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In hidden Markov model (HMM) based automatic speech recognition (ASR) system, modeling the statistical rela-
tionship between the acoustic speech signal and the HMM states that represent linguistically motivated subword
units such as phonemes is a crucial step. This is typically achieved by first extracting acoustic features from the
speech signal based on prior knowledge such as, speech perception or/and speech production knowledge, and,
then training a classifier such as artificial neural networks (ANN), Gaussian mixture model that estimates the
emission probabilities of the HMM states. This paper investigates an end-to-end acoustic modeling approach us-
ing convolutional neural networks (CNNs), where the CNN takes as input raw speech signal and estimates the
HMM states class conditional probabilities at the output. Alternately, as opposed to a divide and conquer strategy
(i.e., separating feature extraction and statistical modeling steps), in the proposed acoustic modeling approach
the relevant features and the classifier are jointly learned from the raw speech signal. Through ASR studies and
analyses on multiple languages and multiple tasks, we show that: (a) the proposed approach yields consistently a
better system with fewer parameters when compared to the conventional approach of cepstral feature extraction
followed by ANN training, (b) unlike conventional method of speech processing, in the proposed approach the
relevant feature representations are learned by first processing the input raw speech at the sub-segmental level
(~ 2 ms). Specifically, through an analysis we show that the filters in the first convolution layer automatically
learn “in-parts” formant-like information present in the sub-segmental speech, and (c) the intermediate feature
representations obtained by subsequent filtering of the first convolution layer output are more discriminative
compared to standard cepstral features and could be transferred across languages and domains.

hood estimates of the subword units, the best matching word hypothesis
is searched by integrating lexical and syntactical constraints.

1. Introduction

State-of-the-art automatic speech recognition (ASR) systems typi-
cally divide the task of recognizing speech into several sub-tasks, which
are optimized in an independent manner (Rabiner and Juang, 1993;
Bourlard and Morgan, 1994). Specifically, as a first step, acoustic feature
observations, such as Mel frequency cepstral coefficients (MFCCs) or
perceptual linear prediction cepstral features (PLPs), are extracted from
the short-term speech signal based on speech production and speech
perception knowledge. Next, likelihood of subword units, which are typ-
ically based on phonemes, are estimated using a statistical model that
captures the relationship between the features and the subword units
in either generative or discriminative manner. Finally, given the likeli-
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Recent advances in machine learning have shown that systems can
be trained in an end-to-end manner, i.e. systems where every step is
learned simultaneously, taking into account all the other steps and the
final task of the whole system. It is typically referred to as deep learn-
ing (Hinton et al., 2006; Bengio et al., 2007), mainly because such
architectures are usually composed of many layers (supposed to pro-
vide an increasing level of abstraction), compared to classical “shal-
low” systems. As opposed to “divide and conquer” approaches pre-
sented previously where each step is independently optimized, deep
learning approaches are often claimed to lead to more optimal sys-
tems. As they alleviate the need of finding the right features by instead
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training a stack of features in an end-to-end manner, for a given task of
interest.

While there is a good success record of such approaches in the com-
puter vision (LeCun et al., 1998; Krizhevsky et al., 2012; He et al.,
2015) or text processing fields (Collobert et al., 2011b), deep learn-
ing approaches for speech recognition has largely focused on the classi-
fier step, where a neural network with many hidden layers is typically
trained to classify subword units (Hinton et al., 2012). These systems
still rely on standard short-term spectral-based feature extraction. The
training optionally can involve pre-training schemes. In such a case, it is
referred to as deep belief neural networks (DBNs) otherwise deep neural
networks (DNNs).

More recently, there has been efforts toward modeling raw speech
signal with little or no pre-processing (Jaitly and Hinton, 2011; Palaz
et al., 2013b; Tiiske et al., 2014; Golik et al., 2015; Sainath et al.,
2015). Towards that, as one of the first efforts, we proposed a novel
approach based on convolution neural networks (Palaz et al., 2013b).
In this approach, the input to the CNN is raw speech signal. The neu-
ral network architecture consists of two stages: a feature learning stage
consisting of several convolution layers followed by a classifier stage
consisting of multilayer perceptron, which are jointly learned by mini-
mizing a cost function based on relative entropy. Phoneme recognition
studies on the TIMIT corpus showed that the proposed approach is capa-
ble of achieving performance comparable to or better than the standard
approach of extraction of cepstral features followed by ANN training.
Subsequent works in the ASR community have explored different archi-
tectures. For instance, in Tiiske et al. (2014) use of DNNs was investi-
gated. It was found that such an acoustic model yields inferior system
when compared to standard acoustic modeling. In a subsequent follow
up work (Golik et al., 2015), it was found that addition of convolution
layers at the input helps in improving the system performance and re-
ducing the performance gap w.r.t standard acoustic modeling technique.
In Sainath et al. (2015), a composite architecture referred to as CLDNN
was investigated, where the raw speech signal is fed as input to CNNs,
the CNN stage output is subsequently processed by a bidirectional long-
short term memory (BLSTM) stage and fed into a DNN stage to classify
phones. All these stages are jointly learned. This approach was found to
yield performance comparable to the case where the input to CLDNN is
log filter bank energies.

An aspect that differentiates our approach from the subsequent
works (Tiiske et al., 2014; Golik et al., 2015; Sainath et al., 2015) is
the manner in which the input speech signal is processed by the ANN.
More precisely, in Sainath et al. (2015) the first CNN layer consisted
of 40 filters following the standard practise in MFCC or PLP cepstral
feature extraction for 8 kHz bandwidth speech signal; the filter lengths
were set to 25 ms (400 samples) following standard short-term process-
ing practise; and were initialized with Gammatone impulse response,
i.e. based on auditory knowledge. In Tiiske et al. (2014) the input to
DNN was non-overlapping 10 ms speech signal. They also investigated
initialization of the first layer of the DNN with Gammatone impulse re-
sponse. In Golik et al. (2015), the input convolution layer consisted of
128 filters and the filter lengths were set to 16 ms (256 ms). In our ap-
proach, however, the filter length and the number of filters in the first
convolution layer is not set a priori, rather they are determined during
the training process through cross validation. In other words, the ANN
learns how the speech signal should be blocked or windowed as short
segments and spectrally processed for phone classification. As a conse-
quence of this flexibility, as we will see later in the present paper, the
processing of speech at the input of ANN in the proposed approach con-
siderably departs from the current understanding of short-term speech
processing.

