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Automatic speech recognition (ASR)

Input Set of hypotheses Output
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s ~ ~ W
w

W = arg max Match(W, S)
Wiew

How to match an observed speech signal S with a word hypothesis W,?




Abstract formulation for

N

matching S and W,

Core Idea

1. Map S and W to a
shared latent symbol
space

2. Match the resulting
two latent symbol
sequences A and B



String Matching

Matching two sequences of symbols through dynamic programming
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c 2 1 1 2 3
n
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A 0 1 2 3 4
A C C D E
m

symbols can be alphabets of a language or words in a language



Four sub questions

: What is the shared latent symbol set?
Q2: How to map S to a latent symbol sequence B?
Q3: How to map W to a latent symbol sequence A7

Q4: How to match the two latent symbol sequences A
and B?

Different ASR methods mainly differ on how these
four sub questions are addressed.



Knowledge-based ASR approach

Q1: Phones (linguistic knowledge-based)

Wi

Q3. Apply linguistic knowledge

=/b/ y,=/ae/ ........ Y=k . =/t
Y1 / /y2 /ae/ ¥n I/ N //Q4: Match two phone sequences

2,=/p/ 2,=/ae/......... 2,=/8/ e z\=/t/ (string matching)

Q2. Segment and label based on
acoustic-phonetic knowledge

-

S

Limitations:
m Overly relies on knowledge

m Makes early decision so difficult to recover from errors such as,
segmentation and labeling errors



Instance-based approach to match § arﬂl

D(M, N)
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Short-term processing

Feature extraction

® sy, and w, , denote of frame of speech signal
Bz, and y, , denote the corresponding feature vectors



Dynamic Time Warping (DTW)

(m-1,n) (m,n)
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local score d(m, n):

m Cepstral features: Euclidean
distance between z,, and
Yn,k

m Linear prediction
coefficients: Itakura
distance between z,,, and
Yn,k

m Spectral information:
Itakura-Saito distance
between zp, and y, «

1. Initial condition: path starts at (1,1)

2. Recursion:

D(m, n)=d(m, n) + min[D(m — 1, n),

D(m—1,n-1),
D(m—1,n-2)]
Path(m, n) =arg min[D(m — 1, n),
D(m—1,n-1),
D(m,n—2)]

Vme{l...M}and ne {1,...N}

3. Final condition: path ends at (M, N)
and D(M, N) is the global score

D(m, n) is referred to as cumulative score.
Path(m, n) denotes the path index. Path
can be traced back from Path(M, N)


http://www.isle.illinois.edu/~hasegawa/notes/chap4.pdf
http://www.isle.illinois.edu/~hasegawa/notes/chap4.pdf
https://en.wikipedia.org/wiki/Itakura-Saito_distance

Four sub questions for instance-based approach

Q1 : Short-term spectral feature vectors are the
latent symbols. The set of symbols is undefined,
as there is no unique feature vector representation
for speech sounds due to variabilities.

Q2 : Short-term speech processing-based feature
extraction

Q3 : Short-term speech processing-based feature
extraction

Q4 : Dynamic programming, i.e. DTW, with
appropriate local score and local constraints



Outline

Statistical model-based approach



Three Key Statistical Rules e

1. Bayes's rule:
P(A, B) = P(A|IB)P(B) = P(B|A)P(A)
2. If By (k=1,...,K) are mutually exclusive and collectively
exhaustive (3K, P(By) = 1)
P(A) = P(A, B)

3. Gibbs sampler:

P(By,..., B, ..., Bk) = ] P(Bk|Bk-1,-.,B1)



Statistical formulation for matching S and W

" 1%
W = arg max P(Wk|S) = arg max P(Wi, 5)

Wiew Wiew p(S)

Statistical Automatic Speech Recognition

m Posterior-based approach: estimate P(W|S)
Attempts through neural networks, e.g. Transition-based ASR,
Listen, Attend and Spell

m Likelihood-based approach: estimate p(Wj, S)


http://www.icsi.berkeley.edu/ftp/global/pub/speech/papers/nips95-remap.pdf
https://arxiv.org/pdf/1508.01211.pdf

