

# ML for Speech Processing (includes Paralinguistic Speech Processing)

Dr. Mathew Magimai Doss

December 15, 2022

# Outline

Introduction

Static classification

Sequence classification

Detection

Paralinguistic speech processing

# Outline

Introduction

Static classification

Sequence classification

Detection

Paralinguistic speech processing

# Machine learning

- Learning is an essential part of living
- Learning typically means changing/adapting to be better, as per a given criterion, when a similar situation arrives
- Challenge lies in generalizing to new or unobserved situations

# Challenge

- Learning needs training data. We have access to only a finite amount of training data.
- Variabilities in the data
  - Language level: isolated words, sentence, spoken language, read speech, spontaneous speech, dialect ...
  - Speaker level: gender, adult versus child, dialect, age, accent, impaired versus unimpaired (pathological speech), emotion, mood, stress ....
  - Noise
    - Convulsive: recording/transmission condition, reverberation
    - Additive: recording environment, transmission
    - Lombard effect: speaker level variability in noisy environment
- Depending upon the task, a few variabilities are desirable or of interest while others are undesirable or of not interest.

# Types of learning

## 1. Supervised learning

- Training data is labelled. For example, for a frame of feature vector or a sequence feature vectors we have a "class" label associated to it.

## 2. Reinforcement learning

- Training data has partial labels/targets. For example, did a robot carry out the desired action or not?

## 3. Unsupervised learning

- Training data does not contain class labels or targets. But, often there is a hidden goal associated with the task. For example, data clustering tasks have a hidden goal such as, minimization of a distance function or maximization of likelihood.

# Statistical Pattern Recognition

- Classification
  - Static classification
  - Sequence classification
- Detection: can be regarded as a two class classification problem
- Regression: relation between two variables, namely, measured variable and explanatory variable

# Three Key Statistical Rules

1. Bayes's rule:

$$P(A, B) = P(A|B)P(B) = P(B|A)P(A)$$

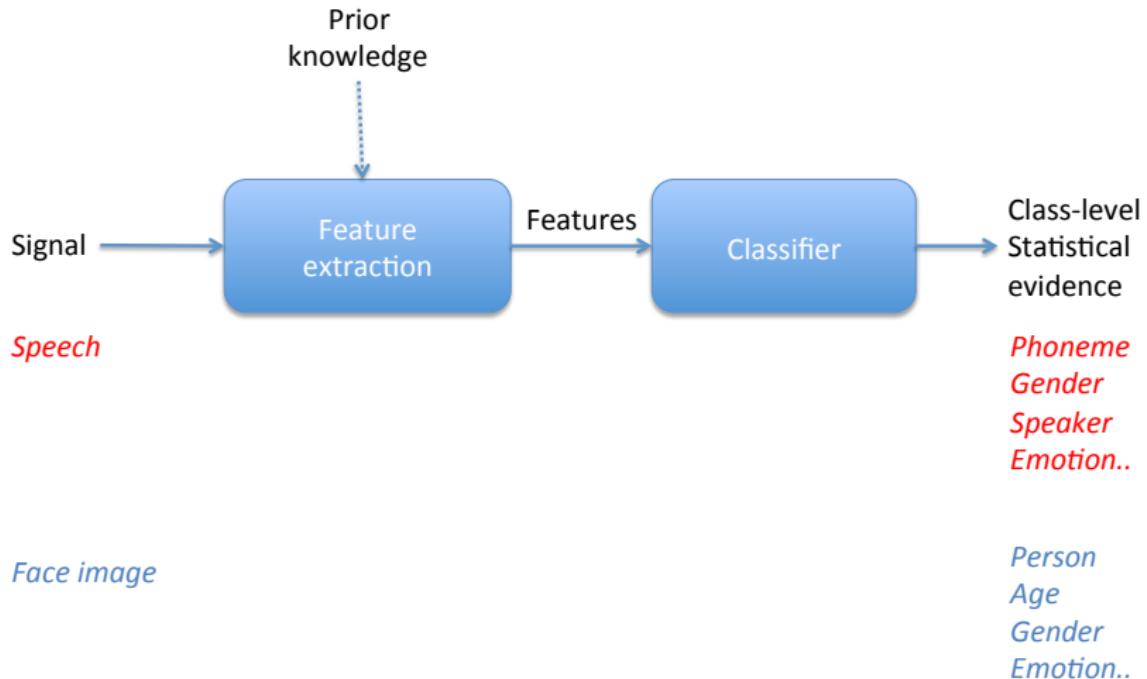
2. If  $B_k$  ( $k = 1, \dots, K$ ) are mutually exclusive and collectively exhaustive ( $\sum_{k=1}^K P(B_k) = 1$ )

