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Machine learning 4/61

Learning is an essential part of living
Learning typically means changing/adapting to be better, as
per a given criterion, when a similar situation arrives
Challenge lies in generalizing to new or unobserved situations



Challenge 5/61

Learning needs training data. We have access to only a finite
amount of training data.
Variabilities in the data

Language level: isolated words, sentence, spoken language,
read speech, spontaneous speech, dialect ...
Speaker level: gender, adult versus child, dialect, age, accent,
impaired versus unimpaired (pathological speech), emotion,
mood, stress ....
Noise

Convolutive: recording/transmission condition, reverberation
Additive: recording environment, transmission
Lombard effect: speaker level variability in noisy environment

Depending upon the task, a few variabilities are desirable or of
interest while others are undesirable or of not interest.



Types of learning 6/61

1. Supervised learning
Training data is labelled. For example, for a frame of feature
vector or a sequence feature vectors we have a "class" label
associated to it.

2. Reinforcement learning
Training data has partial labels/targets. For example, did a
robot carry out the desired action or not?

3. Unsupervised learning
Training data does not contain class labels or targets. But,
often there is a hidden goal associated with the task. For
example, data clustering tasks have a hidden goal such as,
minimization of a distance function or maximization of
likelihood.



Statistical Pattern Recognition 7/61

Classification
Static classification
Sequence classification

Detection: can be regarded as a two class classification
problem
Regression: relation between two variables, namely, measured
variable and explanatory variable



Three Key Statistical Rules 8/61

1. Bayes’s rule:

P(A,B) = P(A|B)P(B) = P(B|A)P(A)

2. If Bk (k = 1, . . . ,K ) are mutually exclusive and collectively
exhaustive (

∑K
k=1 P(Bk) = 1)

P(A) =
K∑

k=1

P(A,Bk)

3. Gibbs sampler:

P(B1, . . . ,Bk , . . . ,BK ) =
K∏

k=1

P(Bk |Bk−1, . . . ,B1)



Static Classification 9/61
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Static Classification 13/61
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Theoretical formulation 14/61

P(Ck |xm,Θ) =
p(xm|Ck ,Θ) · P(Ck |Θ)

p(xm|Θ)
∀k ∈ {1, · · ·K} (1)

P(Ck |xm,Θ): Posterior probability of class Ck

p(xm|Ck ,Θ): Likelihood of class Ck

P(Ck |Θ): Prior probability of class Ck

p(xm|Θ) =
∑K

j=1 p(xm|Cj ,Θ) · P(Cj |Θ): Observation
likelihood
Θ: parameters of the statistical model
0 ≤ P(Ck |xm,Θ) ≤ 1 and

∑K
k=1 P(Ck |xm,Θ) = 1

0 ≤ P(Ck |Θ) ≤ 1 and
∑K

k=1 P(Ck |Θ) = 1



Generative approach 15/61

Estimate or model p(xm|Ck) by a probability density function
Gaussian or Normal distrution

p(xm|Ck ,Θk) = N(xm, µk ,Σk)

=
1

(2π)D/2|Σk |1/2
exp

(
− (xm − µk)tΣ−1

k (xm − µk)

2

)
≈

D∏
d=1

1√
2πσd

k

exp

(
−1
2

(
xdm − µd

k

σd
k

)2)
Gaussian mixture models (GMM)

p(xm|Ck ,Θk) =
J∑

j=1

c jk · N(xm, µ
j
k ,Σ

j
k)

Estimate prior probability P(Ck) (typically done through
counting)
Apply Eqn. (1)
Θ: means, variance and Gaussian weights (in the case of
GMMs)



EM algorithm for GMMs (1) 16/61

p(xm) =
J∑

j=1

cjp(xm|µj ,Σj)

with cj = P(Gj) (Weight fot Gaussian j).
Estimation step:

P(Gj |xm) =
cjp(xm|µ(t)

j ,Σ
(t)
j )∑

j cjp(xm|µ(t)
j ,Σ

(t)
j )

Maximization step:

µ
(t+1)
j =

∑n=M
m=1 xmP(Gj |xm)∑m=M
m=1 P(Gj |xm)