The present paper builds on our previous works (Palaz et al., 2013b;
2015b; 2015a) along two directions,

1. From phoneme recognition to automatic speech recognition: a first
set of fundamental question that arises is: does the findings on
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phoneme recognition task scale well across speech recognition task
across different languages and domains? In that respect, the con-
tributions of the present paper are: (1) we first benchmark the
proposed approach on TIMIT corpus by extending our previous
study (Palaz et al., 2013b) to the standardized protocol of classifying
183 phones output (61 phones x 3 states) and using phone bigram
for decoding; (2) We then present investigations on large vocabu-
lary continuous speech recognition task on a variety of corpora that
differ in terms of languages. Specifically, we extend our previous in-
vestigations on WSJ English (Palaz et al., 2015b) to Swiss French
and Swiss German on Mediaparl corpus that contains spontaneous
speech. Our studies show that the architecture of three convolution
layers followed by a multilayer layer perceptron originally devel-
oped in the context of phoneme sequence recognition task scales
well for continuous speech recognition tasks and consistently yields
a better system than conventional cepstral feature-based system for
all the investigated corpora.

2. Understanding the learned features: as it would be seen in the ASR
studies the proposed approach yields a system that performs bet-
ter than the system based on conventional approach with consid-
erably less parameters. Thus, a second set of questions that arise
are: what information is the neural network learning and how it is
learning? Since the features are learned along with the classifier au-
tomatically from the data, yet another question that arises is: are
these features domain or language dependent? To understand these
aspects, we first analyze the first convolution layer. We present a
novel signal theoretic approach to understand the information that
is collectively modeled by the first convolution layer. This analysis
shows that: (i) the proposed approach transforms the speech signal
at sub-segmental level (about 2 ms) as opposed to conventional ap-
proach of transforming the signal at segmental level (20-30 ms), (ii)
unlike auditory motivated filter banks, the learned set of filters are
not of constant Q nature, and (iii) as opposed to an adhoc approach
presented in our earlier work (Palaz et al., 2015a), through the novel
signal theoretic interpretation, we show that the first convolution
layer learns a spectral dictionary that models in-parts formant-like
information in the envelop of magnitude spectrum of sub-segmental
speech. We then focus the analysis on the classifier stage, where we
show that the learned features are more discriminative than the con-
ventional cepstral features and can be classified well with a simple
classifier such as a single layer perceptron. Finally, through cross-
domain and cross-lingual studies we show that the learned features
could be transferred across languages and domains.

The remainder of the paper is organized as follows.
Section 2 presents a background on hybrid HMM/ANN ASR, fea-
ture extraction and use of deep neural networks, and motivates the
present work. Section 3 presents the architecture of the CNN-based
system. Section 4 presents the recognition studies and Section 5 presents
the analyses. Section 6 presents a discussion and concludes the paper.

2. Background

This section briefly introduces standard hybrid HMM/ANN ASR sys-
tem. It then presents a concise survey on two aspects of acoustic mod-
eling: features and ANN-based classifier upon which the present paper
focuses on.

2.1. Hybrid HMM/ANN ASR system

As presented in Fig. 1, hybrid HMM/ANN based ASR system is com-
posed of three parts: features extraction, classification and decoding. In
the first step, input features x, at time t are extracted from the short-
term signal s,. They are then given as input to an artificial neural
network (ANN). In literature, ANNs with different architectures have
been proposed such as multilayer perceptron (MLP) (Bourlard and Mor-
gan, 1994), time delay neural networks (Waibel et al., 1989) which
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Fig. 1. Hybrid HMM/ANN system. s, denotes the input speech segment, x, here
denotes cepstral features and i denotes a phoneme class.

is also referred to as convolutional neural networks, recurrent neural
networks (RNN) (Robinson, 1994; Graves et al., 2013). The ANN es-
timates the class conditional probabilities P(i|x,) for each phone class
i € {1, ... . I}. The emission probabilities p,(x,|i) of the HMM states are
scaled likelihoods which, as given below, are obtained by dividing the
ANN output by the prior probability of the class P(i),

px,li) _ Pilx)

x,]i) =—"viel,..,I 1)
Pl TRy = TR

The prior class probability P(i) is often estimated by counting on
the training set. The phone classes {1, ... ,I} can be either context-

independent phones or clustered context-dependent HMM states, typi-
cally obtained by decision tree based state clustering and tying. Depend-
ing upon that the system is referred to as either context-independent
phone-based ASR system or context-dependent phone-based ASR sys-
tem, respectively.

Given the scaled-likelihood estimates, a phonetic lexicon and a lan-
guage model, the decoder finally infers the best matching word hypoth-
esis through search.

2.2. Feature and classifier

Speech signal is a non-stationary signal. Alternately, the statistical
characteristics of the signal change over time due to various reasons
such as the speech sound being produced, speaker variation, emotional
state variation. In the case of ASR, we are primarily interested in the
characteristic of the speech signal that relates to or differentiates the
speech sounds. In other words, the primary goal is to estimate statisti-
cal evidence about speech sounds given the speech signal. To achieve
that, guided by statistical pattern recognition techniques, originally the
problem has been split into two steps, namely, feature extraction and
modeling of the features by a statistical classifier.

