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Match(Wk ,S)

How to match an observed speech signal S with a word hypothesis Wk?



Abstract formulation for matching S and Wk
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A = y1 …...... yn …….. yN

B = z1 …...... zm …….. zM

Core Idea

1. Map S and Wk to a
shared latent symbol
space

2. Match the resulting
two latent symbol
sequences A and B
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Matching two sequences of symbols through dynamic programming
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n

symbols can be alphabets of a language or words in a language
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Q1: What is the shared latent symbol set?
Q2: How to map S to a latent symbol sequence B?
Q3: How to map Wk to a latent symbol sequence A?
Q4: How to match the two latent symbol sequences A

and B?

Different ASR methods mainly differ on how these
four sub questions are addressed.
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y1=/b/ y2=/ae/ …...... yn=/k/ …….. yN=/t/
z1=/p/ z2=/ae/…...... zm=/g/ …….. zM=/t/

Q3. Apply linguistic knowledge

Q2. Segment and label based  on 
acoustic-phonetic knowledge

Q4: Match two phone sequences 
(string matching)

Q1: Phones (linguistic knowledge-based)

Limitations:
Overly relies on knowledge
Makes early decision so difficult to recover from errors such as,
segmentation and labeling errors



Instance-based approach to match S and Wk
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sm and wn,k denote of frame of speech signal
zm and yn,k denote the corresponding feature vectors



Dynamic Time Warping (DTW) 10/55

(m,n)(m-1,n)

(m-1,n-1)
n

(m-1,n-2)

m

local score d(m, n):

Cepstral features: Euclidean
distance between zm and
yn,k
Linear prediction
coefficients: Itakura
distance between zm and
yn,k
Spectral information:
Itakura-Saito distance
between zm and yn,k

1. Initial condition: path starts at (1, 1)

2. Recursion:

D(m, n) =d(m, n) + min[D(m − 1, n),

D(m − 1, n − 1),

D(m − 1, n − 2)]

Path(m, n) =arg min[D(m − 1, n),

D(m − 1, n − 1),

D(m, n − 2)]

∀m ∈ {1 . . .M} and n ∈ {1, . . .N}
3. Final condition: path ends at (M,N)

and D(M,N) is the global score

D(m, n) is referred to as cumulative score.
Path(m, n) denotes the path index. Path
can be traced back from Path(M,N)

http://www.isle.illinois.edu/~hasegawa/notes/chap4.pdf
http://www.isle.illinois.edu/~hasegawa/notes/chap4.pdf
https://en.wikipedia.org/wiki/Itakura-Saito_distance


Four sub questions for instance-based approach 11/55

Q1 : Short-term spectral feature vectors are the
latent symbols. The set of symbols is undefined,
as there is no unique feature vector representation
for speech sounds due to variabilities.

Q2 : Short-term speech processing-based feature
extraction

Q3 : Short-term speech processing-based feature
extraction

Q4 : Dynamic programming, i.e. DTW, with
appropriate local score and local constraints
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1. Bayes’s rule:

P(A,B) = P(A|B)P(B) = P(B|A)P(A)

2. If Bk (k = 1, . . . ,K ) are mutually exclusive and collectively
exhaustive (

∑K
k=1 P(Bk) = 1)

P(A) =
K∑

k=1

P(A,Bk)

3. Gibbs sampler:

P(B1, . . . ,Bk , . . . ,BK ) =
K∏

k=1

P(Bk |Bk−1, . . . ,B1)



Statistical formulation for matching S and Wk
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Ŵ = arg max
Wk∈W

P(Wk |S) = arg max
Wk∈W

p(Wk ,S)

p(S)

