ML for Speech Processing (includes
Paralinguistic Speech Processing)

Dr. Mathew Magimai Doss

December 15, 2022

Automatic Speech Processing, Master Cycle Ileap =PrL



https://www.idiap.ch
https://www.epfl.ch/en

Outline

Introduction

Static classification
Sequence classification
Detection

Paralinguistic speech processing



Outline

Introduction



Machine learning

m Learning is an essential part of living

m Learning typically means changing/adapting to be better, as
per a given criterion, when a similar situation arrives

m Challenge lies in generalizing to new or unobserved situations



Challenge

m Learning needs training data. We have access to only a finite
amount of training data.
m Variabilities in the data
m Language level: isolated words, sentence, spoken language,
read speech, spontaneous speech, dialect ...
m Speaker level: gender, adult versus child, dialect, age, accent,
impaired versus unimpaired (pathological speech), emotion,

mood, stress ....
m Noise

m Convolutive: recording/transmission condition, reverberation
m Additive: recording environment, transmission
m Lombard effect: speaker level variability in noisy environment
m Depending upon the task, a few variabilities are desirable or of
interest while others are undesirable or of not interest.



Types of learning

1. Supervised learning

m Training data is labelled. For example, for a frame of feature
vector or a sequence feature vectors we have a "class" label
associated to it.

2. Reinforcement learning

m Training data has partial labels/targets. For example, did a
robot carry out the desired action or not?

3. Unsupervised learning

m Training data does not contain class labels or targets. But,
often there is a hidden goal associated with the task. For
example, data clustering tasks have a hidden goal such as,
minimization of a distance function or maximization of

likelihood.



Statistical Pattern Recognition

m Classification
m Static classification
m Sequence classification
m Detection: can be regarded as a two class classification
problem
m Regression: relation between two variables, namely, measured
variable and explanatory variable



Three Key Statistical Rules

1. Bayes's rule:
P(A, B) = P(A|IB)P(B) = P(B|A)P(A)
2. If By (k=1,...,K) are mutually exclusive and collectively
exhaustive (3K, P(By) = 1)
P(A) = P(A, B)

3. Gibbs sampler:

P(By,..., B, ..., Bk) = ] P(Bk|Bk-1,-.,B1)
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Theoretical formulation

P(Cuben©) = PRSI v 1 k) (1)

P(Ck|xm, ©): Posterior probability of class Cj
p(xm|Ck, ©): Likelihood of class Cy

P(Cx|©): Prior probability of class Cy

p(xm|©) = ZJKZI p(xm|C;, ©) - P(C;|©): Observation
likelihood

©: parameters of the statistical model

m 0 < P(Cklxm,©) < 1and K, P(Cilxm, ©) =1
0< P(Ckl®) <1and 35, P(GO) =1



Generative approach

m Estimate or model p(xm,|Ck) by a probability density function
m Gaussian or Normal distrution

p(Xm|Ck7 ek) - N(me /.Lk, Zk)

exp < (xm — Mk)tzzk_l(xm - Mk))

1
- (271')D/2|Zk\1/2

o T (-3 (B
e 2770,‘(1 2 0’,‘3

m Gaussian mixture models (GMM)

«

p(xm|Cx, Ok) = Z - N(Xms 15 Z)
Jj=
m Estimate prior probability P(Cy) typically done through
counting)
= Apply Eqn. (1)
m O: means, variance and Gaussian weights (in the case of
GMMs)
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EM algorithm for GMMs (1)

J
= ) Gp(xmlu, 5))
=1

with ¢; = P(G;) (Weight fot Gaussian j).
Estimation step:
6P (x| 1, 231)

P(Gj|xm) =
> 6ip(xmlit?, £89)

Maximization step:

u(_t+1) _ an_ 1 XmP(Gj|xm)
: Yt P(Gilxm)

1 1
g _ Lt PGP O — 1) om — )T
: Yy’ P(Gilxm)