$$P(A) = \sum_{k=1}^K P(A, B_k)$$

3. Gibbs sampler:

$$P(B_1, \dots, B_k, \dots, B_K) = \prod_{k=1}^K P(B_k | B_{k-1}, \dots, B_1)$$

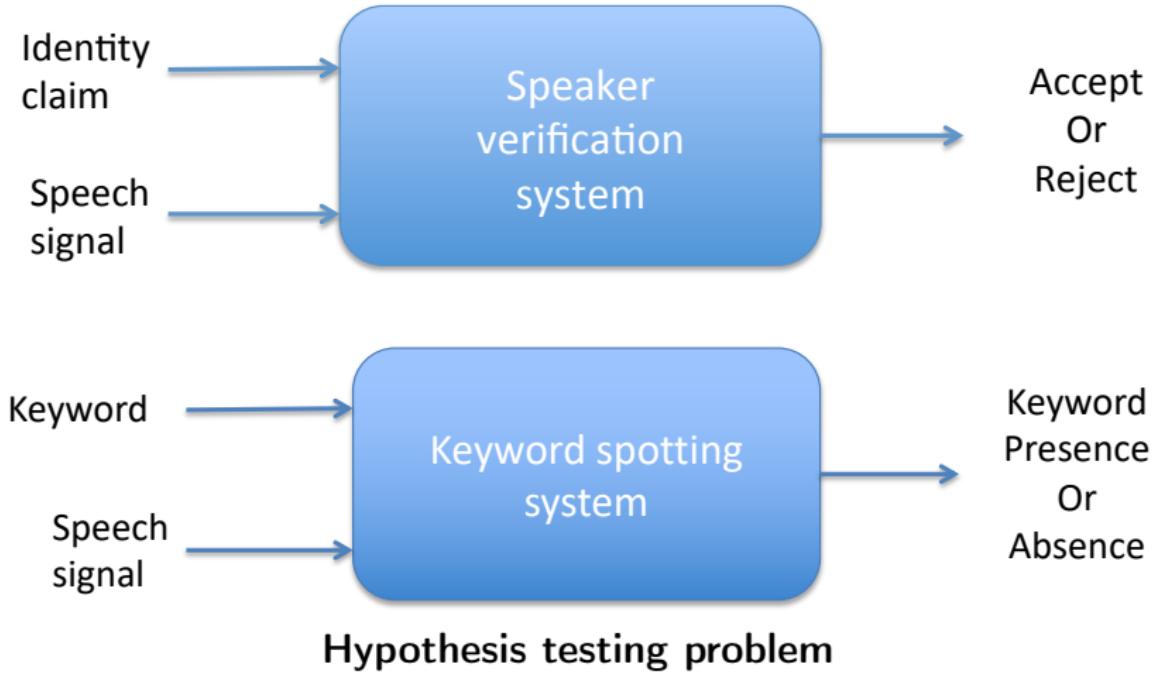
# Static Classification



# Sequence classification



# Detection



# Outline

Introduction

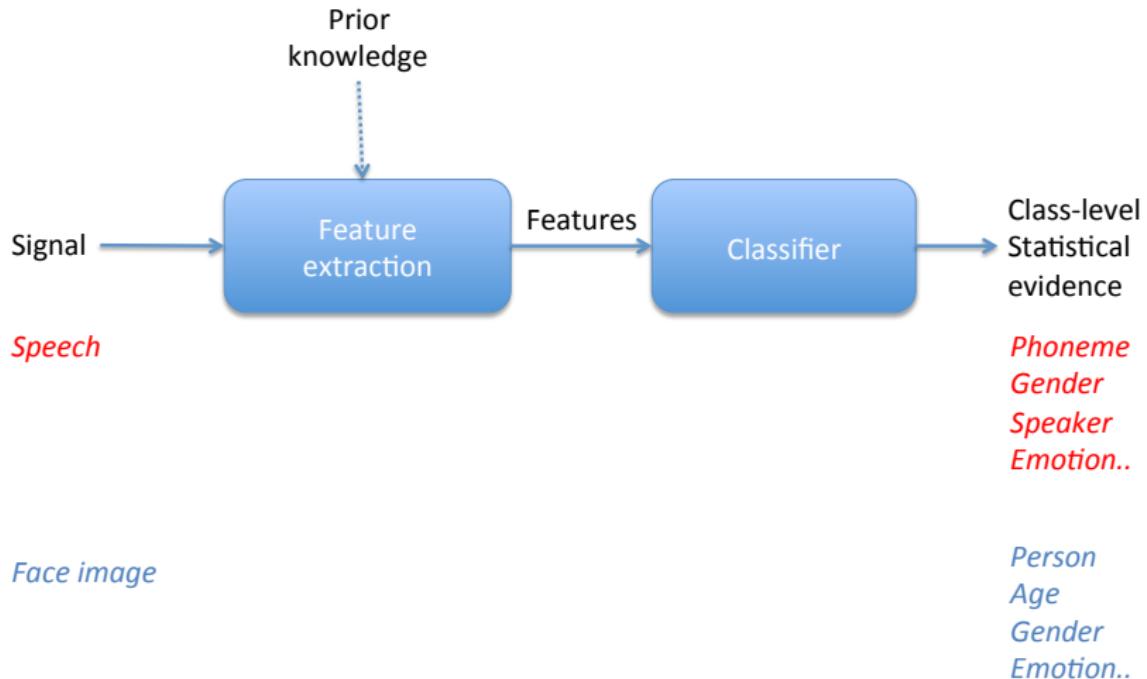
**Static classification**

Sequence classification

Detection

Paralinguistic speech processing

# Static Classification



# Theoretical formulation

$$P(C_k|x_m, \Theta) = \frac{p(x_m|C_k, \Theta) \cdot P(C_k|\Theta)}{p(x_m|\Theta)} \quad \forall k \in \{1, \dots, K\} \quad (1)$$

- $P(C_k|x_m, \Theta)$ : Posterior probability of class  $C_k$
- $p(x_m|C_k, \Theta)$ : Likelihood of class  $C_k$
- $P(C_k|\Theta)$ : Prior probability of class  $C_k$
- $p(x_m|\Theta) = \sum_{j=1}^K p(x_m|C_j, \Theta) \cdot P(C_j|\Theta)$ : Observation likelihood
- $\Theta$ : parameters of the statistical model
- $0 \leq P(C_k|x_m, \Theta) \leq 1$  and  $\sum_{k=1}^K P(C_k|x_m, \Theta) = 1$
- $0 \leq P(C_k|\Theta) \leq 1$  and  $\sum_{k=1}^K P(C_k|\Theta) = 1$

# Generative approach

- Estimate or model  $p(x_m | C_k)$  by a probability density function
  - Gaussian or Normal distribution

$$\begin{aligned}
 p(x_m | C_k, \Theta_k) &= N(x_m, \mu_k, \Sigma_k) \\
 &= \frac{1}{(2\pi)^{D/2} |\Sigma_k|^{1/2}} \exp\left(-\frac{(x_m - \mu_k)^t \Sigma_k^{-1} (x_m - \mu_k)}{2}\right) \\
 &\approx \prod_{d=1}^D \frac{1}{\sqrt{2\pi} \sigma_k^d} \exp\left(-\frac{1}{2} \left(\frac{x_m^d - \mu_k^d}{\sigma_k^d}\right)^2\right)
 \end{aligned}$$

- Gaussian mixture models (GMM)

$$p(x_m | C_k, \Theta_k) = \sum_{j=1}^J c_k^j \cdot N(x_m, \mu_k^j, \Sigma_k^j)$$

- Estimate prior probability  $P(C_k)$  (typically done through counting)
- Apply Eqn. (1)
- $\Theta$ : means, variance and Gaussian weights (in the case of GMMs)

# EM algorithm for GMMs (1)

$$p(x_m) = \sum_{j=1}^J c_j p(x_m | \mu_j, \Sigma_j)$$

with  $c_j = P(G_j)$  (Weight for Gaussian  $j$ ).