Σ
(t+1)
j =

∑m=M
m=1 P(Gj |xm)(xm − µ(t+1)

j )(xm − µ(t+1)
j )T∑m=M

m=1 P(Gj |xm)

c
(t+1)
j =

1
M

m=M∑
m=1

P(Gj |xm)



EM algorithm for GMMs (2) 17/61
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Discriminative approach 18/61

Artificial neural network trained with one hot encoding of
target and cross entropy error function (or mean square error
function) can directly estimate P(Ck |xm,Θ)

speech
signal FFT

Critical bands
filtering

Non-linear
operation

DCT
log(·)

AR
modeling3

√
·

MFCC

PLP

Derivatives
∆ + ∆∆

Derivatives
∆ + ∆∆

+

+

NN
classifier

NN
classifier

P (i|x)

P (i|x)

x

x

Support vector machines (estimation of posterior probability of
class not trivial, see Platt’s method)
Θ: parameters of the artificial neural networks (weights and
biases) or support vector machines

http://www.cs.cornell.edu/courses/cs678/2007sp/platt.pdf


ANN: Multilayer perceptrons 19/61

YY

YYY

Typical multilayer perceptron (MLP) architecture, each unit
approximating a perceptron.



ANN Training 20/61

Supervised training: Input vector sequence:

X = {x1, . . . , xn, . . . , xM}

Desired output sequence associated with X :

D = {d(x1), . . . , d(xm), . . . , d(xM)}

and d(xm) = (d1(xm), . . . , dk(xm), . . . , dK (xm))T

In classification mode:

dk(xm) = δk` if xm ∈ C`

Parameters Θ: weights and biases



Training Criteria 21/61

Mean Square Error:

argmin
{Θ}

E =
1
2

M∑
m=1

K∑
k=1

[gk(xm,Θ)− dk(xm)]2

Entropy or relative entropy:

argmin
{Θ}

Ee =
M∑

m=1

M∑
m=1

[
dk(xm) log

dk(xm)

gk(xm,Θ)

+(1− dk(xm) log
1− dk(xm)

1− gk(xm,Θ)

]
gk(xm,Θ) denotes the output of the neural network.



Error back propagation training 22/61

Minimization of E (or Ee) in the parameter space Θ (weights +
biases)

5E

5Θ
= 0

Done via a gradient procedure:

4wij = −α ∂E
∂wij

α denotes learning rate

Adjust wij based on 4wij .



Offline Error Back-Propagation 23/61

Initialize network at random; choose “large” learning rate
Until convergence = true

For m=1 to M
Forward computation of gk(xm,Θ)
Error calculation and global error update
Error backward propagation
and compute local δΘ(xm)

Θ update =
∑M

m=1 δΘ(xm)
If error (on cross-validation set) decreases

save new parameters
Otherwise, don’t save new parameters

and decrease learning rate
If learning rate < threshold then convergence = true;



Online Error Back-Propagation 24/61

Initialize network at random
Choose “large” learning rate; convergence = false
Until convergence = true

For m=1 to M (or something else)
Pick xm at random
Forward computation of gk(xm,Θ)
Error calculation
Error backward propagation and Θ update

If error (on cross-validation set) decreases
save new parameters

Otherwise, don’t save new parameters
and decrease learning rate

If learning rate < threshold: convergence = true;

In practice: Mini-batch training, a combination of offline and
online error back propagation.



Cross-validation training (1) 25/61

After each MLP training epoch:
1. check recognition performance on independent data set
2. stop training if rec performance starts to decrease and learning

rate below a given threshold

Remarks: there are other solutions like
Forcing small weights
“Optimal Brain Damage”
Regularized training (Bayesian approach)



Cross-validation training (2) 26/61

Training

x-val

% correct

# epochs

100

0
STOP

Example of crossvalidation training. x-val represents the
crossvalidation data on which classification performance is regularly
checked. Training is stopped when performance on x-val data
reaches the maximum.



Interpretation of ANN output gk(xm,Θ) 27/61
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class Ck , i.e. P(Ck |xm).