Speech signal S representation

X1 .- X . XM

Feature extraction




HMM-based ASR approach

p(Wi, X[©,,01) = p(X| Wk, ©,) - P(Wi[©))

m p(X|Wk, ©,): acoustic likelihood estimated using hidden
Markov models (HMMs)

m P(Wj,©): language model probability estimated using

discrete Markov models (DMMs)
Three problems:

1. How to estimate p(Wj, X) or simply p(X|Wj,©,) and
P(Wk|©))?

2. How to estimate ©, and ©,7 (Training)

3. How to find the most likely word hypothesis W? (Recognition
or decoding)

~

W = arg max p(Wi, X|©,, ©))
W,ew



Recall: discrete Markov model

Example of fully connected discrete Markov model with
Q ={a, b,c}. For example, in case of weather model: “a" =
“cloudy”, “b'= "rainy” and "c" = “sunny”

Parameterized entirely by transition probabilities




Estimation of P(W)

Let Wi = {wi1,...wk,... Wk} (sequence of words)

P(Wi) = P(Wik- Wik .- Wyk)
= PWyklwi—rp, - swik) - P(Wo—1k,. . wik)
= PWyklwi—1k,- s wik) P(Wy—i kWi ky.n ywak) -
P(ws k|wo i, wa k) - P(wa,k|wa k) - P(wi k)

Usually P(wy k) = P(wi linitial state)
Example: W) = {my, name, is, bond}

P(my, name, is,bond) = P(bond|is, name, my) - P(is, name, my)
P(bond|is, name, my) - P(is|name, my) -

P(name|my) - P(my)



Estimation of P(Wj): n-gram

m Challenge: variable history length
m Solution: Markov assumption
m n-gram is a (n — 1) order Markov model
m bigram language model: first order Markov model
P(my,name,is,bond) = P(bondlis) - P(is|name) -
P(name|my) - P(my|initial state)
m trigram language model: second order Markov model
P(my,name,is,bond) = P(bondlis, name) -
P(is|name, my) -
P(name|my) - P(my|initial state)
Suppose the vocabulary size is O then the number of parameters or
transition probabilities to estimate are:

m Bigram language model: O x O 4+ O
m Trigram language model: O x O x 04+ O x O+ O



n-gram parameter estimation

m Requires large amount of text e.g. books, web
m Parameter estimation through counting, e.g. trigram

Count(wp, Wn—1, Wnp—2)

P _ _ =
(Wn’Wn 1, Wp 2) ZW COUHt(Wy Wp—1, Wn_2)

Example:

Count(bond, is, name)

P(bond|i =
(bond|is, name) 5., Count(w, is, name)

m Small probability estimation problems, e.g. not enough
examples, unseen word contexts
m Interpolation with lower n-gram probabilities
m Discounting: assign a small probability mass
m Back-off to lower order n-gram probabilities
P(Wp|Wn—1, Wp—2) = P(w,|w,—1)
m Written text versus spoken language (conversational speech)



HMM-based ASR approach

p(Wi, X) = p(X|Wk, ©,) - P(Wk|©))

m p(X|Wk, ©,): acoustic likelihood using hidden Markov models
(HMMs)

m P(Wk,©)): language model probability using discrete Markov
models



Recall: From DMM to HMM (1)

m Coin tossing and only the results of each coin toss i.e. Heads
(H) or Tails (T) is revealed
HHTTTHHHHTT...

m 1-coin model: DMM with two states Q = {H, T} and all
transition probabilities are equal to 0.5.

P(H[H) P(TIT)

N Y

——)

—eeeeeeee
P(H[T)



From DMM to HMM (2)

m 2-coin model: HMM with two states Q = {C;, G5} ; each
state associated with P(H|C;) and P(T|C;) i € {1,2}; and
the transition probability reflects the probability of choosing
one of the (possibly biased) coins

PlCiIC) P(C,/C2)

m PIC,ICY) m

——
4—
P(C:]C2)
P(HIC,)

PIHIC,) P(TIC,) ‘I | PITIC)
\ \
| | >

Emission distribution for C; Emission distribution for C,

From X we can not directly know about W.