Estimation step:

$$P(G_j | x_m) = \frac{c_j p(x_m | \mu_j^{(t)}, \Sigma_j^{(t)})}{\sum_j c_j p(x_m | \mu_j^{(t)}, \Sigma_j^{(t)})}$$

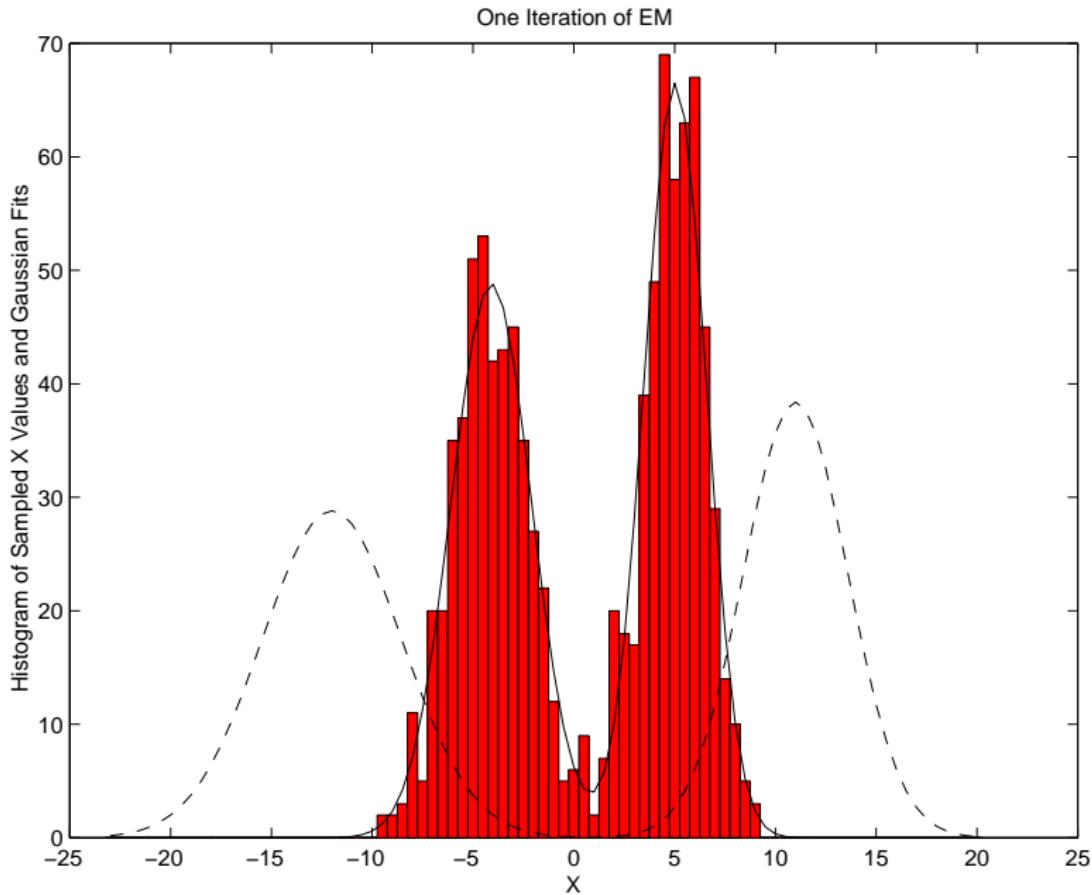
Maximization step:

$$\mu_j^{(t+1)} = \frac{\sum_{m=1}^{M} x_m P(G_j | x_m)}{\sum_{m=1}^{M} P(G_j | x_m)}$$

$$\Sigma_j^{(t+1)} = \frac{\sum_{m=1}^{M} P(G_j | x_m) (x_m - \mu_j^{(t+1)}) (x_m - \mu_j^{(t+1)})^T}{\sum_{m=1}^{M} P(G_j | x_m)}$$

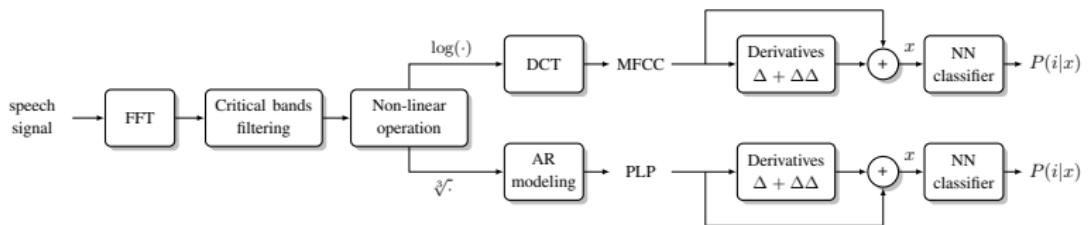
$$c_j^{(t+1)} = \frac{1}{M} \sum_{m=1}^{M} P(G_j | x_m)$$