Statistical Automatic Speech Recognition

Posterior-based approach: estimate P(Wk |S)
Attempts through neural networks, e.g. Transition-based ASR,
Listen, Attend and Spell
Likelihood-based approach: estimate p(Wk ,S)

http://www.icsi.berkeley.edu/ftp/global/pub/speech/papers/nips95-remap.pdf
https://arxiv.org/pdf/1508.01211.pdf
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HMM-based ASR approach 16/55

p(Wk ,X |Θa,Θl) = p(X |Wk ,Θa) · P(Wk |Θl)

p(X |Wk ,Θa): acoustic likelihood estimated using hidden
Markov models (HMMs)
P(Wk ,Θl): language model probability estimated using
discrete Markov models (DMMs)

Three problems:
1. How to estimate p(Wk ,X ) or simply p(X |Wk ,Θa) and

P(Wk |Θl)?
2. How to estimate Θa and Θl? (Training)
3. How to find the most likely word hypothesis Ŵ ? (Recognition

or decoding)

Ŵ = arg max
Wk∈W

p(Wk ,X |Θa,Θl)



Recall: discrete Markov model 17/55

a b

c

1/3

1/3

1/2

1/4

1/4 1/4

1/2

1/4

1/3

Example of fully connected discrete Markov model with
Ω = {a, b, c}. For example, in case of weather model: “a” =

“cloudy”, “b”= “rainy” and “c” = “sunny”
Parameterized entirely by transition probabilities



Estimation of P(Wk)
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Let Wk = {wk,1, . . .wk,j , . . .wk,J} (sequence of words)

P(Wk) = P(w1,k , . . .wj ,k , . . .wJ,k)

= P(wJ,k |wJ−1,k , . . . ,w1,k) · P(wJ−1,k , . . .w1,k)

= P(wJ,k |wJ−1,k , . . . ,w1,k) · P(wJ−1,k |wJ−2,k , . . . ,w1,k) · · ·
P(w3,k |w2,k ,w1,k) · P(w2,k |w1,k) · P(w1,k)

Usually P(w1,k) = P(w1,k |initial state)
Example: Wk = {my, name, is, bond}

P(my, name, is, bond) = P(bond|is, name,my) · P(is, name,my)

= P(bond|is, name,my) · P(is|name,my) ·
P(name|my) · P(my)



Estimation of P(Wk): n-gram 19/55

Challenge: variable history length
Solution: Markov assumption
n-gram is a (n − 1) order Markov model

bigram language model: first order Markov model

P(my, name, is, bond) = P(bond|is) · P(is|name) ·
P(name|my) · P(my|initial state)

trigram language model: second order Markov model

P(my, name, is, bond) = P(bond|is, name) ·
P(is|name,my) ·
P(name|my) · P(my|initial state)

Suppose the vocabulary size is O then the number of parameters or
transition probabilities to estimate are:

Bigram language model: O × O + O

Trigram language model: O × O × O + O × O + O



n-gram parameter estimation 20/55

Requires large amount of text e.g. books, web
Parameter estimation through counting, e.g. trigram

P(wn|wn−1,wn−2) =
Count(wn,wn−1,wn−2)∑
w Count(w ,wn−1,wn−2)

Example:

P(bond|is, name) =
Count(bond, is, name)∑

w Count(w , is, name)

Small probability estimation problems, e.g. not enough
examples, unseen word contexts

Interpolation with lower n-gram probabilities
Discounting: assign a small probability mass
Back-off to lower order n-gram probabilities
P(wn|wn−1,wn−2)⇒ P(wn|wn−1)

Written text versus spoken language (conversational speech)
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p(Wk ,X ) = p(X |Wk ,Θa) · P(Wk |Θl)

p(X |Wk ,Θa): acoustic likelihood using hidden Markov models
(HMMs)
P(Wk ,Θl): language model probability using discrete Markov
models



Recall: From DMM to HMM (1) 22/55

Coin tossing and only the results of each coin toss i.e. Heads
(H) or Tails (T ) is revealed
H H T T T H H H H T T . . .

1-coin model: DMM with two states Ω = {H,T} and all
transition probabilities are equal to 0.5.