Estimation of P(X|W, ©,) using HMMs (1)

P(X|Wi,©.) = Y P(X,Q|Wi,®,)

QewW;

S P(X]Q. W) P(QIWL),

Qe Wi

where @ = {q1, - gm, - gu} denotes sequence of HMM states.
After i.i.d and first order Markov assumption

PXIWi) = ) prm|qm Hquqm 1

Qeka 1

Z H P(Xm|dm) - P(qm|gm—1) Full likelihood
ReW, m=1
M

Q

ew;
@ m=1

max H P(Xm|qm) + P(Gm|gm—1) Viterbi approx.



Estimation of P(X|W,©,) using HMMs (2)

M
P(X|We) ~  max [] p(xmlam) - P(Gmldm-1)
m=1
M D
d
~ ms m -P m|Ym—
max 11O e a%lam)) - Plamlan-1)
m=1 d=1
M D
~ ggﬁ% H(Zp(xm,|ad,qm)-P(ad|qm))~ P(qm|Gm-1)
“m=1 d=1
M D
d d
R a m 1a%) - P(a%|gm)) - P(qm|qm—
Jnax :1(;P(X a%) - P(a%lgm)) - P(qm|qm-1)

Assumption X, is independent of g, given a“.

{a?}D_, are the latent symbols:
m context-independent phones
CAT: /k/ [ae/ [t/
m "clustered" context-dependent phones

CAT: /k/+/ae/ [k]-]ae/+/t] [ae/-]t]


https://mi.eng.cam.ac.uk/~mjfg/mjfg_NOW.pdf

Modeling of P(a%|q,,)

bW dn/ fiy/ sp /K Jael 1t/
1

whooooowho W] The Cat
w
Wy

Let us denote y, x = [P(at|gm = I7) - -- P(aP|qm = IM]*
m Modeling of y, x is based on
m prior knowledge: {a?}D_, are context-independent phones
m both prior knowledge and data: {a?}5_; are clustered
context-dependent states
m Typically, one-to-one mapping between /] and ad, ie. Yk is a
Kronecker delta distribution.



Modeling of p(x;|a%)

m Gaussians and Gaussian-Mixtures
p(xm|a?)  =N(Xm, fiad, T o¢)

_ 1 exp | — (Xm - ,uad)tza_dl(xm - :uad)
(2r) R[5 12 2

OR :

J
p(Xm|ad) Z dN (Xm, 10 ad’ Jad)
j=1

R is the dimension of the feature vector.

m Artificial neural networks: estimate scaled-likelihood pg(x.,|a)

oy _ Plinla®) _ P(aln)
plxn) P

DT or

psl(xm | a

Let us denote v, = [p(xm|at) - - - p(xm|a
Vm = [psl(xm|al) Tt Ps/(Xm\aD)]T



Matching X and W,: P(W, X)

D(M, N
1;6\7 00010 . .0 yngz ( )
00100 . .0
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1, 10000 0 Vi
Vi Vi Vs
m
X1 o+ s Kyt s XAg
?
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1 n D )T S
Yo = [Pla'|lgm = 1}) - - - P(aP|gm = 1}})]

log(P(X|Wi)) =~ max > log(D_ plxm, |a?) - P(a%lam = 1)) +

Qe Wy

|og(P(qm = Ilgm-1))

Q

rgamzlog VimYnk) + 10g(P(qm = I{|Gm-1))



Dynamic programming (1)

N

: : P(gm = lgm-1=1"")

Pgm = lgm1 =17)  (M,N)

P(‘Im = ZZ‘Qm—l = lz)

7 n—
P(Gn = lam-1 =17




Dynamic programming (2)

Local score: d(m, n) = —log(vViyn.«)
1. Initial condition: path starts at (1,1)

2. Recursion:

D(m, n) = d(m, n) + min[D(m — 1, n) — log(P(qm = I{|qm-1 = I{),
D(m—1,n—1) — log(P(qm = |qm-1 = [{"")]
Path(m, n) =argmin[D(m — 1, n) — log(P(qm = If|gm-1 = 1),
D(m—1,n—1) — log(P(qm = Klqm-1 = ;)]

Vme{l...M} and ne {1,...N}

3. Final condition: path ends at (M, N) and D(M, N) is the
global score

Path(m, n) denotes the path index. Path can be traced back from
Path(M, N)