# EM algorithm for GMMs (2)



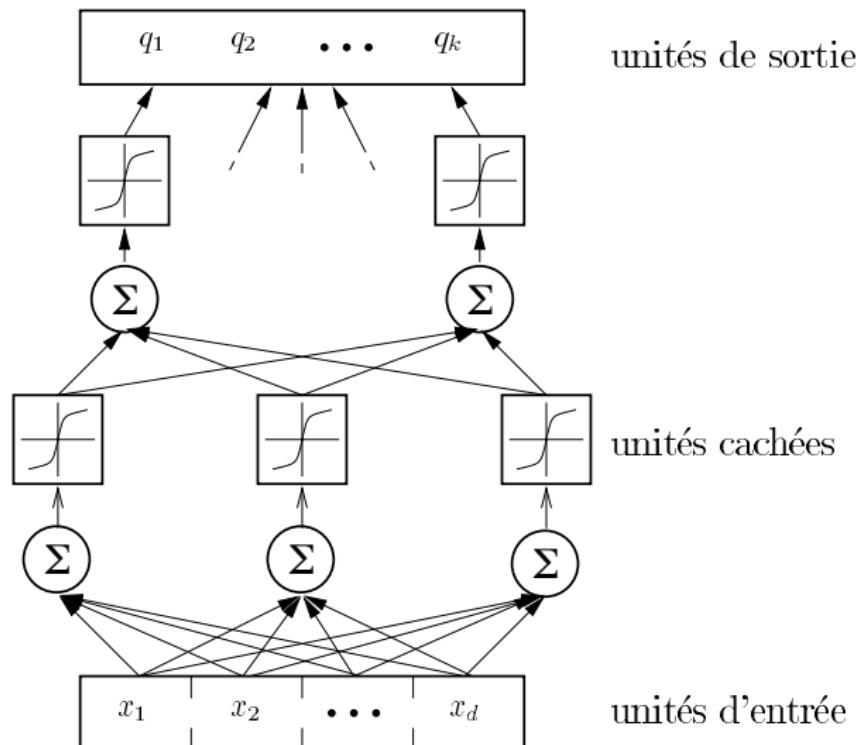
# Discriminative approach

- Artificial neural network trained with one hot encoding of target and cross entropy error function (or mean square error function) can directly estimate  $P(C_k|x_m, \Theta)$



- Support vector machines (estimation of posterior probability of class not trivial, see [Platt's method](#))
- $\Theta$ : parameters of the artificial neural networks (weights and biases) or support vector machines

# ANN: Multilayer perceptrons



Typical multilayer perceptron (MLP) architecture, each unit approximating a perceptron.

# ANN Training

Supervised training: Input vector sequence:

$$X = \{x_1, \dots, x_n, \dots, x_M\}$$

Desired output sequence associated with  $X$ :

$$D = \{d(x_1), \dots, d(x_m), \dots, d(x_M)\}$$

and  $d(x_m) = (d_1(x_m), \dots, d_k(x_m), \dots, d_K(x_m))^T$

In classification mode:

$$d_k(x_m) = \delta_{k\ell} \text{ if } x_m \in C_\ell$$

Parameters  $\Theta$ : weights and biases

# Training Criteria

- Mean Square Error:

$$\operatorname{argmin}_{\{\Theta\}} E = \frac{1}{2} \sum_{m=1}^M \sum_{k=1}^K [g_k(x_m, \Theta) - d_k(x_m)]^2$$

- Entropy or relative entropy:

$$\begin{aligned} \operatorname{argmin}_{\{\Theta\}} E_e = & \sum_{m=1}^M \sum_{k=1}^M \left[ d_k(x_m) \log \frac{d_k(x_m)}{g_k(x_m, \Theta)} \right. \\ & \left. + (1 - d_k(x_m)) \log \frac{1 - d_k(x_m)}{1 - g_k(x_m, \Theta)} \right] \end{aligned}$$

$g_k(x_m, \Theta)$  denotes the output of the neural network.

# Error back propagation training

Minimization of  $E$  (or  $E_e$ ) in the parameter space  $\Theta$  (weights + biases)

$$\frac{\nabla E}{\nabla \Theta} = 0$$

Done via a gradient procedure:

$$\Delta w_{ij} = -\alpha \frac{\partial E}{\partial w_{ij}}$$

$\alpha$  denotes learning rate

Adjust  $w_{ij}$  based on  $\Delta w_{ij}$ .

# Offline Error Back-Propagation

Initialize network at random; choose “large” learning rate

Until convergence = true

For  $m=1$  to  $M$

    Forward computation of  $g_k(x_m, \Theta)$

    Error calculation and global error update

    Error backward propagation

    and compute local  $\delta\Theta(x_m)$

**$\Theta$  update** =  $\sum_{m=1}^M \delta\Theta(x_m)$

If error (on cross-validation set) decreases

    save new parameters

Otherwise, don't save new parameters

    and decrease learning rate

If learning rate < threshold then convergence = true;

# Online Error Back-Propagation

Initialize network at random

Choose “large” learning rate; convergence = false

Until convergence = true

    For  $m=1$  to  $M$  (or something else)

        Pick  $x_m$  at random

        Forward computation of  $g_k(x_m, \Theta)$

        Error calculation

        Error backward propagation and  $\Theta$  update

    If error (on cross-validation set) decreases

        save new parameters

    Otherwise, don't save new parameters

        and decrease learning rate

If learning rate < threshold: convergence = true;

**In practice: Mini-batch training, a combination of offline and online error back propagation.**

# Cross-validation training (1)

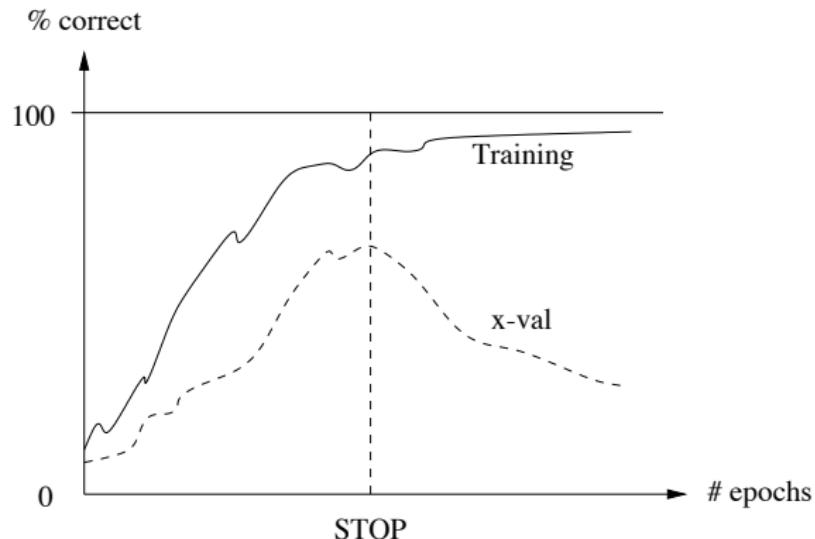
After each MLP training epoch:

1. check recognition performance on independent data set
2. stop training if rec performance starts to decrease and learning rate below a given threshold