H T

P(H|H)

P(T|H)

P(H|T)

P(T|T)



From DMM to HMM (2) 23/55

2-coin model: HMM with two states Ω = {C1,C2} ; each
state associated with P(H|Ci ) and P(T |Ci ) i ∈ {1, 2}; and
the transition probability reflects the probability of choosing
one of the (possibly biased) coins

C1 C2

P(C2|C1)

P(C1|C2)

P(C2|C2)P(C1|C1)

P(H|C1) P(T|C1)

Emission distribution for C1

P(H|C2)
P(T|C2)

Emission distribution for C2

From X we can not directly know about Wk .



Estimation of P(X |Wk ,Θa) using HMMs (1) 24/55

P(X |Wk ,Θa) =
∑

Q∈Wi

P(X ,Q|Wk ,Θa)

=
∑

Q∈Wk

P(X |Q,Wk)P(Q|Wk),

where Q = {q1, · · · qm, · · · qM} denotes sequence of HMM states.
After i.i.d and first order Markov assumption

P(X |Wk) =
∑

Q∈Wk

M∏

m=1

p(xm|qm) ·
M∏

m=1

P(qm|qm−1)

=
∑

Q∈Wk

M∏

m=1

p(xm|qm) · P(qm|qm−1) Full likelihood

≈ max
Q∈Wi

M∏

m=1

p(xm|qm) · P(qm|qm−1) Viterbi approx.



Estimation of P(X |Wk ,Θa) using HMMs (2) 25/55

P(X |Wk) ≈ max
Q∈Wk

M∏

m=1

p(xm|qm) · P(qm|qm−1)

≈ max
Q∈Wk

M∏

m=1

(
D∑

d=1

p(xm, ad |qm)) · P(qm|qm−1)

≈ max
Q∈Wk

M∏

m=1

(
D∑

d=1

p(xm, |ad , qm) · P(ad |qm)) · P(qm|qm−1)

≈ max
Q∈Wk

M∏

m=1

(
D∑

d=1

p(xm, |ad) · P(ad |qm)) · P(qm|qm−1)

Assumption xm is independent of qm given ad .
{ad}Dd=1 are the latent symbols:

context-independent phones
CAT: /k/ /ae/ /t/

"clustered" context-dependent phones
CAT: /k/+/ae/ /k/-/ae/+/t/ /ae/-/t/

https://mi.eng.cam.ac.uk/~mjfg/mjfg_NOW.pdf
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prior knowledge: {ad}Dd=1 are context-independent phones
both prior knowledge and data: {ad}Dd=1 are clustered
context-dependent states

Typically, one-to-one mapping between lnk and ad , i.e. yn,k is a
Kronecker delta distribution.
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Gaussians and Gaussian-Mixtures

p(xm|ad) =N(xm, µad ,Σad )

=
1

(2π)R/2|Σad |1/2
exp

(
− (xm − µad )tΣ−1

ad
(xm − µad )

2

)

OR :

p(xm|ad) =
J∑

j=1

c j
ad
N(xm, µ

j
ad
,Σj

ad
)

R is the dimension of the feature vector.

Artificial neural networks: estimate scaled-likelihood psl(xm|ad)

psl(xm|ad) =
p(xm|ad)

p(xm)
=

P(ad |xm)

P(ad)

Let us denote vm = [p(xm|a1) · · · p(xm|aD)]T or
vm = [psl(xm|a1) · · · psl(xm|aD)]T
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w1,j

wm,j

wM,j

{Sj}J
j=1

{Wj}J
j=1

LHMM (M,N)

y1,j

ym,j

yM,j

z1,j

zn,j

zN,j

l(ym,j , zn,j)

s1,j

sn,j

sN,j

(sn,j ,ym,j)

Wj

Sj

(sn,j ,ym,j)

