recursively will finish the proof.

To use the recursive arguments, you need to write the union of n events as a union of 2 events.)

Solution: Decomposing E1 ∪ E2 = E1 ∪ (Ec
1 ∩ E2) and applying part (a), we get

P(E1 ∪ E2) = P(E1) + P(Ec
1 ∩ E2)

≤ P(E1) + P(E2).

For n > 2 events, notice that ∪n
i=1Ei =

(
∪n−1

i=1 Ei

)
∪ En. Conclude by induction.

2 “Modeling” in the Absence of Models; Neural Networks as Universal Approximators

Recall that the least-square estimator naturally arises from the maximum likelihood estimation of

A1. a true signal x♮,

A2. with a linear model,

A3. of added Gaussian noise.

That is, if we assume that the data (ai, bi) ∈ (Rp × R) is generated by the following relation:

bi = ⟨ai, x♮⟩ +Wi, Wi ∼ N(0, σ2),

then
x⋆ML = arg min

x∈Rp

1
2
||b − Ax||22
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where A⊤ = [a1 a2 · · · an].
Although the importance of LS estimators can hardly be overemphasized, it is still widely criticized by its restrictive setting; i.e.,

assuming A1-3. A natural question is: What if we drop these assumptions? For instance, what if the model is nonlinear, or there is no
such thing as a true signal, or the noise is far away from Gaussian?

Neural networks [2] present a powerful framework to address these concerns with the following philosophy: First, denote the
(possibly very complicated) relation between input and output by b = h(a), where h is a function from Rp → R and (a, b) follows some
unknown distribution P. Then the function h should satisfy

h = arg min
g

1
2
EP (g(a) − b)2 , g any function. (1)

(Remark: We focus on the regression example here, while the very same idea works for classification just as well.)
Now, there are two reasons why solving (1) is not possible:

1. We do not know the distribution P; instead, we only have samples (ai, bi) from P.

2. We do not know how to optimize over the set of all functions.

For the first issue, we already know that we can replace the true average by the empirical average, leading to an empirical risk
minimization problem. For the second, the key idea of deep learning relies on the following theorem [3]: Informally speaking,

Any function f can be approximated arbitrarily well by a neural network, as long as the network size is big enough.

Combining these, we are lead to the empirical risk minimization of neural networks:

x⋆ = arg min
x

1
n

n∑
i=1

(bi − hx(ai))2

 , hx(a) = σ (Wkσ (· · ·σ (W2σ (W1a + µ1) + µ2) · · · ) + µk) ; (2)

where σ is a "proper" activation function that requires some condition on continuity, x = (W1,µ1,W2,µ2, . . . ,Wk,µk), Wi ∈ R
di×di−1 ,

µi ∈ R
di and a ∈ Rp (more on the notation in the lectures). The hope is that, as long as we have enough parameters and data, the

learned neural network is a good approximator for the function h:

hx⋆ ≃ h,

which is true by the theorem of [3]. There are however trade-offs involved in scaling up over-parametrized networks: width helps
robustness; depth helps robustness under a certain initialization but hurts it under another [5].

In conclusion,

Neural networks can be viewed as a “universal modeling” scheme where no assumption about the data distribution is made.

Finally, all the above reasoning relies on the big “if” that we can optimize (2). It is an important fact that one can efficiently compute
the (stochastic) gradients of (2) via the so-called backpropagation [4], and therefore one can run first-order algorithms. The details will
be covered in the coming lectures and exercises.

3 Randomness in Statistical Learning Problems, and Stochastic Gradient Descent

PROBLEM 3: RECOGNIZING DIFFERENT RANDOMNESS

There are many different randomness in modern data science or machine learning problems. The purpose of this exercise is to help
you get a deeper understanding of them.

This course is all about inferring from data, and the data from real world is often random. Besides this intrinsic randomness,
another common source of randomness in modern applications is the randomized algorithms. It is extremely important that you have a
clear picture of what randomness is truly relevant for statistical inference, and what is only for computational purposes.

Consider the Gaussian linear model from Lecture 1: Let x♮ ∈ Rp and A ∈ Rn×p. We have observations of the form

b = Ax♮ + w, (3)

where w ∼ N(0, σ2I) is the Gaussian noise vector. We aim to solve the maximum likelihood estimator

x⋆ML = arg min
x∈Rp

{
f (x) :=

1
2n
||b − Ax||22

}
, (4)

where we have normalized the the loss function by the number of measurements n (the number 1
2 is just for convenience later).

2
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(a) So far the only random component is the noise w. Let Ew denote the expectation with respect to the randomness of w. Compute
Ew||b − Ax♮||22.

Solution: Ew||b − Ax♮||22 = Ew∥w∥22 = nσ2.