Remarks: there are other solutions like

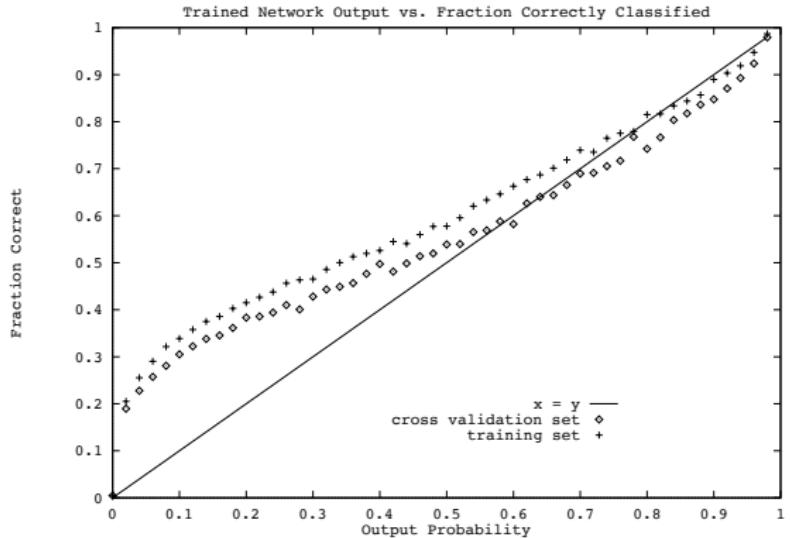
- Forcing small weights
- “Optimal Brain Damage”
- Regularized training (Bayesian approach)

# Cross-validation training (2)



Example of crossvalidation training. x-val represents the crossvalidation data on which classification performance is regularly checked. Training is stopped when performance on x-val data reaches the maximum.

# Interpretation of ANN output $g_k(x_m, \Theta)$



ANN output  $g_k(x_m, \Theta)$  is an estimate of posterior probability of class  $C_k$ , i.e.  $P(C_k|x_m)$ .

# Decision making

## ■ Maximum likelihood

$$C_{mle}^* = \arg \max_k p(X|C_k, \Theta)$$

$$p(X|C_k, \Theta) = \prod_{m=1}^M P(x_m|C_k, \Theta) \text{(Assuming i.i.d)}$$

## ■ Maximum a posteriori probability

$$C_{map}^* = \arg \max_k p(C_k|X, \Theta)$$

$$P(C_k|X, \Theta) = \frac{1}{Z} \cdot \prod_{m=1}^M P(C_k|x_m, \Theta) \text{(Assuming i.i.d)}$$

or

$$P(C_k|X, \Theta) = \frac{1}{Z} \cdot \sum_{m=1}^M P(C_k|x_m, \Theta)$$

$Z$  is a normalization factor.

Better to perform computation using logarithm to avoid underflow issues.

# Outline

Introduction

Static classification

Sequence classification

Detection

Paralinguistic speech processing

# Sequence classification



# Statistical ASR

Given feature observation  $X = \{x_1, \dots, x_m, \dots, x_M\}$  predict the most probable word sequence  $W^* = \{w_1^* \dots w_n^* \dots w_N^*\}$

$$\begin{aligned} W^* &= \arg \max_{W_i \in \mathcal{W}} P(W_i | X, \Theta) \\ &= \arg \max_{W_i \in \mathcal{W}} \frac{p(X | W_i, \Theta_a) \cdot P(W_i | \Theta_l)}{p(X | \Theta)} \\ &= \arg \max_{W_i \in \mathcal{W}} p(X | W_i, \Theta_a) \cdot P(W_i | \Theta_l), \end{aligned}$$

where  $W_i$  denotes a word hypothesis,  $\mathcal{W}$  denotes a set of word hypotheses and  $\Theta = \{\Theta_a, \Theta_l\}$

- Acoustic modeling: estimation of  $p(X | W_i, \Theta_a)$  using hidden Markov models (HMMs)
- Language modeling: estimation of  $P(W_i | \Theta_l)$  using discrete Markov models (DMMs)

# Discrete Markov Model (DMM)

- Stochastic finite state automaton
- $MM$  built up from states  $q_\ell$  from a set of classes (states)  

$$\Omega = \{\omega_1, \dots, \omega_k, \dots, \omega_K\}$$
- $q^n$  particular state of  $M$  visited at time  $n$ ,
- $q_\ell^n \equiv \{q^n = q_\ell\}, q_\ell \in \Omega$
- $MM$  is defined by topology, i.e., how the states are connected  
See HMM lab exercise 1
- Parametrized by:

$$\begin{aligned} P(q_\ell^n | q_k^{n-1}, q_j^{n-2}, \dots) &\simeq P(q_\ell^n | q_k^{n-1}) \quad (1st \text{ order Markov}) \\ &\simeq P(q_\ell | q_k) = P_{k\ell} \quad (time \text{ independent}) \end{aligned}$$

Note:  $q_\ell, q_k \in \Omega$

Transition probability matrix:  $A = \{P_{k\ell}\}$ .

# DMM (2)



Example of fully connected discrete Markov model with  $\Omega = \{a, b, c\}$ . For example, in case of weather model: "a" = "cloudy", "b" = "rainy" and "c" = "sunny"

# Typical Problems (1)

## ■ Probability of a particular path

$$\begin{aligned} P(Q|MM) &= P(q^1|q_i^0)P(q^2|q^1)\dots P(q^n|q^{n-1})\dots P(q^N|q^{N-1}) \\ &= \prod_{n=1}^N P(q^n|q^{n-1}) \end{aligned}$$

One way to estimate  $P(W_i|\Theta_I)$ , e.g.

$$P(W^*|\Theta_I) = \prod_{n=1}^N P(w_n^*|w_{n-1}^*)$$

## ■ State duration distribution

Probability to stay in state  $q_i$  for *exactly*  $d$  time steps?