Wj

Sj

w1,k wn,k wN,k

y1,k yn,k yN,k

s1 sm sM

x1 xm xM

z1 zm zM

P (Wk|S) = p(Wk,S)
p(S)

p(Wk, S)

X = Y (1)

=
p(S|Wk) · P (Wk)

p(S)

(sn,j ,ym,j)

Wj

Sj

w1,k wn,k wN,k

y1,k yn,k yN,k

s1 sm sM

x1 xm xM

z1 zm zM

P (Wk|S) = p(Wk,S)
p(S)

p(Wk, S)

X = Y (1)

=
p(S|Wk) · P (Wk)

p(S)

(sn,j ,ym,j)

Wj

Sj

w1,k wn,k wN,k

y1,k yn,k yN,k

s1 sm sM

x1 xm xM

z1 zm zM

P (Wk|S) = p(Wk,S)
p(S)

p(Wk, S)

X = Y (1)

=
p(S|Wk) · P (Wk)

p(S)

w1,j wm,j wM,j LWj ,Sj
(M, N) {Yj}J

j=1 {Zj}J
j=1 {ym}I

wm=1

W1 Wk Wj Ŵ W S
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Local score: d(m, n) = − log(vT
myn,k)

1. Initial condition: path starts at (1, 1)

2. Recursion:

D(m, n) = d(m, n) + min[D(m − 1, n)− log(P(qm = lnk |qm−1 = lnk ),

D(m − 1, n − 1)− log(P(qm = lnk |qm−1 = ln−1k )]

Path(m, n) = arg min[D(m − 1, n)− log(P(qm = lnk |qm−1 = lnk ),

D(m − 1, n − 1)− log(P(qm = lnk |qm−1 = ln−1k )]

∀m ∈ {1 . . .M} and n ∈ {1, . . .N}
3. Final condition: path ends at (M,N) and D(M,N) is the

global score
Path(m, n) denotes the path index. Path can be traced back from
Path(M,N)
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n,k
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n-2,k

mm-1

Within word constraint

m-1 m

1,k

N,k’

Across word constraint

∀k ′ ∈ {1, · · ·K} the transition between wk and w
′
k has a cost

based on the language model, e.g. P(wk |w
′
k) (assuming bigram

language model)

log(P(X |Wk ) · P(Wk )) ≈ max
Q∈Wk

M∑
m=1

log(
D∑

d=1

p(xm, |ad ) · P(ad |qm = lnk )) +

log(P(qm = lnk |qm−1))

≈ max
Q∈Wk

M∑
m=1

log(vTmyn,k ) + log(P(qm = lnk |qm−1))

Transition between words: P(qm = lnk |qm−1) is estimated from the
language model.
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one-stage  algorithm  requires no more  computational  expendi- 
ture  than  the  corresponding case of  isolated  word  recognition 
with no adjustment  window.  The  implernentational  aspects  of 
the  one-stage  algorithm  are  described,  and  its  computational 
and  storage  requirements  are  compared  with  the  two-level  al- 
gorithm  of  Sakoe  and  the level building  algorithm  of  Myers 
and  Rabiner.  Finally,  the  algorithm is modified to  deal with a 
finite  state  syntax. 

11. FORMULATION 0 1 ’  THE PATTERN  MATCHING  PROBLEM 

In the  following,  we will present  a  simple  approach  to  the 
pattern  matching  problem  for  connected  word  recognition, 
the reason  being that  the  simplification  due  to  parameterizing 
the  time  warping  path  by  a single index is most  significant  and 
provides  some  insights  that  immediately reveal how  to arrive at 
a  practical  implementation  of  the  algorithm. 

Assume  an  unknown  input or test  pattern  consisting  of 
i = 1 ,  . , N time  frames,  where  a  time  frame is represented  by 
a  vector  of  features.  The  input  pattern is known to be  com- 
posed  of  individual  words,  which  are  chosen  from  a  prespeci- 
fied  vocabulary.  The  words  of  the  vocabulary  correspond  to 
a set of K reference  patterns  or  templates  obtained  from single 
word  utterances  spoken in isolation.  The  word  templates  are 
distinguished  by  the  index k = 1 ~. . . . K .  The  time  frames  of 
the  template k are  denoted  as j = 1,. . . , J ( k ) ,  where J ( k )  is 
the  length  of  the  template k .  