(b) In practice, the measurement matrix A is often random. Assume that the entries of A are independent random variables with
mean 0 and variance 1, and are independent of the noise w. Let EA denote the expectation with respect to the randomness of A.
Show that

1
n
EA||Ax||22 = ||x||

2
2 (5)

for all x ∈ Rp.
(Hint: Let a⊤i be a row of A. What is EA|⟨ai, x⟩|2? Can you compute EA||Ax||22 through EA|⟨ai, x⟩|2?)

Solution: Since ||Ax||22 =
∑n

i=1⟨ai, x⟩2, it suffices to prove that EA|⟨ai, x⟩|2 = ∥x∥22. To show this, we compute

EA⟨ai, x⟩2 = EAx⊤ai · ai
⊤x

= x⊤ · EAaiai
⊤ · x

= x⊤x = ∥x∥22

where we have used the fact that EAai j = 0, EAa2
i j = 1, and each ai j is independent.

(c) Show that the following useful basic inequality holds:

||A(x⋆ML − x♮)||22 ≤ 2⟨w,A(x⋆ML − x♮)⟩. (6)

(Hint: The maximum likelihood estimator minimizes the loss function, so you can compare the values of the loss function when
substituting in x⋆ML and any other x.)

Solution: This is a simple rearrangement of the inequality

∥b − Ax⋆ML∥
2
2 ≤ ∥b − Ax♮∥22,

which follows by the definition of the maximum likelihood estimator. Indeed by expanding both the left and right hand side,
we find that

∥b∥22 − 2⟨b,Ax⋆ML⟩ + ∥Ax⋆ML∥
2
2 ≤ ∥b∥

2
2 − 2⟨b,Ax♮⟩ + ∥Ax♮∥22

∥Ax⋆ML∥
2
2 − ∥Ax♮∥22 ≤ 2⟨b,A(x⋆ML − x♮)⟩ (substracting ∥b∥22 and ∥Ax♮∥22)

∥Ax⋆ML∥
2
2 − ∥Ax♮∥22 ≤ 2∥Ax♮∥22 + 2⟨Ax♮,Ax⋆ML⟩ + 2⟨w,A(x⋆ML − x♮)⟩ (Plugging in b = Ax♮ + w)

∥Ax⋆ML∥
2
2 − 2⟨Ax♮,Ax⋆ML⟩ + ∥Ax♮∥22 ≤ 2⟨w,A(x⋆ML − x♮)⟩ (rearranging)

∥A(x⋆ML − x♮)∥22 ≤ 2⟨w,A(x⋆ML − x♮)⟩

(d) What we ultimately care about is the estimation error: EA,w||x⋆ML − x♮||22. In view of (b) and (c), one might be tempted to conclude
that

EA,w||x⋆ML − x♮||22 ≤ 2EA,w⟨w,
1
n

A(x⋆ML − x♮)⟩. (7)

Please argue carefully why this argument is NOT true.
(Hint: In part (b) we considered a fixed, deterministic x. Is x⋆ML − x♮ deterministic? If not, what randomness does it depend on?)

Solution: The maximum likelihood estimator x̂ depends on the realisation of A and w, and hence cannot be treated as a fixed/de-
terministic x, as in (b).

(e) We introduce the important Stochastic Gradient Descent (SGD) in the exercise.

Recall Gradient Descent (GD) for minimizing (4):

• Choose x0 arbitrarily.

• Do xk+1 = xk − αk∇ f (xk) for some predetermined step-sizes αk > 0.

3
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Recall also that for (4), the gradient at a point x is ∇ f (x) = 1
n A⊤(Ax − b).

Consider a randomized algorithm as follows. At the current iterate xk, an index i ∈ {1, 2, ..., n} is selected uniformly at random.
We then replace the gradient at xk by the vector (⟨ai, xk⟩ − bi)ai, where a⊤i is the i-th row of A and bi is the i-th element of b. All
other steps are the same as GD. Let ES GD denote the expectation with respect to the randomness of this algorithm. Show that

ES GD (⟨ai, xk⟩ − bi) ai =
1
n

A⊤(Axk − b). (8)

That is, the algorithm is a randomized version of Gradient Descent, hence the name.
(Hint: Recall that a⊤i is a row of A, and therefore it is a column of A⊤.)

Remark: There are many reasons for using SGD instead of GD; we refer the interested students to [1] for a gentle introduction of
SGD. Please do bear in mind that SGD is extremely important in practice. Ever heard of deep learning? AlphaGo? Your interest
might be piqued if you know that SGD is the go-to algorithm for these state-of-the-art learning machines.

Solution: Write ∇ f (x) = 1
n A⊤(Ax − b) = 1

n

∑n
i=1 (⟨ai, x⟩ − bi) ai. Then

ES GD (⟨ai, x⟩ − bi) ai =

n∑
i=1

P(i) (⟨ai, x⟩ − bi) ai

=
1
n

n∑
i=1

(⟨ai, x⟩ − bi) ai

which is ∇ f (x).