$$Q = \{q_i^0, q_i^1, q_i^2, \dots, q_i^d, q_j^{d+1}\}, \text{ with } j \neq i$$

and:

$$P(Q|MM) = (P_{ii})^{d-1}(1 - P_{ii})$$

See HMM lab exercise 1

# Typical Problems (2)

- Probability to go from state  $q_i$  to  $q_j$  in  $N$  steps

$$P(q_j^N | q_i^0) = \sum_{n=0}^N \sum_{\ell=1}^L P(q_j^N, q_\ell^n | q_i^0)$$

Defining

$$\alpha(\ell, n) = P(q_\ell^n | q_i^0, N)$$

We have:

$$\alpha(\ell, n+1) = \sum_k \alpha(k, n) P_{k\ell}$$

$$P(q_j^N | q_i^0) = \alpha(j, N)$$

# Typical Problems (3)

## ■ Probability of best path of length $N$ between $q_i$ and $q_j$

If  $\bar{P}(k, n)$  is probability of best path to go from  $q_i$  to  $q_k$  in  $n$  steps:

$$\bar{P}(\ell, n+1) = \max_k \bar{P}(k, n) P_{k\ell}$$

and

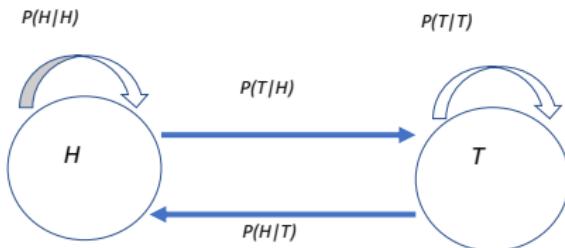
$$\bar{P}(q_j^N | q_i^0) = P(j, N)$$

Generalization:

$$A^n(i, j) = P(q_j^n | q_i^0)$$

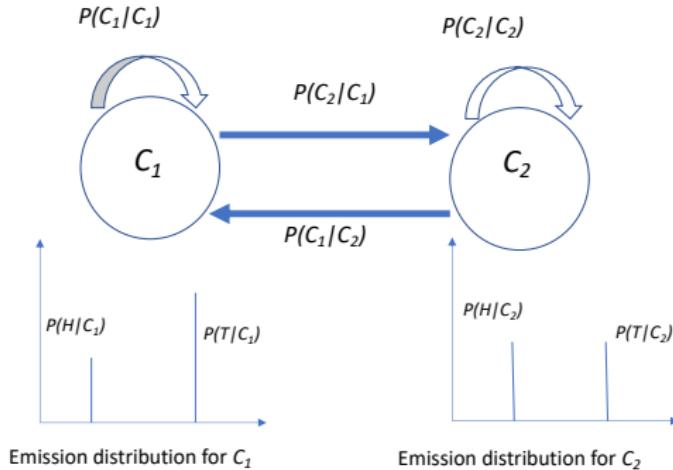
# From DMM to HMM (1)

- Coin tossing and only the results of each coin toss i.e. Heads ( $H$ ) or Tails ( $T$ ) is revealed  
 $H\ H\ T\ T\ T\ H\ H\ H\ H\ T\ T\dots$
- 1-coin model: DMM with two states  $\Omega = \{H, T\}$  and all transition probabilities are equal to 0.5.



# From DMM to HMM (2)

- 2-coin model: HMM with two states  $\Omega = \{C_1, C_2\}$ ; each state associated with  $P(H|C_i)$  and  $P(T|C_i)$   $i \in \{1, 2\}$ ; and the transition probability reflects the probability of choosing one of the (possibly biased) coins



# Estimation of $P(X|W_i, \Theta_a)$ using HMMs

$$\begin{aligned} P(X|W_i, \Theta_a) &= \sum_{Q \in W_i} P(X, Q|W_i, \Theta_a) \\ &= \sum_{Q \in W_i} P(X|Q, W_i)P(Q|W_i), \end{aligned}$$

where  $Q = \{q_1, \dots, q_m, \dots, q_M\}$  denotes sequence of HMM states.

After i.i.d and first order Markov assumption

$$\begin{aligned} P(X|W_i, \Theta_a) &= \sum_{Q \in W_i} \prod_{m=1}^M p(x_m|q_m) \prod_{m=1}^M P(q_m|q_{m-1}) \\ &= \sum_{Q \in W_i} \prod_{m=1}^M p(x_m|q_m)P(q_m|q_{m-1}) \text{ Full likelihood} \\ &\approx \max_{Q \in W_i} \prod_{m=1}^M p(x_m|q_m)P(q_m|q_{m-1}) \text{ Viterbi approx.} \end{aligned}$$

For the sake of simplicity,  $\Theta_a$  and  $W_i$  are dropped in the latter equations.

$p(x_m|q_m)$  is referred to as emission likelihood and  $P(q_m|q_{m-1})$  state transition probabilities. See HMM lab exercises 3 and 4.

# Estimation of emission likelihood

## ■ Gaussians and Gaussian-Mixtures

$$p(x_m | q_m = k, \Theta_a) = N(x_m, \mu_k, \Sigma_k)$$

$$= \frac{1}{(2\pi)^{D/2} |\Sigma_k|^{1/2}} \exp \left( -\frac{(x_m - \mu_k)^t \Sigma_k^{-1} (x_m - \mu_k)}{2} \right)$$

OR :

$$p(x_m | q_m = k, \Theta_a) = \sum_{j=1}^J c_k^j N(x_m, \mu_k^j, \Sigma_k^j)$$

## ■ Artificial neural networks: estimate scaled-likelihood

$$p_{sl}(x_m | q_m = k, \Theta_a)$$

$$p_{sl}(x_m | q_m = k, \Theta_a) = \frac{p(x_m | q_m = k, \Theta_a)}{p(x_m | \Theta_a)} = \frac{P(q_m = k | x_m, \Theta_a)}{P(q_m = k | \Theta_a)}$$

# Outline

Introduction

Static classification

Sequence classification

Detection

Paralinguistic speech processing

# Detection



$$\frac{p(X|\text{genuine speaker})}{p(X|\text{impostor})} \geq \delta_{\text{asv}}$$

Challenge: modeling or estimation of  $p(X|\text{impostor})$



$$\frac{p(X|\text{keyword})}{p(X|\text{not keyword})} \geq \delta_{\text{kws}}$$

Challenge: modeling or estimation of  $p(X|\text{not keyword})$

Two types of error: False negative, False positive

# Outline

Introduction

Static classification

Sequence classification

Detection

Paralinguistic speech processing

# Paralinguistics



States and traits manifested in speech communication

- long-term: age, gender, accent, personality ...
- medium-term: mood, sleepiness, intoxication, social role ...
- short-term: emotion, voice quality ...
- speech and language pathologies

Paralinguistics  $\propto$  speech, language, physiology, sociology, psychology, health ....