Speech coding studies in telephony have shown that speech can
be processed as short segments, transformed, transmitted and recon-
structed while keeping the intelligibility or message intact (Rabiner and
Schafer, 1978). In particular, the studies have shown that short-term
speech signal could be considered as output of a linear time invari-
ant vocal tract filter excited by periodic or aperiodic vibration of vo-
cal cords (Rabiner and Schafer, 1978). Furthermore, speech intelligibil-
ity can be preserved by preserving the envelop structure of the short-
term spectrum of speech signal, which characterizes the vocal tract sys-
tem (Schroeder and Atal, 1985). The two most common spectral-based
features Mel frequency cepstral coefficients (MFCCs) (Davis and Mer-
melstein, 1980) and perceptual linear prediction (PLP) cepstral coeffi-
cients (Hermansky, 1990) are built on those aspects while integrating
the knowledge about speech and sound perception.

As illustrated in Fig. 2(a), the extraction of MFCC or PLP feature in-
volves: (1) transformation of short-term speech signal to frequency do-
main; (2) filtering the spectrum based on critical bands analysis, which
is derived from speech perception knowledge; (3) applying a non-linear
operation; and (4) applying a transformation to get reduced dimension
decorrelated features. This process only models the local spectral level
information on a short time window typically of 20-30 ms. The infor-
mation about speech sound is spread over time. To model the temporal
information intrinsic in the speech signal dynamic features are com-
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puted by taking approximate first and second derivative of the static
features (Furui, 1986).

To estimate statistical evidence of speech sounds given the speech
signal, the cepstral features are modeled by classifiers such as k-means
(or vector quantization), Gaussian mixture models, ANNs, k-nearest
neighbor. In the beginning of the hybrid HMM/ANN theory, the ANNs
typically had single hidden layer. There were two particular reasons
for that. First, it has been shown theoretically that ANN with single
hidden layer is an universal approximator (Hornik et al., 1989). Sec-
ond, both acoustic and computing resources were then limited. In re-
cent years, with the advancements in computing and availability of in-
creased amount of acoustic resources, it has been shown that ANNs with
deep architecture, i.e. with multiple hidden layers, can yield better sys-
tems (Hinton et al., 2006; Seide et al., 2011; Dahl et al., 2012; Hinton
et al., 2012).

2.3. Motivation

The standard acoustic modeling mechanism can be seen as a process
of applying transformations guided by prior knowledge about speech
production and perception on the speech signal, and subsequent mod-
eling of the resulting features by a statistical classifier. More recently,
inspired by the success of deep learning approaches in the fields of text
processing and vision (Collobert et al., 2011b; Krizhevsky et al., 2012;
He et al., 2015) towards building end-to-end systems as well as by the
success of DNNs in ASR, researchers have started questioning the in-
termediate step of feature extraction. In that direction, several studies
have been carried where filter bank or critical band energies estimated
from the short-term signal instead of cepstral features are used as input
of convolutional neural networks based systems (Abdel-Hamid et al.,
2012; Sainath et al., 2013; Swietojanski et al., 2014) or short-term mag-
nitude spectrum is used as input to the DNN (Mohamed et al., 2012; Lee
et al., 2009). Fig. 2(b) illustrates a case where, instead of transforming
the critical band energies into cepstral features, the critical band ener-
gies and its derivatives are fed as input to the ANN.

In this article, as opposed to the idea of applying spectral transform
and then learning feature and classifier, we go one step further where the
neural network also learns short-term windowing and spectral process-
ing along with the features and the classifier for phone classification.
More precisely, in this approach the raw speech signal is input to an
ANN that classifies speech sounds. During training the neural network
learns the appropriate window size and filtering process that operates
on the signal to model the relevant features and the classifier for phone
classification. The output of the trained neural network is then used as
emission probabilities of HMM states as done in hybrid HMM/ANN ap-
proach. Such an approach can not only be motivated by recent advances
in machine learning (Collobert et al., 2011b; Krizhevsky et al., 2012) but
also from previous works in the speech literature, which have investi-
gated methods to directly model raw speech signal for speech recogni-
tion, as presented below.

The first initiative towards directly modeling the raw speech signal
was inspired by speech production model, i.e. an observed speech signal
can be seen as an output of a time varying filter excited by a time vary-
ing source. Specifically, one of the first theoretical work in that direction
by Poritz (1982) was inspired by linear prediction techniques, which
can deconvolve the excitation source and the vocal tract system through
time domain processing. Poritz’s work was later revisited as switching
autoregressive HMM (Ephraim and Roberts, 2005), and more recently
in the framework of switching linear dynamical systems (Mesot and
Barber, 2008). These techniques were investigated in an isolated word
recognition setup where word-based models are trained. It was found
that in comparison to HMM-based ASR system using cepstral features
these approaches yield performance comparable under clean conditions
and significantly better performance under noisy conditions (Mesot and
Barber, 2008). In Sheikhzadeh and Deng (1994), an approach to model
raw speech signal was proposed using auto-regressive HMM. In this ap-
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(b) Typical CNN based pipeline using Mel filter bank [25, 26]

Fig. 2. Illustration of several feature extraction pipelines. |DFT| denotes the magnitude of the discrete Fourier transform, DCT denotes the magnitude of the discrete
cosine transform, AR modeling stands for auto-regressive modeling, A and AA denote the first and second order derivatives across time, respectively. P(i|x,) denotes
the conditional probabilities for each input frame x,, for each label i. It is worth noting that typically, in addition to x,, the input to the ANN also consists of features

from preceding and following frames.