Cgt+1) _ Z (Gj|xm)

[
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EM algorithm for GMMs

One lteration of EM
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Discriminative approach

m Artificial neural network trained with one hot encoding of
target and cross entropy error function (or mean square error
function) can directly estimate P(Ck|xm, ©)

log(-) Demaum NN

DCT MECC
C c A +AA chsslﬁer PAil)
Non-lincar
operation
AR Derivatives z| NN

m Support vector machines (estimation of posterior probability of
class not trivial, see Platt’'s method)

speech Critical bands
" —{ FFT -
signal filtering

m O: parameters of the artificial neural networks (weights and
biases) or support vector machines


http://www.cs.cornell.edu/courses/cs678/2007sp/platt.pdf

ANN: Multilayer perceptrons
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unités d’entrée

Typical multilayer perceptron (MLP) architecture, each unit
approximating a perceptron.
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ANN Training 2

Supervised training: Input vector sequence:

X ={X1, . s Xny-o oy XM}
Desired output sequence associated with X:
D={d(x1),...,d(xm),...,d(xm)}

and d(xm) = (d1(Xm), - -, dk(Xm), - - -, dK(xm))T
In classification mode:

di(Xm) = Oke if xm € G

Parameters ©: weights and biases



Training Criteria
m Mean Square Error:

1
argmin E = — Xm, ©) — dk(Xm
{ge} 5 22 gk ( k(xm)]?

m Entropy or relative entropy:

d
argmin E, Z Z [dk Xm) log ———— (xm)

{e} m=1m=1 (Xm )
+(1 — dk(xm) log Zl—g,fkd(%

gk(xm, ©) denotes the output of the neural network.



Error back propagation training

Minimization of E (or E.) in the parameter space © (weights +

biases)
E
v — 0
vO
Done via a gradient procedure:
_ OE
AW,'J' = _O‘aw,-j

a denotes learning rate

Adjust w;; based on Aw;;.



Offline Error Back-Propagation

Initialize network at random; choose “large” learning rate
Until convergence = true
For m=1 to M
Forward computation of gi(xm, ©)
Error calculation and global error update
Error backward propagation
and compute local §©(x)
© update = 3"V 60(x,)
If error (on cross-validation set) decreases
save new parameters
Otherwise, don't save new parameters
and decrease learning rate
If learning rate < threshold then convergence = true;



Online Error Back-Propagation

Initialize network at random
Choose “large” learning rate; convergence = false
Until convergence = true
For m=1 to M (or something else)
Pick x,, at random
Forward computation of gi(xm, ©)
Error calculation
Error backward propagation and © update
If error (on cross-validation set) decreases
save new parameters
Otherwise, don't save new parameters
and decrease learning rate
If learning rate < threshold: convergence = true;

In practice: Mini-batch training, a combination of offline and
online error back propagation.
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Cross-validation training (1)

After each MLP training epoch:
1. check recognition performance on independent data set

2. stop training if rec performance starts to decrease and learning
rate below a given threshold

Remarks: there are other solutions like
m Forcing small weights
m “Optimal Brain Damage”

m Regularized training (Bayesian approach)



Cross-validation training (2)

% correct

100

# epochs

Example of crossvalidation training. x-val represents the
crossvalidation data on which classification performance is regularly
checked. Training is stopped when performance on x-val data
reaches the maximum.