Decision making 28/61

Maximum likelihood

C ∗mle = arg max
k

p(X |Ck ,Θ)

p(X |Ck ,Θ) =
M∏

m=1

P(xm|Ck ,Θ)(Assuming i.i.d)

Maximum aposteriori probability

C ∗map = arg max
k

p(Ck |X ,Θ)

P(Ck |X ,Θ) =
1
Z
·

M∏
m=1

P(Ck |xm,Θ)(Assuming i.i.d)

or

P(Ck |X ,Θ) =
1
Z
·

M∑
m=1

P(Ck |xm,Θ)

Z is a normalization factor.
Better to perform computation using logarithm to avoid underflow issues.
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Sequence classification 30/61

Automatic Speech
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words



Statistical ASR 31/61

Given feature observation X = {x1, · · · xm, · · · xM} predict the most
probable word sequence W ∗ = {w∗1 · · ·w∗n · · ·w∗N}

W ∗ = arg max
Wi∈W

P(Wi |X ,Θ)

= arg max
Wi∈W

p(X |Wi ,Θa) · P(Wi |Θl)

p(X |Θ)

= arg max
Wi∈W

p(X |Wi ,Θa) · P(Wi |Θl),

where Wi denotes a word hypothesis, W denotes a set of word
hypotheses and Θ = {Θa,Θl}

Acoustic modeling: estimation of p(X |Wi ,Θa) using hidden
Markov models (HMMs)
Language modeling: estimation of P(Wi |Θl) using discrete
Markov models (DMMs)



Discrete Markov Model (DMM) 32/61

Stochastic finite state automaton
MM built up from states q` from a set of classes (states)
Ω = {ω1, . . . , ωk , . . . , ωK}
qn particular state of M visited at time n,
qn` ≡ {qn = q`}, ql ∈ Ω

MM is defined by topology, i.e., how the states are connected
See HMM lab exercise 1
Parametrized by:

P(qn` |qn−1
k , qn−2

j , . . .) ' P(qn` |qn−1
k ) (1st order Markov)

' P(q`|qk) = Pk` (time independent)

Note: ql , qk ∈ Ω
Transition probability matrix: A = {Pk,`}.



DMM (2) 33/61

a b

c

1/3

1/3

1/2

1/4

1/4 1/4

1/2

1/4

1/3

Example of fully connected discrete Markov model with
Ω = {a, b, c}. For example, in case of weather model: “a” =

“cloudy”, “b”= “rainy” and “c” = “sunny”



Typical Problems (1) 34/61

Probability of a particular path

P(Q|MM) = P(q1|q0
i )P(q2|q1) . . .P(qn|qn−1) . . .P(qN |qN−1)

=
N∏

n=1

P(qn|qn−1)

One way to estimate P(Wi |Θl), e.g.

P(W ∗|Θl) =
N∏

n=1

P(w∗n |w∗n−1)

State duration distribution
Probability to stay in state qi for exactly d time steps?

Q = {q0
i , q

1
i , q

2
i , . . . , q

d
i , q

d+1
j }, with j 6= i

and:
P(Q|MM) = (Pii )

d−1(1− Pii )

See HMM lab exercise 1



Typical Problems (2) 35/61

Probability to go from state qi to qj in N steps

P(qNj |q0
i ) =

N∑
n=0

L∑
`=1

P(qNj , q
n
` |q0

i )

Defining
α(`, n) = P(qn` |q0

i ,N)

We have:
α(`, n + 1) =

∑
k

α(k, n)Pk`

P(qNj |q0
i ) = α(j ,N)



Typical Problems (3) 36/61

Probability of best path of length N between qi and qj
If P(k , n) is probability of best path to go from qi to qk in n
steps:

P(`, n + 1) = max
k

P(k , n)Pk`

and
P(qNj |q0

i ) = P(j ,N)

Generalization:
An(i , j) = P(qnj |q0

i )



From DMM to HMM (1) 37/61

Coin tossing and only the results of each coin toss i.e. Heads
(H) or Tails (T ) is revealed
H H T T T H H H H T T . . .

1-coin model: DMM with two states Ω = {H,T} and all
transition probabilities are equal to 0.5.