The  ultimate  goal  of  connected  word  recognition is to  de- 
termine  that  sequence y ( l ) ,  . . . y(R) of  templates  that  best 
matches  the  input  pattern,  where  the  criterion  of  match  needs 
further  specification.  The  concatenation of the  templates 
y( l ) ,  . . . , 4 (R)  is referred to  as  “super”  reference  pattern. 
Since  this  unknown  “super”  reference  pattern  may  be  handled 
like  a single utterance  pattern,  the  matching  procedure is the 
same  as in the case of  isolated  word  recognition. Based on  this 
consideration, it is obvious  what  specification  and  constraints 
to  apply  to  the  time  warping  procedure.  Instead  of  decom- 
posing  the  matching  procedure  into  a  single  template  matching 
level and  a  word  string  constructing  level, as it  was  done in the 
other  approaches  mentioned [ 3 ] ,  [4] ,  we  want to treat  the 
matching  procedure as a  one-stage  procedure [ I ]  , [ 2 ] .  

The  basic  idea is illustrated in Fig. 1. The  time  frames i of 
the  test  pattern  and  the  time  frames j of  each  template k de- 
fine  a  set  of  grid  points (i, j ,  k) .  Each grid point (i, j ,  k )  is 
associated  with  a  local  distance  measure d( i ,  j ,  k )  defining  a 
measure of dissimilarity  between  the  corresponding  acoustic 
events.  The  connected  word  recognition  problem  can  be  re- 
garded as one  of  finding  the  path  through  the set of grid  points 
(i,,j, k) which  provides  the  best  match  between  the  test  pattern 
and  the  unknown  sequence  of  templates.  The  path is often 
referred  to  as  time  warping  path.  The  three  parameters i, j ,  k 
are of different  characters:  the  time  parameters i and j tend to 
change  more  or less  uniformly  in  ascending  order,  whereas  the 
template  number k is constant  for  comparatively  long  subsec- 
tions of the  path  and  can  change  only  after  the  path  has  passed 
a  template  boundary  with j = J (k ) .  However,  for deriving the 
algorithm,  it is crucial to treat  the  three  parameters  as  mathe- 
matically  equivalent.  Formally,  the  path W is given as a  se- 
quence  of grid points 

< =  5 

< = L  

k = 3  

k:2 

<: 1 

‘ i l ? l  i, J I .  I V I ,  ~ 1 ,  ’ ! ‘ , . 1 ’ 1  l~,. 

Fig. 1. The connected  word  recognition  problcm.  The  optimal  path 
provides  the  unknown  sequence of words as  wcll as  thc  nonlinear 
time  alignment  between  the  Corresponding  scqucnce of ternplates 
and  the  input  pattern. 

w= ( w ( l ) ,  w(2) ,  . . ‘ , w(l) ,  ’ ’ ’ , w(L) )  (1) 

where w(l)  = (i(l), j ( l ) ,  k( l ) )  and 1 is the  path  parameter  for 
indexing  the.  ordered set of  path  elements.  The  criterion  for 
the  matching  procedure is the global  distance, i.e., the  sum 
over  the  local  distances  along  a given path.  The  problem  of 
connected  word  recognition  can  now  be  stated as the  minimi- 
zation  problem 

i.e.:  minimize  the  global  distance  with  respect to all allowed 
paths.  From  the  best  path,  the  associated  sequence  of  tem- 
plates  can  be  uniquely  recovered as is clear from  Fig. 1 .  