Joint Training

Word
sequence

Raw speech
segment s{

. Language

Fig. 3. Overview of the proposed CNN-based approach.

proach, each sample of the speech signal is an observation, as opposed
to a vector of speech samples in the approach proposed in Poritz (1982).
Each state models the observed speech sample as a linear combination of
past samples plus a “driving sequence” (assumed to be a Gaussian i.i.d
process). The potential of the approach was demonstrated on classifi-
cation of speaker-dependent discrete utterances consisting of 18 highly
confusable stop consonant-vowel syllables. However, their gain com-
pared to conventional cepstral-based features is not clear, and they were
never studied on continuous speech recognition task.

More recently, use of raw speech signal as input to discriminative
systems has been investigated. In that direction, combination of raw
speech and cepstral features in the framework of support vector machine
has been investigated for noisy phoneme classification (Yousafzai et al.,
2009). Feature learning from raw speech using neural networks-based
systems has been investigated in Jaitly and Hinton (2011). In this ap-
proach, the learned features are post-processed by adding their temporal
derivatives and used as input for another neural network. Thus, this ap-
proach still follows the “divide and conquer” approach. In comparison to
these approaches, as presented in the following section, in our approach
the features and the classifier are learned in an end-to-end manner to
estimate the phone class conditional probability P(i|x,) in Eq. (1).

3. Proposed CNN-based approach

We present a novel acoustic modeling approach based on convo-
lutional neural networks (CNN), where the input speech signal s{ =
{S,_¢ --- 8 ... 844} is a segment of the raw speech signal taken in con-
text of 2c frames spanning w;, milliseconds. The input signal is processed
by several convolution layers and the resulting intermediate representa-
tions are classified to estimate P(i|s(), Vi, as illustrated in Fig. 3. P(i|s)
is subsequently used to estimate emission scaled-likelihood p,(s{|i). As
presented in Fig. 4, the network architecture is composed of several fil-
ter stages, followed by a classification stage. A filter stage involves a
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convolutional layer, followed by a temporal pooling layer and a non-
linearity, HardTanh(-). The number of filter stages is determined during
training. The feature stage and the classifier stage are jointly trained
using the backpropagation algorithm.

The proposed approach employs the following understandings:

1. Speech is a non-stationary signal. Thus, it needs to be processed in a
short-term manner. Traditionally, in the literature guided by Fourier
spectral theory and speech analysis-synthesis studies the short-term
window size is set as 20-40 ms. The proposed approach follows the
general idea of short-term processing. However, the size of the short-
term window is a hyper-parameter which is determined during train-
ing.

2. Feature extraction is a filtering operation. This can be simply ob-
served from the fact that generic operations such as Fourier trans-
form, discrete cosine transform etc. are filtering operations. In con-
ventional speech processing, the filtering takes place in both fre-
quency (e.g. filter-bank operation) and time (e.g. temporal deriva-
tive estimation). The convolution layers in the proposed approach
build on these understandings. However, aspects such as the number
of filtering layers and their parameters are determined and learned
during training, respectively.

3. Though the speech signal is processed in a short-term manner, the
information about the speech sounds is spread across time. In con-
ventional approach, the information spread across time is modeled
by estimating temporal derivatives and by using contextual informa-
tion, i.e. by appending features from preceding and following frames,
at the classifier input. In the proposed approach the intermediate
representations feeding into the classifier stage are estimated using
long time span of input speech signal, which is again determined
during training. Alternately, w;, is a hyper-parameter.

In essence the proposed approach with minimal assumptions or prior
knowledge learns to process the speech signal to estimate P(is{).

3.1. Convolutional layer

While “classical” linear layers in standard MLPs accept a fixed-size
input vector, a convolution layer is assumed to be fed with a sequence
of T vectors/frames: {y, ...y, ... yr}. Asillustrated in Fig. 5, a convolu-
tional layer applies the same linear transformation over each successive
(or interspaced by dW frames) windows of kW frames. In this work, y; is
either a segment of input raw speech s{ (for the first convolution layer)
or an intermediate representation output by the previous convolution
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Fig. 4. Overview of the convolutional neural network architecture. Several stages of convolution/pooling/HardTanh might be considered. Our network included
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Fig. 5. Illustration of a convolutional layer. d;, and d,,, are the dimensions of

the input and output frames. kW is the kernel width (here kW = 3) and dW is
the shift between two linear applications (here, dW = 2).

layer. Formally, the transformation at frame t is written as:

Yi—(kw-1)/2
M : ,

Yi+tew -1)/2>

@

where M is a d,, x (kW-d;,) matrix of parameters, d;, denotes the di-
mension of each input frame and d,,, denotes the output dimension of
each frame. In other words, d,, filters (rows of the matrix M) are applied
to the input sequence.

3.2. Max-pooling layer

This kind of layers perform local temporal max operations over an
input sequence. More formally, the transformation at frame t is written
as:

yi  vd, 3)

max
1=(kWyp=1) 2k <1+ (kW =1)/2

with y being the input and de{1, ---d,,}. These layers increase the
robustness of the network to minor temporal distortions in the input.
They also bring some level of invariance to the phase of the signal, as a
phase difference between two signals can be seen as a temporal shift.

3.2.1. Non-linearity
This kind of layer applies a non-linearity to the input. In this work,
we use the HardTanh layer, defined as:

-1 ifx<-1
HardTanh(x) =4 x if —1<x<1 “4)
1 ifx>1

This layer is a hard version of the hyperbolic tangent. It has the ad-
vantage of being cheaper to compute while keeping the generalization
performance of the exact tangent (Collobert, 2004). It is worth men-
tioning that other types of non-linearities such as, rectified linear unit
(ReLU) (Nair and Hinton, 2010; Zeiler et al., 2013) can also be applied
(e.g., see (Palaz, 2016, Chapter 6)).
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3.3. Softmax layer

The Softmax (Bridle, 1990) layer interprets network output scores
fi(s{) as conditional probabilities, for each class label i:

efi(Sf)

efj(sf) '
z

P(ilsy) = ()

3.4. Network training

The network parameters 6 are learned by maximizing the log-
likelihood £, given by:

L£©O) = Y log(P(ls¢, 0)), ©6)
t

for each speech segment s¢ and its corresponding label i,, over the whole

training set, with respect to the parameters of each layer of the network.