H T

P(H|H)

P(T|H)

P(H|T)

P(T|T)



From DMM to HMM (2) 38/61

2-coin model: HMM with two states Ω = {C1,C2} ; each
state associated with P(H|Ci ) and P(T |Ci ) i ∈ {1, 2}; and
the transition probability reflects the probability of choosing
one of the (possibly biased) coins

C1 C2

P(C2|C1)

P(C1|C2)

P(C2|C2)P(C1|C1)

P(H|C1) P(T|C1)

Emission distribution for C1

P(H|C2)
P(T|C2)

Emission distribution for C2



Estimation of P(X |Wi ,Θa) using HMMs 39/61

P(X |Wi ,Θa) =
∑
Q∈Wi

P(X ,Q|Wi ,Θa)

=
∑
Q∈Wi

P(X |Q,Wi )P(Q|Wi ),

where Q = {q1, · · · qm, · · · qM} denotes sequence of HMM states.
After i.i.d and first order Markov assumption

P(X |Wi ,Θa) =
∑
Q∈Wi

M∏
m=1

p(xm|qm)
M∏

m=1

P(qm|qm−1)

=
∑
Q∈Wi

M∏
m=1

p(xm|qm)P(qm|qm−1) Full likelihood

≈ max
Q∈Wi

M∏
m=1

p(xm|qm)P(qm|qm−1) Viterbi approx.

For the sake of simplicity, Θa and Wi are dropped in the latter equations.
p(xm|qm) is referred to as emission likelihood and P(qm|qm−1) state transition
probabilities. See HMM lab exercises 3 and 4.



Estimation of emission likelihood 40/61

Gaussians and Gaussian-Mixtures

p(xm|qm = k,Θa) =N(xm, µk ,Σk)

=
1

(2π)D/2|Σk |1/2
exp

(
− (xm − µk)tΣ−1

k (xm − µk)

2

)
OR :

p(xm|qm = k ,Θa) =
J∑

j=1

c jkN(xm, µ
j
k ,Σ

j
k)

Artificial neural networks: estimate scaled-likelihood
psl(xm|qm = k,Θa)

psl(xm|qm = k ,Θa) =
p(xm|qm = k ,Θa)

p(xm|Θa)
=

P(qm = k|xm,Θa)

P(qm = k|Θa)
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Detection 42/61

Speaker	
verifica,on	
system	

Iden,ty	
claim	

Speech	
signal	

Accept	
Or	

Reject	

p(X |genuine speaker)

p(X |impostor)
≥ δasv

Challenge: modeling or estimation of p(X |impostor)

Keyword spotting
system

Keyword

Speech
signal

Keyword
Presence

Or
Absence

p(X |keyword)

p(X |not keyword)
≥ δkws

Challenge: modeling or estimation of p(X |not keyword)

Two types of error: False negative, False positive
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Paralinguistics 44/61

States and traits manifested in speech communication
long-term: age, gender, accent, personality ...
medium-term: mood, sleepiness, intoxication, social role ...
short-term: emotion, voice quality ...
speech and language pathologies

Paralinguistics ∝ speech, language, physiology, sociology,
psychology, health ....



Paralinguistics 45/61

Recent examples from workshops within the community:
Interspeech Computational Paralinguistics Challenge 1

ACM Audio/Visual Emotion Challenge Workshop 2

Styrian dialects: northern, urban, eastern

native language: 11 languages (ger, fra, ita, spa, hin)

Degree of nativeness: 0 (no foreign accent) ... 6 (strong foreign
accent)

emotions: anger, empathic, neutral, positive, rest

alcohol intoxication: no/yes

Parkinson’s disease: intelligibility 0 - 100

sleepiness: 1 - 9

Alzheimer’s disease: no/yes

1http://www.compare.openaudio.eu/
2https://sites.google.com/view/avec2019



Example application areas 46/61



Challenges in Paralinguistics (1) 47/61

Data Labeling
Establishing a ground-truth is not a trivial task
→ labels can be based on other fields
humans are typically used to label/rate the data
→ how to select human raters?
human ratings can differ
→ need to measure inter-rater agreement: see Cohen’s kappa
labels are typically assigned to a whole utterance or recording
(may refer to only some part of recording)

https://en.wikipedia.org/wiki/Cohen%27s_kappa


Emotion class labels 48/61



Sleepiness rating 49/61

also see: Likert scale

https://en.wikipedia.org/wiki/Likert_scale


Challenges in Paralinguistics (2) 50/61

Features
which features are relevant?
relevant information is present at short-term (segmental) level
or/and long-term (supra-segmental) level?
how to use prior knowledge or feature selection?
how to obtain short-term or long-term representations?