Across word local constraint and LM

m-1 m

n 7® O m.l—?(fg O 1k
n-1k O
n2k @ O O ./ O O N, k’

Within word constraint Across word constraint

Vk' € {1,--- K} the transition between wjy and w, has a cost
based on the language model, e.g. P(wk|w,) (assuming bigram
language model)

M D
log(P(X|Wy) - P(Wy)) = dnax > " 10g(> plxm, %) - P(a%qm = 1)) +
K m=1 d=1
log(P(gm = I{|qm—-1))
M

max log(v'Y +log(P(gm = 17| Gm—
QGkaZZI g(VmYn,k) + log(P(qm = I{|qm-1))

Q

Transition between words: P(qm = I|qm—1) is estimated from the
language model.



Continuous speech recognition
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Source: H. Ney,"The Use of a One-Stage Dynamic Programming Algorithm for
Connected Word Recognition ", IEEE Trans. on Acoustics, Speech, and Signal

Processing, 32(2), 1984.


https://csl.anthropomatik.kit.edu/downloads/vorlesungsinhalte/MMMK-Ney-One-StageDPAlgorithm.pdf
https://csl.anthropomatik.kit.edu/downloads/vorlesungsinhalte/MMMK-Ney-One-StageDPAlgorithm.pdf

Four sub questions for HMM-based approach

Q1 : Latent symbol set {a?}5_: typically clustered
context-dependent phones

Q2 : Estimation of emission likelihood vector v, per
frame using GMMs or ANNs

Q3 : Estimation of y, x Typically, one-to-one
mapping between context-dependent phone unit
I7 and a? (i.e., Kronecker delta distribution)
based on the state tying decision tree

Q4 : Dynamic programming with local score
—log(vyiyn, k) and local constraints are based on
the HMM topology and transitions can have
unequal cost.


https://mi.eng.cam.ac.uk/~mjfg/mjfg_NOW.pdf
https://mi.eng.cam.ac.uk/~mjfg/mjfg_NOW.pdf

Context-dependent phone modeling (1m

(silence) Stop that (silence)
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(Source: M. Gales and S. Young, "The Application of Hidden
Markov Models in Speech Recognition", Foundations and Trends
inSignal Processing,Vol. 1, No. 3 (2007) 195-304)


https://mi.eng.cam.ac.uk/~mjfg/mjfg_NOW.pdf
https://mi.eng.cam.ac.uk/~mjfg/mjfg_NOW.pdf

Context-dependent phone modeling (2ﬁ

t-ih+n t-ih+ng f-ih+1 s-ih+l

AVAVARAVAVAVIRAVAV A IRFAVFAV AN

Tie similar
states

t-ih+n t-ih+ng f-ih+l s-ih+l

(Source: M. Gales and S. Young, "The Application of Hidden
Markov Models in Speech Recognition", Foundations and Trends
inSignal Processing,Vol. 1, No. 3 (2007) 195-304)


https://mi.eng.cam.ac.uk/~mjfg/mjfg_NOW.pdf
https://mi.eng.cam.ac.uk/~mjfg/mjfg_NOW.pdf

HMM/GMM training

Word Expectation
transcription step
Get alignment
between the
features and phones

likelihood estimates

Lexicon

Trained/Initialized
HMM

Sequences of

(feature, phone label) Speech

features of
the training

Maximization data

step

. Train GMM

. Estimate
transition
probabilities



Hybrid HMM /ANN training

Word Expectation
transcription step
Get alignment
between the
features and phones

Scaled-likelihood estimates

Lexicon

Trained/Initialized
HMM

Sequences of

(feature, phone label) Speech
features of
—— . the training
Maximization data
step