# Paralinguistics

Recent examples from workshops within the community:

Interspeech Computational Paralinguistics Challenge <sup>1</sup>  
ACM Audio/Visual Emotion Challenge Workshop <sup>2</sup>

- Styrian dialects: northern, urban, eastern
- native language: 11 languages (ger, fra, ita, spa, hin)
- Degree of nativeness: 0 (no foreign accent) ... 6 (strong foreign accent)
- emotions: anger, empathic, neutral, positive, rest
- alcohol intoxication: no/yes
- Parkinson's disease: intelligibility 0 - 100
- sleepiness: 1 - 9
- Alzheimer's disease: no/yes

---

<sup>1</sup> <http://www.compare.openaudio.eu/>

<sup>2</sup> <https://sites.google.com/view/avec2019>

# Example application areas

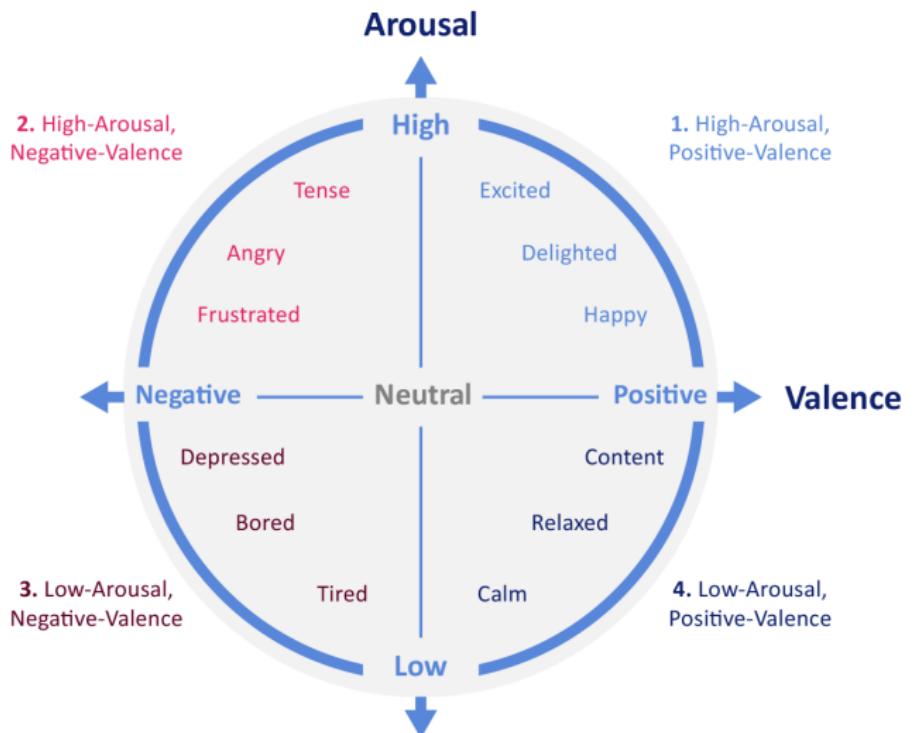


# Challenges in Paralinguistics (1)

## Data Labeling

- Establishing a ground-truth is not a trivial task  
→ labels can be based on other fields
- humans are typically used to label/rate the data  
→ how to select human raters?
- human ratings can differ  
→ need to measure inter-rater agreement: see **Cohen's kappa**
- labels are typically assigned to a whole utterance or recording  
(may refer to only some part of recording)

# Emotion class labels



# Sleepiness rating

| Rating | Verbal descriptions                                     |
|--------|---------------------------------------------------------|
| 1      | Extremely alert                                         |
| 2      | Very alert                                              |
| 3      | Alert                                                   |
| 4      | Fairly alert                                            |
| 5      | Neither alert nor sleepy                                |
| 6      | Some signs of sleepiness                                |
| 7      | Sleepy, but no effort to keep alert                     |
| 8      | Sleepy, some effort to keep alert                       |
| 9      | Very sleepy, great effort to keep alert, fighting sleep |

also see: [Likert scale](#)

# Challenges in Paralinguistics (2)

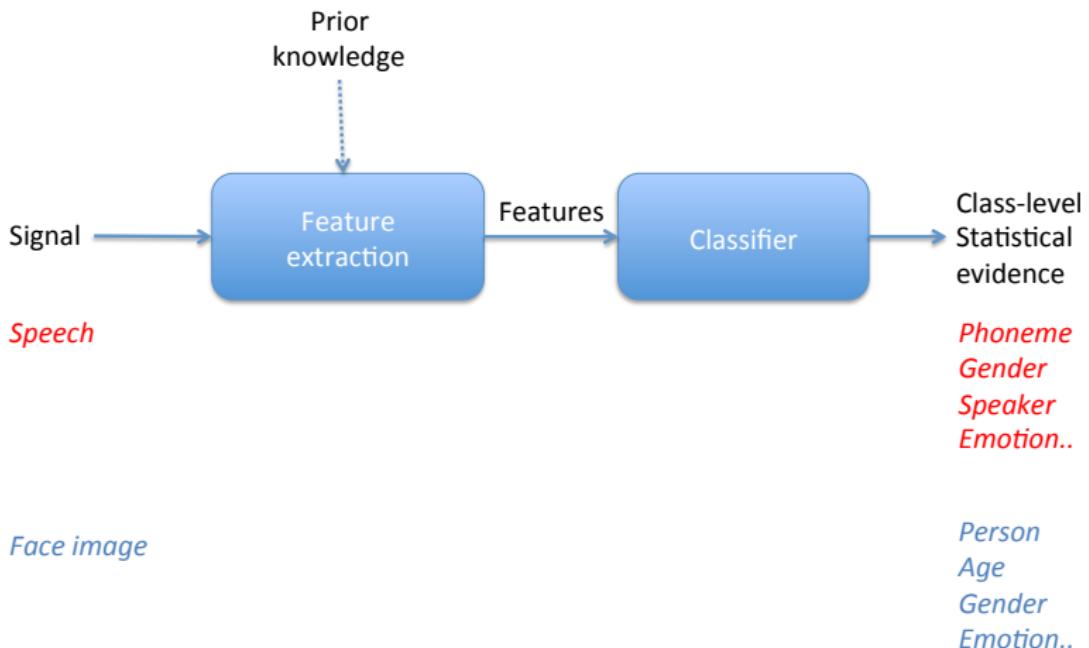
## Features

- which features are relevant?
- relevant information is present at short-term (segmental) level or/and long-term (supra-segmental) level?
- how to use prior knowledge or feature selection?
- how to obtain short-term or long-term representations?