Interpretation of ANN output gi(xm,, ©)

Trained Network Output vs. Fraction Correctly Classified
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Output Probability

ANN output gx(xm, ©) is an estimate of posterior probability of
class Cg, i.e. P(Cklxm).
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Decision making
m Maximum likelihood
Crje = argmax p(X|Cy, ©)
k

M
p(X|Ck,©) = H P(xm|Ck, ©)(Assuming i.i.d)

m Maximum aposteriori probability

Cr., = argmaxp(Ck\X,@)

map
1 M
P(Ck|X,0©) H P(Ck|xm, ©)(Assuming i.i.d)
m=1
or
1 M
P(CIX,0) = 5 > P(Clxm. ©

m=1
Z is a normalization factor.
Better to perform computation using logarithm to avoid underflow issues.
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Sequence classification

Speech Automatic Speech Sequence of
signal Recognition words




Statistical ASR

Given feature observation X = {xq, - xm, - - xm} predict the most
probable word sequence W* = {wj ---w; --- wj}

W* = argmaxP(W;|X,0)
wiew

= argmax PX|Wi, ©.) - P(Wi|O))
Wiew p(X|©)

= argmaxp(X|W;,0,) - P(W;|©)),
W;ew

where W; denotes a word hypothesis, YV denotes a set of word
hypotheses and © = {©,,0,}

m Acoustic modeling: estimation of p(X|W;, ©,) using hidden
Markov models (HMMs)

m Language modeling: estimation of P(W;|©)) using discrete
Markov models (DMMs)



Discrete Markov Model (DMM)

m Stochastic finite state automaton

® MM built up from states g, from a set of classes (states)
Q={w1,...,Wky... , Wk}

m q" particular state of M visited at time n,

mqg ={q"=q} qeQ

m MM is defined by topology, i.e., how the states are connected
See HMM lab exercise 1

m Parametrized by:

n—2 )

P(q£|q,'(’_1,qj yool) P(qé’\ql’(’_l) (Ist order Markov)

~ P(qelgk) = Pke (time independent)

Note: gy, gx € Q2
Transition probability matrix: A = {Py}.
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Example of fully connected discrete Markov model with

Q = {a, b, c}. For example, in case of weather model: “a" =

“cloudy”, “b"= “rainy” and "¢’ = “sunny”



Typical Problems (1)

m Probability of a particular path
P(QIMM) = P(q'|a?)P(q*Iq")... P(q"lg"")... P(q"]|q" ™)

N
= [IPG"a™™
n=1

One way to estimate P(W;|©)), e.g.

N
P(W*|e)) =[] P(w;lw;_1)
n=1
m State duration distribution
Probability to stay in state g; for exactly d time steps?
Q={al.al, a7, qf g}, withj #
and:
P(QIMM) = (P;)?71(1 - P;)
See HMM lab exercise 1




Typical Problems (2)

m Probability to go from state g; to g; in N steps

N L
ala?) => "> P, q/lq?)

n=0 (=1
Defining
a(t, n) = P(q7|q}, N)
We have:
a(l,n+1) =" a(k,n)Px

k
P(q}'|a?) = a(j, N)
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Typical Problems (3)

m Probability of best path of length N between g; and g;
If P(k,n) is probability of best path to go from g; to qx in n
steps:

Pl,n+1)= mkaxﬁ(k, n) Py

and B
P(q/'|a?) = PU, N)

Generalization:
A"(i,j) = P(q]'la?)
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From DMM to HMM (1)

m Coin tossing and only the results of each coin toss i.e. Heads
(H) or Tails (T) is revealed
HHTTTHHHHTT...

m 1-coin model: DMM with two states Q = {H, T} and all
transition probabilities are equal to 0.5.

P(H[H) P(TIT)

N Y

——)

—eeeeeeee
P(H[T)
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From DMM to HMM (2)

m 2-coin model: HMM with two states Q = {C;, G5} ; each
state associated with P(H|C;) and P(T|C;) i € {1,2}; and
the transition probability reflects the probability of choosing
one of the (possibly biased) coins

PlCiIC) P(C,/C)

m PIC,IC) m
—_—
PICIC,)

PIHIC,)
PIHIC,) pTIC) ! PTICy

Emission distribution for C; Emission distribution for C,
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Estimation of P(X|W;,0,) using HMMs

P(X|W;,©,) = > P(X,Q|W,;,®,)

Qew;