Train ANN

Estimate prior
probabilities
Estimate transition
probabilities



Expectation step

D(M, N
1Y ©00010..0 ywnu (M, N)

oOoo100. .0
n Y,k

1'1 - -
k 10000. .0 Yik

Feature extraction

Vo = [p(xm|a1) .. .p(xmlaD)]T

Yn,k = [P(all‘IM = lg) o P(G’D|Qm = l‘)’cl)]T



39/
Resources needed

m Large set of speech signals with word level transcriptions

m Phonetic lexicon that transcribes each word as a sequence of
phones. Alternative is to use graphemic representations
(orthographic transcription of word)

m Fine for languages with shallow grapheme-to-phoneme relation
(e.g., Spanish, Finnish)

m Not-so-good for languages with deep grapheme-to-phoneme
relation (e.g., English)

m Large text resources for language model



HMM-based ASR system

Phone

Recognized

Likelihoods

Auditory Spectral

FrontEnd  |like
features

; Signal Processing i

I

+tPhone Likelihood
Estimator

(Gaussian or Neural
Network Classifier)

p 0.80
b 0.12
v 0.04
003

Speech
Signal

m Prior knowledge

"the"
“cat

Decoder ? ?
O

Lexicon (HMM) Grammar (n-gram)

the | 0.1 02
8_%8 a| 0301

3

m Syntactical or grammatical constraints using DMMs, i.e.

language model

m Lexical constraints using DMMs

BAT: /b/ — [ae/

= /t/

m Data-driven acoustic evidence
m Phone/subword units HMMs

is’ Semantics



/
Decoder

Phone
Likelihoods
(from MLP)

5 0E Recognized
& 612 Werds
v 004 “the"

Lexicon (HMM) ;o0 "catt”

g
(3 S
ag%e Viterbi
Decoder ;
Grammar (n—gram)
dog  cetl
the | 0.1 0.2
g | B3 02

m Implementation of decoder typically done using weighted finite state
transducers (composition of a big graph and searching through it)

D
=

la8lo®le

Full breadth search practically infeasible

Need for search heuristics e.g., Beam search

Other hyper-parameters: acoustic scaling factor, language scaling
factor, word insertion penalty (to avoid insertion of short words)


https://www.inf.ed.ac.uk/teaching/courses/asr/2016-17/asr11-wfst.pdf
https://www.inf.ed.ac.uk/teaching/courses/asr/2016-17/asr11-wfst.pdf

Interpretation

Word hypotheses generator
(e.g. n-gram language model)

Process
Signal
And
Estimate
Likelihood
vector
sequence
(o))
Language model D(M, Nw,

probabilities are integrated Decision
into HMM state transitions

across word boundaries. Recognized word hypothesis 1}/

Word hypothesis processing (Q3)




Outline

Training
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Data preparation

Resources needed: Speech utterances and their word level
transcriptions, Phonetic dictionary (also called as lexicon)

Let {5, HJ-}J-J:1 denote a set of speech utterances and their
corresponding word level transcriptions.

1. Extract the acoustic feature sequence Xj = (X1, Xm, - - -xMj)
corresponding to each speech utterance S;. x, is typically 39
dimensional cepstral feature vector (Cy — Ci2 and their
approximate first and second temporal derivatives).

2. For each corresponding transcription H; create a left-to-right

HMM model W; by using the phonetic dictionary. For example,
see creation of HMM for "AND", "IT" and "AND IT".



Goal of training

Infer the HMM parameters, i.e., emission distribution parameters and the
transition probabilities for each HMM state such that it maximizes

J
_Hp(leWj)

Emission distribution parameters (besides the lexical model parameter y):

1. single multivariate Gaussian: mean vector and covariance matrix for
each latent symbol a¢

2. GMMs: mixture weights, mean vectors and covariance matrices of
the GMM for each a¢

3. ANNSs: weights and biases and prior probability of each a“, i.e.
P(a%).
Direct optimization of the above objective function is not possible.

Parameters are iteratively estimated using Expectation-Maximization
(EM) algorithm.



Case 1: Single Gaussian

Step 1: For each latent symbol a?, randomly initiliaze the mean vector
and covariance matrix of the multivariate Gaussian and the
transition probabilities.

Step 2: Given the parameters, Vj € {1,--- J}, estimate log(P(X;|W,))
by dynamic programming and obtain the alignment between
the feature sequence X; and the state sequence in W, by
backtracking using Pa(m, n).

Step 3: In the alignment, map the states to a based on the
one-to-one mapping in the lexical model parameter y, ;. For
each a9, collect all the feature vectors x,, that belong to that
latent symbol and estimate the new mean vector and
covariance matrix.