In addition to minimizing  the  global  distance,  the  time  warp- 
ing path is required to  obey  certain  continuity  constraints  im- 
plied  by  the  physical  nature  of  the  patterns to  be  matched. 
These  constraints  apply  to  consecutive  points  of  the  path.  The 
constraints  result  from  the  requirement  of  the  preservation of  
time  order  along  the  time  axes  and  from  the  requirement  of 
time  continuity  implying  that  no  time  frame,  i.e.,  acoustic 
event,  be  omitted in the  sequence i(l), . . . , i(l), . . . , i (L) .  
The  continuity  constraints  determine  the  possible  preceding 
points  for  a given path  point (z’, j ,  k )  and are  therefore  also 
referred to as transition rules. A possible  disadvantage of the 
global  distance  definition as given  in (2) is that  the global  dis- 
tance  depends 011 the  path  length,  and  thus  shorter  paths are 
favored.  This  problem will  be studied  later in connection  with 
the  details  of  the  dynamic  programming  algorithm. 

Due to the  concatenation  of single word  templates to a 
“super”  reference  pattern; it is convenient to distinguish  be- 
tween  two  types  of  transition  rules:  transition  rules  in  the 
template  interior  called  within-template  transition  rules  and 

Authorized licensed use limited to: Universitatsbibliothek Karlsruhe. Downloaded on February 18, 2009 at 07:52 from IEEE Xplore.  Restrictions apply.

Source: H. Ney,"The Use of a One-Stage Dynamic Programming Algorithm for
Connected Word Recognition ", IEEE Trans. on Acoustics, Speech, and Signal
Processing, 32(2), 1984.

https://csl.anthropomatik.kit.edu/downloads/vorlesungsinhalte/MMMK-Ney-One-StageDPAlgorithm.pdf
https://csl.anthropomatik.kit.edu/downloads/vorlesungsinhalte/MMMK-Ney-One-StageDPAlgorithm.pdf


Four sub questions for HMM-based approach 33/55

Q1 : Latent symbol set {ad}Dd=1: typically clustered
context-dependent phones

Q2 : Estimation of emission likelihood vector vm per
frame using GMMs or ANNs

Q3 : Estimation of yn,k Typically, one-to-one
mapping between context-dependent phone unit
lnk and ad (i.e., Kronecker delta distribution)
based on the state tying decision tree

Q4 : Dynamic programming with local score
− log(vT

myn,k) and local constraints are based on
the HMM topology and transitions can have
unequal cost.

https://mi.eng.cam.ac.uk/~mjfg/mjfg_NOW.pdf
https://mi.eng.cam.ac.uk/~mjfg/mjfg_NOW.pdf
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models are called triphones and if there are N base phones, there are

N3 potential triphones. To avoid the resulting data sparsity problems,

the complete set of logical triphones L can be mapped to a reduced

set of physical models P by clustering and tying together the param-

eters in each cluster. This mapping process is illustrated in Figure 2.3

and the parameter tying is illustrated in Figure 2.4 where the notation

x − q + y denotes the triphone corresponding to phone q spoken in the

context of a preceding phone x and a following phone y. Each base

(silence)              Stop              that          (silence)

sil         s t            oh            p th ae t sil

m1 m23 m94 m32 m34 m984 m763 m2 m1

W

Q

L

P

sil sil-s+t s- t+oh t-oh+p oh-p+th p-th+ae th-ae+t ae-t+sil sil

Fig. 2.3 Context dependent phone modelling.

t-ih+n t-ih+ng f-ih+l s-ih+l

t-ih+n t-ih+ng f-ih+l s-ih+l

Tie similar
states

Fig. 2.4 Formation of tied-state phone models.