(f) Under the assumptions in (b), show that
EA,w (⟨ai, x⟩ − bi) ai = x − x♮ (9)

for any x.

Solution: Since bi = ⟨ai, x♮⟩ + wi, we have

EA,wai (⟨ai, x⟩ − bi) = EA,waia⊤i (x − x♮) − EA,wwiai

= x − x♮.

(g) Under the assumptions in (b), show that, for any x,

1
n
EA,wA⊤(Ax − b) = x − x♮. (10)

(Hint: There are many ways of proving this. Combining (e) and (f) gives a very simple proof.)

Solution: Using (e) and (f), we may compute

1
n
EA,wA⊤(Ax − b) = EA,wES GD (⟨ai, x⟩ − bi) ai

= ES GDEA,w (⟨ai, x⟩ − bi) ai

= ES GD(x − x♮)

= x − x♮.

4 Multinomial logistic regression and language model training

PROBLEM 4: TOWARDS TRAINING LANGUAGE MODELS

Recall that in the lecture we talk about logistic regression for binary classification problems. Let x♮ ∈ Rp. Let a1, . . . , an ∈ R
p be

given. The sample is given by b := (b1, . . . , bn) ∈ {0, 1}n. The classifier hx estimates the probability P(b = 1) by outputing a scalar hx such
that hx :=

[
1 + exp (− ⟨ai, x⟩)

]−1
= P(b = 1).

(a) Show that maximizing the likelihood is equivalent to minimizing the cross-entropy between the real distribution and estimated
distribution.

Solution: The objective of maximizing the likelihood is equivalent to minimizing the negative log likelihood:

min
x
− log px(b) = − log

n∏
i=1

hbi
x (1 − hx)1−bi =

− n∑
i=1

bi log hx + (1 − bi) log(1 − hx)


4
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Therefore, one can see that for each data sample, we are minimizing the cross-entropy between the real distribution Bern(1) and
the estimated distribution Bern(hx), when bi = 1, or the cross-entropy between the real distribution Bern(0) and the estimated
distribution Bern(hx), when bi = 0.

(b) In logistic regression, we only deal with two classes. But in reality, there are many situations where multiple classes are involved.
In this case, we need to generalize the logistic regression to multinomial logistic regression (sometimes called the softmax re-
gression).

Suppose there are K classes (K ≥ 2). The classifier aims to output a vector hX ∈ R
K to estimate the probability of each class such

that its k element is P(b = k|a). Note that in this case, the classifier is parameterized by a learnable matrix X ∈ RK×p to estimate
the probability as follows: P(b = k|a) = (Softmax(Xa))[k], for k ∈ [K], where Softmax is defined by:

Softmax(Xa) =


exp ((Xa)[1])∑K

i=1 exp ((Xa)[i])

...
exp ((Xa)[K])∑K
i=1 exp ((Xa)[i])

 ∈ RK.

Again, show that maximizing the likelihood is equivalent to minimizing the cross entropy between the real distribution and the
estimated distribution.

Solution: Similar to the previous case of binary classification, we have

min
X
− log pX(b) = − log

n∏
i=1

h[bi]
X =

n∑
i=1

− log h[bi]
X =

n∑
i=1

K∑
j=1

− log h[ j]
X 1 j=bi ,

where the superscript “bi” indicates the corresponding element for the bi class in the vector hX. Hence, we can see that∑K
j=1 − log h[ j]

X 1 j=bi is exactly the cross-entropy between the real categorical distribution and the estimated categorical distribu-
tion.

(c) To some extent, training a language model is essentially tackling a multinomial logistic regression problem where the model
needs to predict next word given previous words. A neural network hx parameterized by x is used as an ML estimator, as
mentioned in the lecture. Specifically, hx aims to predict the t token given t − 1 tokens.

min
x
− log px(b1:T ) = − log

 T∏
t=1

px(bt |b1:t−1)

 = T∑
t=1

(
− log px(bt |b1:t−1)

)
=

T∑
t=1

(
− log hx(b1:t−1)[“bt”]

)
= cross entropy loss.

Write down the SGD algorithm for training a language model given a corpus that consists of n sentences.

Solution:

SGD for training a language model

1. Choose x0 ∈ Rp and step-size (αk)k∈N ∈ ]0,+∞[N.
2. For k = 0, 1, . . . perform:

• Randomly sample a sentence S i with embedding bi,1:T from
the corpus, i ∈ [n].

• Set initial loss L = 0.

• Forward pass: For t = 1, . . . ,T :

L+ = (− log hxt (bi,1:t−1)[“bi,t”])

• Backward pass:

xk+1 = xk − αk
∂L
∂x
.

3. Output the language model with weights x.
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