From the aligned sequence of states, estimate the self
transition probabilities for each state by counting.

Step 4: Go to Step 2.

Repeat Step 2 (E-step) and Step 3 (M-step) until convergence.



Case 2: GMMs

Step 1: For each acoustic unit a?, randomly initiliaze the GMM
parameters, i.e. mixture weights, mean vector and covariance
matrix each multivariate Gaussian, and the transition
probabilities.

Step 2: Given the parameters, Vj € {1,--- J}, estimate log(P(X;|W,))
by dynamic programming and obtain the alignment between
the feature sequence X; and the state sequence in W; by
backtracking using Pa(m, n).

Step 3: In the alignment, map the states to a¢ based on the
one-to-one mapping in the lexical model parameter y, ;. For
each a9, collect all the feature vectors x,, that belong to that
latent symbol and estimate the new GMM parameters.

From the aligned sequence of states, estimate the self
transition probabilities for each state by counting.

Step 4: Go to Step 2.

Repeat Step 2 (E-step) and Step 3 (M-step) until convergence.



Case 3: ANNs

Step 1: Initialize the weights and biases of the ANN that takes as input x,, and
classifies the acoustic units {a?}5_;. Randomly initialize the transition
probability of states. Assume equal prior probability for the acoustic units.

Step 2: Given the parameters, Vj € {1, - J}, estimate log(P(X;|W;)) by dynamic
programming and obtain the alignment between the feature sequence X;
and the state sequence in W, by backtracking using Pa(m, n).

Step 3: In the alignment, map the states to a° based on the one-to-one mapping
in the lexical model parameter y, ;. Train a new ANN classifier that
classifies the latent symbols {a?}5_; using cross entropy or mean square
error criterion given X, as input.

From the alignment, estimate the prior probability for each a“
From the aligned sequence of states, estimate the self transition
probabilities for each state by counting.

Step 4: Go to Step 2.

Repeat Step 2 (E-step) and Step 3 (M-step) until convergence.
Training in this fashion is quite expensive. In practice, as part of E-step, a
GMM-based system is trained to obtain a good alignment between X; and W;

Vj, and the M-step is carried out once.
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Summary



Automatic speech recognition (ASR)

Input Set of hypotheses Output
Wy Apple
‘ : : Best
w~ : . ~ — Matching
. Wi Good Morning Hypothesis
s ~ ~ W
w

W = arg max Match(W, S)
Wiew

How to match an observed speech signal S with a word hypothesis W,?




Abstract formulation for

N

matching S and W,

Core Idea

1. Map S and W to a
shared latent symbol
space

2. Match the resulting
two latent symbol
sequences A and B



Knowledge-based ASR approach

Q1: Phones (linguistic knowledge-based)

Wi

Q3. Apply linguistic knowledge

=/b/ y,=/ae/ ........ Y=k . =/t
Y1 / /y2 /ae/ ¥n I/ N //Q4: Match two phone sequences

2,=/p/ 2,=/ae/......... 2,=/8/ e z\=/t/ (string matching)

Q2. Segment and label based on
acoustic-phonetic knowledge

-

S

Limitations:
m Overly relies on knowledge

m Makes early decision so difficult to recover from errors such as,
segmentation and labeling errors



Instance-based approach to match § arm

D(M, N)
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Short-term processing

Feature extraction

® sy, and w, , denote of frame of speech signal
Bz, and y, , denote the corresponding feature vectors



Matching S and Wj: P(W,S)

D(M, N
1Y ©00010..0 ywnu ( )
00100 . .0
Wi — 17— Yn,k
1'1 . .
k 10000 . .0 Yi,&
Vi - -« Vg - o+ Vs
X1 - - Xyt XAz
Feature extraction
Vo = [P(Xm|at) - - - p(xm|a®P)]T

S
Yn,k = [P(all‘IM = lg) o P(G’D|QM = l‘)’cl)]T



Thank you for your attention!

Dr. Mathew Magimai Doss

Idiap Research Institute, Martigny, Switzerland

Automatic Speech Processing, Master Cycle Ileap =PrL
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