(Source: M. Gales and S. Young, "The Application of Hidden
Markov Models in Speech Recognition", Foundations and Trends
inSignal Processing,Vol. 1, No. 3 (2007) 195–304)

https://mi.eng.cam.ac.uk/~mjfg/mjfg_NOW.pdf
https://mi.eng.cam.ac.uk/~mjfg/mjfg_NOW.pdf
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2.2 HMM Acoustic Models (Basic-Single Component) 207

models are called triphones and if there are N base phones, there are

N3 potential triphones. To avoid the resulting data sparsity problems,

the complete set of logical triphones L can be mapped to a reduced

set of physical models P by clustering and tying together the param-

eters in each cluster. This mapping process is illustrated in Figure 2.3

and the parameter tying is illustrated in Figure 2.4 where the notation

x − q + y denotes the triphone corresponding to phone q spoken in the
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Fig. 2.4 Formation of tied-state phone models.(Source: M. Gales and S. Young, "The Application of Hidden
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inSignal Processing,Vol. 1, No. 3 (2007) 195–304)

https://mi.eng.cam.ac.uk/~mjfg/mjfg_NOW.pdf
https://mi.eng.cam.ac.uk/~mjfg/mjfg_NOW.pdf
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Resources needed 39/55

Large set of speech signals with word level transcriptions
Phonetic lexicon that transcribes each word as a sequence of
phones. Alternative is to use graphemic representations
(orthographic transcription of word)

Fine for languages with shallow grapheme-to-phoneme relation
(e.g., Spanish, Finnish)
Not-so-good for languages with deep grapheme-to-phoneme
relation (e.g., English)

Large text resources for language model



HMM-based ASR system 40/55
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Decoder 41/55

Implementation of decoder typically done using weighted finite state
transducers (composition of a big graph and searching through it)

Full breadth search practically infeasible

Need for search heuristics e.g., Beam search

Other hyper-parameters: acoustic scaling factor, language scaling
factor, word insertion penalty (to avoid insertion of short words)

https://www.inf.ed.ac.uk/teaching/courses/asr/2016-17/asr11-wfst.pdf
https://www.inf.ed.ac.uk/teaching/courses/asr/2016-17/asr11-wfst.pdf
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Data preparation 44/55

Resources needed: Speech utterances and their word level
transcriptions, Phonetic dictionary (also called as lexicon)

Let {Sj ,Hj}Jj=1 denote a set of speech utterances and their
corresponding word level transcriptions.
1. Extract the acoustic feature sequence Xj = (x1, · · · xm, · · · xMj

)
corresponding to each speech utterance Sj . xm is typically 39
dimensional cepstral feature vector (C0 − C12 and their
approximate first and second temporal derivatives).

2. For each corresponding transcription Hj create a left-to-right
HMM model Wj by using the phonetic dictionary. For example,
see creation of HMM for "AND", "IT" and "AND IT".



Goal of training 45/55

Infer the HMM parameters, i.e., emission distribution parameters and the
transition probabilities for each HMM state such that it maximizes

J∏

j=1

p(Xj |Wj)

Emission distribution parameters (besides the lexical model parameter y):

1. single multivariate Gaussian: mean vector and covariance matrix for
each latent symbol ad

2. GMMs: mixture weights, mean vectors and covariance matrices of
the GMM for each ad

3. ANNs: weights and biases and prior probability of each ad , i.e.
P(ad).

Direct optimization of the above objective function is not possible.
Parameters are iteratively estimated using Expectation-Maximization
(EM) algorithm.



Case 1: Single Gaussian 46/55

Step 1: For each latent symbol ad , randomly initiliaze the mean vector
and covariance matrix of the multivariate Gaussian and the
transition probabilities.

Step 2: Given the parameters, ∀j ∈ {1, · · · J}, estimate log(P(Xj |Wj))
by dynamic programming and obtain the alignment between
the feature sequence Xj and the state sequence in Wj by
backtracking using Pa(m, n).

Step 3: In the alignment, map the states to ad based on the
one-to-one mapping in the lexical model parameter yn,j . For
each ad , collect all the feature vectors xm that belong to that
latent symbol and estimate the new mean vector and
covariance matrix.
From the aligned sequence of states, estimate the self
transition probabilities for each state by counting.