# Challenges in Paralinguistics (3)

- Data scarcity
  - Collecting large data sets is not an easy task
    - simulated versus real e.g., acted emotion versus real emotion
    - ethical restrictions e.g. in the case of health care
    - privacy issues
    - ...
  - transfer learning from resource-rich task ( e.g. with deep learning)
  - data augmentation - risk of obliterating important information
- Cross-database, cross-lingual and cross-cultural generalisation is not trivial.

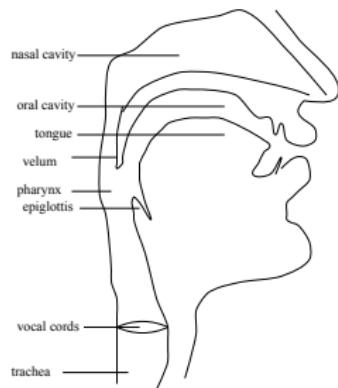
# Pattern recognition



# Speech Analysis

Various aspects of speech production and perception:

- Respiration
  - pause patterns, speech rate, loudness through excitation strength
- Phonation
  - analysis of pitch (jitter and shimmer)
- Articulation - changes in vocal tract shape
  - use source-system decomposition
  - analysis of voiced speech (vowel formants)



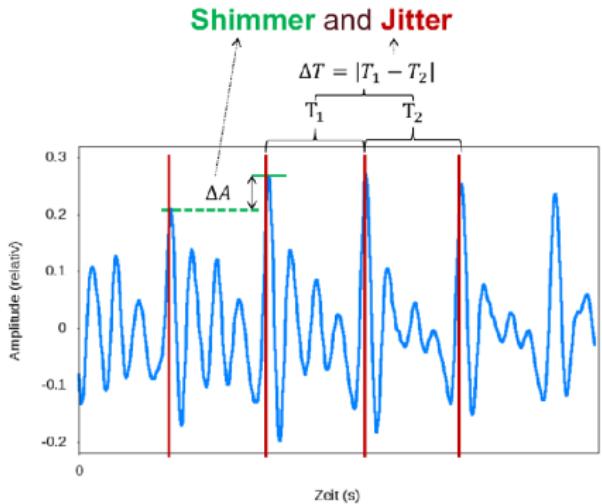
# Respiration and pause patterns

- pitch
- loudness
- statistics of silent regions
- statistics of unvoiced regions per second ( pseudo-rate)

# Phonation and voice-quality features

## Measuring irregular phonation

- Jitter: deviations of pitch from perfect periodicity
- Shimmer: deviation of energy of signal



- Harmonics-to-Noise Ratio (HNR):

$$HNR = 10 * \log \frac{ACF[T_0]}{ACF[0] - ACF[T_0]}$$

ACF denotes autocorrelation function and  $T_0$  denotes pitch period.

# Articulation features

## Measuring vocal tract shaping

- Mel Frequency Cepstral Coefficients (MFCCs)
- Perceptual Linear Prediction Coefficients (PLPs)
- Vowel formant frequencies
- Spectral slopes and ratios
- ...

# Feature sets

Traditional approach to paralinguistic problems:

**Use large quantities of short-time acoustic features**

Several version of feature sets, easily extractable with openSMILE <sup>3</sup>

- openSMILE feature set: 6773 LLDS and functionals
- eGeMAPS feature set: 88 LLDS

**How to classify frame-level acoustic features?**

1. Majority vote of frame-level feature vectors
2. Summarize frame-level feature vectors into per-utterance vectors

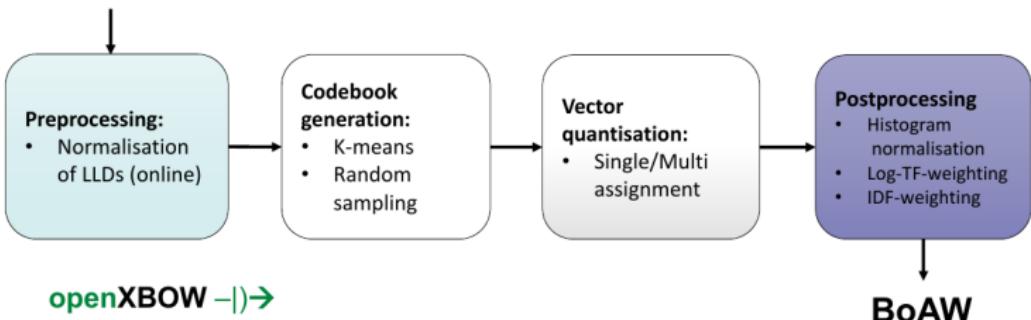
---

<sup>3</sup> <https://www.audeering.com/opensmile/>

# Per-utterance representations

- acoustic features are summarized in statistical functionals ( e.g. means, moments, extrema, percentile, slopes, regression lines, max, min)
- bag-of-audio-word (BoAW) representations derived from bag-of-word vectors used in NLP <sup>4</sup>

## LLDs over time



- robust, time-invariant, non-reconstructable (good for privacy)

<sup>4</sup> <https://github.com/openXBOW/openXBOW>

# Classification

Choice of classifier is dictated by amount of data available

- k-Nearest Neighbors (kNN)
  - works well with small data sets
- Support Vector Machine (SVM)
  - works well with small data sets and high dimensions
- Random forest
  - works well with small data sets and high dimensions
- Boosting
  - works well with small data sets and high dimensions
- Neural Networks (NN)
  - May not suit well for small data sets

In some problems, classification is replaced by regression.

# Evaluation

Common evaluation metrics:

- Regression

- Pearson's correlation  $r$ : linear correlation coefficient
- Spearman's cross-correlation  $\rho$ : non-parametric correlation coefficient

- Classification

- Unweighted Average Recall (UAR): consider performance across non-balanced class distributions



Common evaluation schemes

- N-fold cross-validation
- leave-one-speaker-out cross-validation

| Test  | Train |       |       |
|-------|-------|-------|-------|
| Train | Test  | Train |       |
| Train | Test  | Train | Train |
| 0%    | 25%   | 50%   | 75%   |
| 75%   | 100%  | 100%  | 100%  |

# Thank you for your attention!

Dr. Mathew Magimai Doss

Idiap Research Institute, Martigny, Switzerland