> P(XIQ, W)P(QW)),

Qew;

where Q = {q1," - gm, - qu} denotes sequence of HMM states.
After i.i.d and first order Markov assumption

PX|W;0.) = > prmlqm)HP Gm|Gm-—1)

QeW; m=1

Z H P(Xm|qm)P(gm|gm—1) Full likelihood
QeW; m=1
M

~ m|qm) P(gm|gm—1) Viterbi .
(5r1€a><lllpx|q) (gm|gm—1) Viterbi approx

For the sake of simplicity, ©, and W; are dropped in the latter equations.
p(Xm|gm) is referred to as emission likelihood and P(gm|gm—1) state transition
probabilities. See HMM lab exercises 3 and 4.




Estimation of emission likelihood

m Gaussians and Gaussian-Mixtures

P(xmldm = k,©a) =N (%, 1, Tk)

1 B (Xm — :uk)tzk_l(xm — fk)
=75 eXP
(2W)D/2|Zk|1/2 2

OR :

J
p(Xm|qm = kaea) =

SN (X, 1 %)

Jj=1

m Artificial neural networks: estimate scaled-likelihood
ps/(Xmlqm = k, ea)

POxmlgm = k,©a) _ P(gm = k|xm, ©a)
sI\Xm|dm = ka ea = =
psi(Xm|q ) POl ©3) P(am = k|©)
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Paralinguistics

States and traits manifested in speech communication
m long-term: age, gender, accent, personality ...
m medium-term: mood, sleepiness, intoxication, social role ...
m short-term: emotion, voice quality ...

m speech and language pathologies

Paralinguistics  speech, language, physiology, sociology,
psychology, health ....



Paralinguistics

Recent examples from workshops within the community:

Interspeech Computational Paralinguistics Challen%e 1
ACM Audio/Visual Emotion Challenge Workshop

m Styrian dialects: northern, urban, eastern
m native language: 11 languages (ger, fra, ita, spa, hin)

m Degree of nativeness: 0 (no foreign accent) ... 6 (strong foreign
accent)

m emotions: anger, empathic, neutral, positive, rest
m alcohol intoxication: no/yes

m Parkinson's disease: intelligibility 0 - 100

m sleepiness: 1 -9

m Alzheimer's disease: no/yes

1 .
http://www.compare.openaudio.eu/

2
https:/ /sites.google.com /view/avec2019



Example application areas
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Challenges in Paralinguistics (1)

Data Labeling
m Establishing a ground-truth is not a trivial task
— labels can be based on other fields
m humans are typically used to label/rate the data
— how to select human raters?
m human ratings can differ
— need to measure inter-rater agreement: see Cohen's kappa

m labels are typically assigned to a whole utterance or recording
(may refer to only some part of recording)


https://en.wikipedia.org/wiki/Cohen%27s_kappa

Emotion class labels

Arousal

2. High-Arousal,
Negative-Valence

Tense
Angry

Frustrated
= Negative
Depressed
Bored

3. Low-Arousal,
Negative-Valence

Tired

4

High

Neutral

Low

1. High-Arousal,
Positive-Valence

Excited
Delighted
Happy

Positive * Valence

Content

Relaxed

4. Low-Arousal,
Positive-Valence

Calm



Sleepiness rating

g
=.
=
L]

Verbal descriptions

Extremely alert

Very alert

Alert

Fairly alert

Neither alert nor sleepy

Some signs of sleepiness

Sleepy, but no effort to keep alert
Sleepy, some effort to keep alert

= e e Y e S

Very sleepy, great effort to keep alert, fighting sleep

also see: Likert scale


https://en.wikipedia.org/wiki/Likert_scale

Challenges in Paralinguistics (2)

Features
m which features are relevant?

m relevant information is present at short-term (segmental) level
or/and long-term (supra-segmental) level?

m how to use prior knowledge or feature selection?

m how to obtain short-term or long-term representations?