Challenges in Paralinguistics (3) 51/61

Data scarcity
Collecting large data sets is not an easy task

simulated versus real e.g., acted emotion versus real emotion
ethical restrictions e.g. in the case of health care
privacy issues
...

transfer learning from resource-rich task ( e.g. with deep
learning)
data augmentation - risk of obliterating important information

Cross-database, cross-lingual and cross-cultural generalisation
is not trivial.



Pattern recognition 52/61

Feature	
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Speech	 Phoneme	
Gender	
Speaker	
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Speech Analysis 53/61

Various aspects of speech production and perception:

Respiration
pause patterns, speech rate, loudness through
excitation strength

Phonation
analysis of pitch (jitter and shimmer)

Articulation - changes in vocal tract shape
use source-system decomposition
analysis of voiced speech (vowel formants)

tongue

trachea

vocal cords

pharynx

nasal cavity

oral cavity

epiglottis

velum



Respiration and pause patterns 54/61

pitch
loudness
statistics of silent regions
statistics of unvoiced regions per second ( pseudo-rate)



Phonation and voice-quality features 55/61

Measuring irregular phonation
Jitter: deviations of pitch from perfect periodicity
Shimmer: deviation of energy of signal

Harmonics-to-Noise Ratio (HNR):
HNR = 10 ∗ log ACF [T0]

ACF [0]−ACF [T0]
ACF denotes autocorrelation function and T0 denotes pitch
period.

https://www.researchgate.net/profile/Eiji_Yumoto2/publication/16091085_Harmonics-to-noise_ratio_as_an_index_of_the_degree_of_hoarseness/links/57bbd07708aefea8f0f45700/Harmonics-to-noise-ratio-as-an-index-of-the-degree-of-hoarseness.pdf


Articulation features 56/61

Measuring vocal tract shaping
Mel Frequency Cepstral Coefficients (MFCCs)
Perceptual Linear Prediction Coefficients (PLPs)
Vowel formant frequencies
Spectral slopes and ratios
...



Feature sets 57/61

Traditional approach to paralinguistic problems:
Use large quantities of short-time acoustic features

Several version of feature sets, easily extractable with openSMILE 3

openSMILE feature set: 6773 LLDS and functionals
eGeMAPS feature set: 88 LLDS

How to classify frame-level acoustic features?
1. Majority vote of frame-level feature vectors
2. Summarize frame-level feature vectors into per-utterance

vectors

3https://www.audeering.com/opensmile/

https://sail.usc.edu/publications/files/eyben-preprinttaffc-2015.pdf


Per-utterance representations 58/61

acoustic features are summarized in statistical functionals
( e.g. means, moments, extrema, percentile, slopes, regression
lines, max, min)
bag-of-audio–word (BoAW) representations
derived from bag-of-word vectors used in NLP 4

robust, time-invariant, non-reconstructable (good for privacy)
4https://github.com/openXBOW/openXBOW



Classification 59/61

Choice of classifier is dictated by amount of data available
k-Nearest Neighbors (kNN)

works well with small data sets
Support Vector Machine (SVM)

works well with small data sets and high dimensions
Random forest

works well with small data sets and high dimensions
Boosting

works well with small data sets and high dimensions
Neural Networks (NN)

May not suit well for small data sets

In some problems, classification is replaced by regression.



Evaluation 60/61

Common evaluation metrics:
Regression

Pearson’s correlation r : linear correlation
coefficient
Spearman’s cross-correlation ρ:
non-parametric correlation coefficient

Classification
Unweighted Average Recall (UAR): consider
performance across non-balanced class
distributions

Common evaluation schemes

N-fold cross-validation
leave-one-speaker-out cross-validation
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