Defining the 1ogadd operation as:

logadd(z;) = log <Z e%i > (@)
] J
The log-likelihood L, of frame t can be expressed as:
L, =log(P(i,Isy)) = f;,(s7) — logadd(f;(sy)) , ®
J

where f; (s{) described the network score for the frame label i,. Maxi-
mizing this likelihood is performed using the stochastic gradient ascent
algorithm (Bottou, 1991).

3.5. Illustration of a trained network

In the proposed approach, in addition to the number of hidden units
in each hidden layer of the classification stage, the filter stage has num-
ber of hyper-parameters, namely, time span of input speech signal w;,
used to estimate P(i|s{), number of convolution layers, kernel or tem-
poral window width kW at input of each convolution layer, dW shift
of the temporal window at the input of each convolution layer, max
pooling kernel width kW,,, and shift of max pooling kernel dW,,. In
the present work, all of these hyper-parameters are determined during
training based on frame level classification accuracy on validation data.

Fig. 7 illustrates the trained feature stage of the proposed CNN ap-
proach on the TIMIT corpus. The details of the training can be found
in the following Section 4. The filter stage has three convolution layers
and it takes a window of 250 ms speech signal w;, as input to estimate
P(i|s¢) every 10 ms. The figure also illustrates the temporal information
x modeled by the output of each convolution layer and the temporal
shift . Briefly, the first convolution layer models in a fine grain man-
ner the changes in the signal characteristics over time, i.e. processes
1.8 ms of speech (kW = 30 samples) every 0.6ms (dW = 10 samples).
The subsequent convolution layers then filter and temporally integrate
the output of the first convolution layer to yield an intermediate fea-
ture representation that is input to the classifier stage, which eventually
yields an estimate of P(ils;).

It is worth pointing out that the dimensionality of the intermediate
representation at the feature learning stage output depends upon the
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number of convolution stages and the max-pooling kernel width. As it
can be seen that max-pooling is done without temporal overlap. So, at
each convolution stage, in addition to filtering minor temporal distor-
tions, max-pooling operation acts as a down sampler.

4. Recognition studies

In this section, we present automatic speech recognition studies to
show the potential of the proposed approach. We compare it against
the conventional approach of spectral-based feature extraction fol-
lowed by ANN training on different tasks and languages, namely, (a)
TIMIT phoneme recognition task, (b) Swiss French Mediaparl task and
(c) Swiss German Mediaparl task. The Wall Street Journal (WSJ) 5k
task (Palaz et al., 2015b) is also reported for the sake of complete-
ness. The objective of these studies is to demonstrate the potential of
the proposed end-to-end acoustic modeling approach by comparing it
against the standard cepstral feature-based acoustic modeling for esti-
mating phoneme class posterior probability.

The reminder of the section is organized as follows.
Section 4.1 presents the different datasets and setup used for the
studies. Section 4.2 presents the different systems that are trained and
evaluated. Section 4.3 presents the recognition studies.

4.1. Databases and setup

4.1.1. TIMIT

The TIMIT acoustic-phonetic corpus (Garofolo et al., 1993) consists
of 3696 training utterances (sampled at 16 kHz) from 462 speakers, ex-
cluding the SA sentences. The validation set consists of 400 utterances
from 50 speakers. The core test set is used to report the results. It con-
tains 192 utterances from 24 speakers, excluding the validation set. Ex-
periments are performed using 61 phoneme labels, with three states,
for a total of 183 targets as in Mohamed et al. (2009). After decoding,
the 61 hand labeled phonetic symbols are mapped to 39 phonemes, as
presented in Lee and Hon (1989).

4.1.2. Wall street journal

The Wall Street Journal (WSJ) corpus is an English corpus consist-
ing of read microphone speech (Paul and Baker, 1992). The SI-284
set of the corpus is formed by combining data from WSJO and WSJ1
databases (Woodland et al., 1994). The set contains 36,416 sequences
sampled at 16 kHz, representing around 80 h of speech. 10% of the set
is taken as the validation set. The Nov’92 set is selected as test set. It
contains 330 sequences from 10 speakers. The dictionary is based on the
CMU phoneme set, 40 context-independent phonemes. We obtain 2776
clustered context-dependent (cCD) units, i.e. tied-states, by training a
context-dependent HMM/GMM system with decision tree-based state ty-
ing using HTK (Young et al., 2002). We use the bigram language model
provided with the corpus. The test vocabulary contains 5000 words.

4.1.3. Mediaparl

MediaParl is a bilingual corpus (Imseng et al., 2012) containing data
(debates) in both Swiss German and Swiss French which were recorded
at the Valais parliament in Switzerland. Valais is a state which has both
French and German speakers with high variability in local accents spe-
cially among German speakers. Therefore, MediaParl provides a real-
speech corpus that is suitable for ASR studies. In our experiments, audio
recordings with 16 kHz sampling rate are used.

The Swiss German part of the database, referred to as MP-DE, is par-
titioned into 5955 sequences from 73 speakers for training (14 h), 876
sequences from 8 speakers for validation (2 h) and 1692 sequences from
7 speakers (4 h) for test. 1101 tied-states are used in the experiments,
following the best system available on this corpus (Razavi et al., 2014).
The vocabulary size is 16,755 words. The dictionary is provided in the
SAMPA format with a phone set of size 57 (including sil) and contains
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Fig. 6. Illustration of max-pooling layer. kW is the number of frames taken
for each max operation (here, kW,,, =2 and dW,,p =2) and d represents the
dimension of input/output frames (which are equal).

all the words in the training, validation and test set. A bigram language
model is used.