Step 4: Go to Step 2.
Repeat Step 2 (E-step) and Step 3 (M-step) until convergence.



Case 2: GMMs 47/55

Step 1: For each acoustic unit ad , randomly initiliaze the GMM
parameters, i.e. mixture weights, mean vector and covariance
matrix each multivariate Gaussian, and the transition
probabilities.

Step 2: Given the parameters, ∀j ∈ {1, · · · J}, estimate log(P(Xj |Wj))
by dynamic programming and obtain the alignment between
the feature sequence Xj and the state sequence in Wj by
backtracking using Pa(m, n).

Step 3: In the alignment, map the states to ad based on the
one-to-one mapping in the lexical model parameter yn,j . For
each ad , collect all the feature vectors xm that belong to that
latent symbol and estimate the new GMM parameters.
From the aligned sequence of states, estimate the self
transition probabilities for each state by counting.

Step 4: Go to Step 2.
Repeat Step 2 (E-step) and Step 3 (M-step) until convergence.



Case 3: ANNs 48/55

Step 1: Initialize the weights and biases of the ANN that takes as input xm and
classifies the acoustic units {ad}Dd=1. Randomly initialize the transition
probability of states. Assume equal prior probability for the acoustic units.

Step 2: Given the parameters, ∀j ∈ {1, · · · J}, estimate log(P(Xj |Wj)) by dynamic
programming and obtain the alignment between the feature sequence Xj

and the state sequence in Wj by backtracking using Pa(m, n).
Step 3: In the alignment, map the states to ad based on the one-to-one mapping

in the lexical model parameter yn,j . Train a new ANN classifier that
classifies the latent symbols {ad}Dd=1 using cross entropy or mean square
error criterion given xm as input.
From the alignment, estimate the prior probability for each ad

From the aligned sequence of states, estimate the self transition
probabilities for each state by counting.

Step 4: Go to Step 2.
Repeat Step 2 (E-step) and Step 3 (M-step) until convergence.
Training in this fashion is quite expensive. In practice, as part of E-step, a
GMM-based system is trained to obtain a good alignment between Xj and Wj

∀j , and the M-step is carried out once.
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Automatic speech recognition (ASR) 50/55
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Matching
Hypothesis

Ŵ = arg max
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Match(Wk ,S)

How to match an observed speech signal S with a word hypothesis Wk?



Abstract formulation for matching S and Wk
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A = y1 …...... yn …….. yN

B = z1 …...... zm …….. zM

Core Idea

1. Map S and Wk to a
shared latent symbol
space

2. Match the resulting
two latent symbol
sequences A and B



Knowledge-based ASR approach 52/55
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w1,j

wm,j

wM,j

{Sj}J
j=1

{Wj}J
j=1

LHMM (M,N)

y1,j

ym,j

yM,j

z1,j

zn,j

zN,j

l(ym,j , zn,j)

s1,j

sn,j

sN,j

(sn,j ,ym,j)

Wj

Sj

w1,j wm,j wM,j LWj ,Sj
(M, N) {Yj}J

j=1 {Zj}J
j=1 {ym}I

wm=1

W1 Wk Wj Ŵ W S
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y1=/b/ y2=/ae/ …...... yn=/k/ …….. yN=/t/
z1=/p/ z2=/ae/…...... zm=/g/ …….. zM=/t/

Q3. Apply linguistic knowledge

Q2. Segment and label based  on 
acoustic-phonetic knowledge

Q4: Match two phone sequences 
(string matching)

Q1: Phones (linguistic knowledge-based)

Limitations:
Overly relies on knowledge
Makes early decision so difficult to recover from errors such as,
segmentation and labeling errors



Instance-based approach to match S and Wk
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sm and wn,k denote of frame of speech signal
zm and yn,k denote the corresponding feature vectors



Matching S and Wk: P(Wk , S)
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