Challenges in Paralinguistics (3)

m Data scarcity
m Collecting large data sets is not an easy task
B simulated versus real e.g., acted emotion versus real emotion
B ethical restrictions e.g. in the case of health care
B privacy issues
[
m transfer learning from resource-rich task ( e.g. with deep
learning)
m data augmentation - risk of obliterating important information

m Cross-database, cross-lingual and cross-cultural generalisation
is not trivial.



Pattern recognition
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Speech Analysis

Various aspects of speech production and perception:

m Respiration

m pause patterns, speech rate, loudness through
excitation strength

m Phonation
m analysis of pitch (jitter and shimmer)
m Articulation - changes in vocal tract shape

m use source-system decomposition
m analysis of voiced speech (vowel formants)




Respiration and pause patterns

m pitch
m |oudness
m statistics of silent regions

® statistics of unvoiced regions per second ( pseudo-rate)



Phonation and voice-quality features

Measuring irregular phonation
m Jitter: deviations of pitch from perfect periodicity
m Shimmer: deviation of energy of signal
ShiAmmer and JAitter

AT = |T) = Ty|

——
T T,
Y S W,

0.3 B
Loaa ]

0.1

0

Amplitude (relatv)

01

0.2

)
Zait (s)

m Harmonics-to-Noise Ratio (HNR):
ACF[TO

ACF denotes autocorrelation function and Ty denotes pitch

period.


https://www.researchgate.net/profile/Eiji_Yumoto2/publication/16091085_Harmonics-to-noise_ratio_as_an_index_of_the_degree_of_hoarseness/links/57bbd07708aefea8f0f45700/Harmonics-to-noise-ratio-as-an-index-of-the-degree-of-hoarseness.pdf

. . 56/61
Articulation features -

Measuring vocal tract shaping
m Mel Frequency Cepstral Coefficients (MFCCs)
m Perceptual Linear Prediction Coefficients (PLPs)
m Vowel formant frequencies
m Spectral slopes and ratios



57/61

Feature sets -

Traditional approach to paralinguistic problems:
Use large quantities of short-time acoustic features
Several version of feature sets, easily extractable with openSMILE 3
m openSMILE feature set: 6773 LLDS and functionals
m eGeMAPS feature set: 88 LLDS

How to classify frame-level acoustic features?
1. Majority vote of frame-level feature vectors

2. Summarize frame-level feature vectors into per-utterance
vectors

3https://WWW.audeering.com/opensmile/


https://sail.usc.edu/publications/files/eyben-preprinttaffc-2015.pdf

Per-utterance representations

m acoustic features are summarized in statistical functionals
( e.g. means, moments, extrema, percentile, slopes, regression
lines, max, min)

m bag-of-audio—word (BoAW) representations
derived from bag-of-word vectors used in NLP +

LLDs over time

l

Codebook
" . Vector
Preprocessing: generation: L
L quantisation:
* Normalisation ¢ K-means « Single/Multi
of LLDs (online) * Random |n_ge '
. assignment
sampling

openXBOW —|)>

BoAW

m robust, time-invariant, non-reconstructable (good for privacy)

4https://github.com/cpenXBOW/openXBOW



Classification

Choice of classifier is dictated by amount of data available

m k-Nearest Neighbors (kNN)

m works well with small data sets
m Support Vector Machine (SVM)

m works well with small data sets and high dimensions
m Random forest

m works well with small data sets and high dimensions
m Boosting

m works well with small data sets and high dimensions
m Neural Networks (NN)

m May not suit well for small data sets

In some problems, classification is replaced by regression.



Evaluation

Common evaluation metrics:
m Regression

m Pearson’s correlation r: linear correlation
coefficient

m Spearman’s cross-correlation p:
non-parametric correlation coefficient

m Classification

m Unweighted Average Recall (UAR): consider
performance across non-balanced class
distributions

Common evaluation schemes

m N-fold cross-validation

m leave-one-speaker-out cross-validation
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