The Swiss French part of the database, referred to as MP-FR, is par-
titioned into 5471 sequences from 107 speakers for training (14 h), 646
sequences from 9 speakers for validation (2 h) and and 925 sequences
from 7 speakers (4 h) for test. 1084 tied-states are used in the exper-
iments, as presented in Razavi and Magimai.-Doss (2014). The vocab-
ulary size is 12,035 words. The dictionary is provided in the SAMPA
format with a phone set of size 38 (including sil) and contains all the
words in the training, validation and test sets. A bigram language model
is used.

4.2. Systems

In this section, for each task studied, we present the details of the
conventional spectral feature based baseline systems (Section 4.2.1)
and the proposed CNN-based system using raw speech signal as in-
put (Section 4.2.2). All neural networks were initialized randomly and
trained using the Torch7 toolbox (Collobert et al., 2011a). The HTK
toolbox (Young et al., 2002) was used for the HMMs and the cepstral
features extraction.

4.2.1. Conventional cepstral feature based system

On each task, we have two baseline hybrid HMM/ANN systems
which differ in terms of ANN architecture. More precisely, 1 hidden
layer MLP (denoted as ANN-1H) based system and 3 hidden layers MLP
(denoted as ANN-3H) based system. These ANNs estimate P(i|x,), where
X, is a cepstral feature vector at time frame t. The details of the baseline
systems for the different tasks are as follows,

e TIMIT: We treat the one hidden layer MLP based system and the
three hidden layers MLP based system without pre-training i.e. ran-
dom initialization reported in Mohamed et al. (2012), Fig. 6 as the
baseline systems. Our motivation in doing so is that they are one
of the best cepstral feature-based systems without use of adapta-
tion methods reported in the literature on this task. In these sys-
tems, the inputs to the MLPs were 39 dimensional MFCC features
(¢ — ¢1 + A + AA) with five frames preceding and five frames fol-
lowing context (i.e. input dimension 39x11). ANN-1H has 2048
nodes in the hidden layer and ANN-3H has 1024 nodes in each of
the three hidden layers.

e WSJ: We trained an ANN-1H and an ANN-3H to classify 2776 tied-
states. The inputs to the MLP are 39 dimensional MFCC features
(¢ — 1o + A + AA) with four frames preceding and four frames fol-
lowing context (i.e. input dimension 39 x 9). The MFCC features are
computed with a frame size of 25 ms and a frame shift of 10 ms.
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Fig. 7. Illustration of the feature stage of CNN trained on TIMIT to classify 183
phoneme classes. k and § indicates the temporal information modeled by the
layer and the shift respectively. Non-linearity layers are applied after each max-
pooling.

ANN-1H has 1000 nodes in the hidden layer and ANN-3H has 1000
nodes in each hidden layer.

e MediaParl: We use the setup of the best performing hybrid
HMM/ANN system using a three hidden layers MLP, classifying
1101 and 1084 clustered context-dependent units for Swiss German
and Swiss French respectively, reported in Razavi et al. (2014) and
in Razavi and Magimai.-Doss (2014) as the baseline ANN-3H sys-
tem. The ANN-1H has 1000 nodes in each hidden layer. The ANN-
3H has 1800 nodes in the first hidden layer and 1500 nodes in the
second and third hidden layer. The inputs to the ANNs were 39 PLP
cepstral features (cy — ¢;, + A + AA) with four frames preceding and
four frames following context. The frame size and frame shift are
25 ms and 10ms, respectively.

4.2.2. Proposed CNN-based system

We train the proposed CNN-based P(i|s{) estimator using raw speech
signal. The inputs are simply composed of a window of the speech signal
(hence d;;, = 1, for the first convolutional layer). The utterances are
normalized such that they have zero mean and unit variance, which
is in line with the literature (Sheikhzadeh and Deng, 1994). No further
pre-processing is performed. The hyper-parameters of the network are:
the time span of the input signal (w;,), the kernel width kW and shift dW
of the convolutions, the number of filters d,,,, maxpooling kernel width
kW,,,, maxpooling kernel shift dW,,, and the number of nodes in the
hidden layer(s). Note that the input d;, for the first convolution layer is
one (i.e. a sample of the speech signal). For the remaining layers, the d;,
is the product of d,,, of the previous layer and kW of that layer. These
hyper parameters are determined by early stopping on the validation set,
based on frame classification accuracy. The ranges which are considered
for a coarse grid search are reported in Table 1. We use the TIMIT task
to narrow down the hyper-parameters search space, as it provided fast
turnaround experiments.

For each of the tasks, we train CNNs with one hidden layer (denoted
as CNN-1H) and three hidden layers (denoted as CNN-3H) similar to
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Table 1

Ranges of hyper parameters for the grid search.
Parameters Units Range
Input window size (w;,) ms 100-700
Kernel width of the first conv. (kW;) Samples 10-90
Kernel width of the n conv. (kW,,) Frames 1-11
Number of filters per kernel (d,,,) Filters 20-100
Max-pooling kernel width (kW,,,) Frames 2-6
Number of hidden units in the classifier =~ Units 200-1500

Table 2

Number of samples processed per second for the baselines
and the proposed approach, during the training and evaluation
phases. The measurements were done on a single CPU Intel i7
2600K 3.4 GHz.

System Training Evaluation
[sample/sec] [sample/sec]
ANN-1H 1371 3330
ANN-3H 177 2199
CNN-1H 240 1164
CNN-3H 113 741

Table 3

Architecture of CNN-based system for different tasks. HL=1 denotes CNN-1H
and HL=3 denotes CNN-3H. w,, is expressed in terms of milliseconds. The
hyper-parameters kW, dW, d,,, and kW,,, for each convolution layer is comma
separated. HU denotes the number of hidden units. 2 x 1500 means 1500 hid-
den units per hidden layer.

HL w, kW aw doe kW,, HU
TIMIT 1 250 30,77 10,11 80,6060 3,33 1000

3 250 30,77 10,1,1  80,60,60 3,33  3x1000
WSJ 1 210 30,77 10,1,1  80,60,60 3,33 1000

3 310 30,77 10,1,1 80,60,60 3,33  3x1000
MP-DE 1 210 30,77 10,1,1 80,6060 3,33 1000

3 310 30,77 10,1,1 80,60,60 3,33  1800,2x1500
MP-FR 1 190 30,77 10,1,1  80,60,60 3,33 1000

3 310 30,77 10,1  80,60,60 3,33  1800,2x1500

the different MLP architectures in the baseline systems. We found that
three convolution layers consistently yield the best cross validation ac-
curacy across all the tasks. The CNN architecture found for each of the
task is presented in Table 3. The shift of max-pooling kernel dW,,, = 3
is found for all the layers on all the tasks. As we will observe later, the
complexity of the CNN-based approach in terms of number of parame-
ters lies at the classifier stage. So, for fair comparison with the baseline
systems, we restricted the search for the number of hidden nodes in the
hidden layer(s) such that the number of parameters is comparable to
the respective baseline systems. The output classes are the same as the
case of cepstral feature-based system, i.e. for the TIMIT task 183 phone
classes, for the WSJ task 2776 cCD units, for the MP-DE task 1101 ¢cCD
units and for the MP-FR task 1084 c¢CD units.

The computation cost of the proposed architecture would be higher
than the ANN baseline, as the raw speech signal has to be processed,
whereas for the baseline systems the features are already computed.
Table 2 presents the number of frames processed per second for the
baseline, the CNN-1H and the CNN-3H systems during the training and
evaluation phases. One can see that while training the baseline with one
hidden layer (ANN-1H) is much faster than training the CNN-1H (5.7x
speed factor), the gap reduces drastically when training the three layers
systems (1.5x speed factor).

4.3. Results
In this section we present the results of the studies on differ-

ent tasks. For the sake of completeness, for the speech recognition
studies we also report performance on HMM/GMM system. For MP-
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Table 4

Phoneme error rate of different systems on the core test set of
the TIMIT corpus. The ANN-1H and ANN-3H performances are
reported in Mohamed et al. (2012). #Conv. Params. denotes the
number of parameters in the convolution layers, #Class. Params.
denotes the number of parameters in the classifier stage. M stands
for million.

Input System #Conv. #Class. PER
params. params. (in %)
MFCC ANN-1H na 1.2M 24.5
MFCC ANN-3H na 2.6M 22.6
RAW CNN-1H 63k 0.92M 22.8
RAW CNN-3H 52k 2.9M 21.9
Table 5

Phoneme error rate of different systems reported in literature on the core test
set of the TIMIT corpus.

Method (input) PER (in %)

Augmented CRFs (MFCC) (Hifny and Renals, 2009) 26.6
HMM/DNNs 6 layers (MFCC) (Mohamed et al., 2012) 22.3
Deep segmental NN (MFCC) (Abdel-Hamid et al., 2013) 21.9
Proposed approach 21.9
HMM/DNNs 6 layers (MFCC+LDA+MLLT+{MLLR) (Lu et al., 2016) 18.5
CTC transducers (FBANKs) (Graves et al., 2013) 17.7
Attention-based RNN (FBANKs) (Chorowski et al., 2015) 17.6
Segmental RNN (MFCC+LDA+MLLT+fMLLR) (Lu et al., 2016) 17.3

DE and MP-FR, the best performing HMM/GMM systems reported
in Razavi et al. (2014) and Razavi and Magimai.-Doss (2014), respec-
tively are presented. These systems have a greater number of tied states
than the hybrid HMM/ANN and the CNN-based system presented here.

4.3.1. TIMIT

Table 4 presents the results on TIMIT phone recognition task in terms
of phoneme error rate (PER). It can be observed that the proposed CNN
based approach outperforms the conventional cepstral feature-based
system. In Mohamed et al. (2012, Fig. 6), ANNs with different hidden
layers were investigated with cepstral feature as input. The best perfor-
mance of 23.0% PER for the case of random initialization is achieved
with 7 hidden layers, 3072 hidden nodes per layer and 17 frames tem-
poral context (8 preceding and 8 following). With pre-training, the best
performance of 22.3% PER is achieved with 6 hidden layers, 3072 hid-
den nodes per layer and 17 frames temporal context. The CNN-3H sys-
tem performs better than those systems as well.

Table 5 contrasts our results with a few prominent results on
TIMIT using ANNs. Inputs of these systems are either MFCCs (com-
puted as presented in Section 4.2.1), Mel filterbanks energies (ab-
breviated as FBANKs) or “improved” MFCC features (denoted as
MFCC+LDA+MLLT+fMLLR), which are obtained by applying decorre-
lation processes (linear discriminant analysis and maximum likelihood
linear transform) and speaker normalization (feature-space maximum
likelihood linear regression) (Rath et al., 2013) to the original MFCC
coefficient. One can see that the proposed approach outperforms most
of the systems using MFCCs features. Systems using improved MFCCs
features yields better results than the proposed approach, mainly due
to the speaker normalization technique, which could be developed for
the proposed approach. For instance, speaker adaptation in our ap-
proach could be achieved in an unsupervised manner by using learn-
ing hidden unit contributions (LHUC) method at the classifier/MLP
stage (Swietojanski et al., 2016). At the filter stage, one could pos-
sibly adopt an approach similar to the approach proposed in (Abdel-
Hamid and Jiang, 2013). Finally, one can see that RNN-based systems
(the three last entries of Table 5) clearly yield the best performance. It
is worth noting that the proposed CNN-based approach could be used
in a RNN-based architecture, where the MLP-based classifier stage is
replaced by a RNN. This approach raises the issue of the high dimen-
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Table 6

Word Error Rate on the Nov’92 testset of the WSJ corpus.
#Conv. Params. denotes the number of parameters in the
convolution layers, #Class. Params. denotes the number of
parameters in the classifier stage. M stands for million.

Input System #Conv. #Class. WER
params. params. (in %)
MFCC GMM na 4M 5.1
MFCC ANN-1H na 3.1M 7.0
MFCC ANN-3H na 5.6M 6.4
RAW CNN-1H 46k 3.1M 6.7
RAW CNN-3H 61k 5.6M 5.6
Table 7

Word Error Rate on the testset of the MP-DE corpus.
The GMM and ANN-3H baseline performances are reported
in Razavi et al. (2014). #Conv. Params. denotes the num-
ber of parameters in the convolution layers, #Class. Params.
denotes the number of parameters in the classifier stage. M
stands for million.

Input System #Conv. #Class. WER
params. params. (in %)
PLP GMM na 3.8M 26.6
PLP ANN-1H na 2.2M 26.7
PLP ANN-3H na 8.8M 25.5
RAW CNN-1H 61k 1.6M 24.4
RAW CNN-3H 92k 8.7M 23.5
Table 8

Word Error Rate on the testset of the MP-FR corpus. The GMM
and ANN-3H performances are reported in Razavi and Magimai.-
Doss (2014). #Conv. Params. denotes the number of parameters
in the convolution layers, #Class. Params. denotes the number
of parameters in the classifier stage. M stands for million.

Input System #Conv. #Class. WER
params. params. (in %)
PLP GMM na 3.8M 26.8
PLP ANN-1H na 2.2M 27.0
PLP ANN-3H na 8.8M 25.5
RAW CNN-1H 61k 1.5M 25.9
RAW CNN-3H 92k 8.7M 23.9

sionality of the filter stage output. It could be addressed by adding more
convolution and max-pooling layers, which will effectively reduce the
output dimensionality. Such an approach we have explored successfully
in the context of extension of our approach where the MLP is replaced
by single layer perceptron to reduce the overall complexity of the sys-
tem in terms of parameters while retaining the performance (Palaz et al.,
2014).

4.3.2. WSJ

The results for the LVCSR study (Palaz et al., 2015b) on the WSJ cor-
pus is presented in Table 6. For the baseline systems and the proposed
system. As can be observed, the CNN-1H based system outperforms the
ANN-1H based baseline system, and the CNN-3H based system also out-
performs the ANN-3H based system with as many parameters.

4.3.3. MP-DE

The results on the Mediaparl German corpus are presented in Table 7.
The CNN-1H based system outperforms the GMM-based system, the
ANN-1H based system and the ANN-3H system with four times less pa-
rameters. The CNN-3H system also outperforms the baseline.

4.3.4. MP-FR
The results on the Mediaparl French corpus are presented in Table 8.
Again, a similar trend can be observed, i.e. the CNN-1H based system
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outperforms the ANN-1H baseline and the CNN-3H outperforms the
ANN-3H based system.

In summary, these studies show that with minimal assumptions the
proposed approach is able to learn to process the speech signal to esti-
mate phone class conditional probabilities P(i|s{) and yield a system that
outperforms conventional cepstral feature based system using DNNs.
Furthermore, we consistently observe that the CNN-1H system yields
performance comparable to ANN-3H system with considerably fewer
parameters.

5. Analysis

The aim of this section is to gain insight into the proposed approach.
Towards that this section focuses on analysis at two levels: (a) analysis
of the first convolution layer (Section 5.1) which operates on the speech
signal directly. Thus, can be related to and can be contrasted with tra-
ditional speech processing; and (b) analysis of the intermediate feature
representations obtained at the output of the feature stage (Section 5.2).

5.1. First convolution layer

In this section, we present an analysis of the first convolution layer.
We first provide an input level analysis, where the hyper-parameters of
the layer (found experimentally) are compared against the conventional
speech processing approach. We then show that the convolution layer
can be interpreted as a bank of matching filters. Finally, we analyze
how these filters respond to various inputs and present a method to
understand the filtering process.

5.1.1. Input level analysis

To learn to process raw speech signal and estimate P(i|s{) the pro-
posed approach employs many hyper-parameters which are decided
based on validation data. We can get insight into the approach by re-
lating or contrasting a few of the hyper-parameters to the traditional
speech processing. First among that is time span of the signal w;, used
to estimate P(i|s{). From Table 3, we can observe that w;, varies from
190 ms to 310 ms. This is consistent with the literature which supports
the idea of processing syllable length speech signal (around 200 ms)
for classification of phones (Hermansky, 1998). This aspect can be also
observed in another way. Usually, in hybrid HMM/ANN system the in-
put is the cepstral features (static + A + AA) at the current time frame
and features of four preceding frames and four following frames. If the
frame shift is 10 ms and the temporal derivatives are computed using
two frames preceding and two frames following context then the 9 frame
feature input models 170 ms of speech signal.

Next, we can understand how the speech signal of time span of 190-
310 ms is processed at the input of the network through the kernel width
(kW) and kernel shift (dW) of the first convolution stage. We can see
from Table 3 that for all tasks kW is 30 speech samples and dW is 10
speech samples. Given that the sampling frequency is 16 kHz, this trans-
lates into a window of 1.8 ms and shift of about 0.6 ms. This is contrary
to the conventional speech processing where typically the window size
is about 25 ms, the shift is about 10 ms and the resulting features are
concatenated at the classifier input. Note that in our case wy, is shifted
by 10 ms, however within the window of 190-310 ms the speech is
processed at the sub-segmental level at the first convolution layer and
subsequently processed by later convolution layers to estimate P(is).

Such a sub-segmental processing at the first convolution layer could
possibly be reasoned through signal stationarity assumptions. More pre-
cisely, the convolution filters at the first stage are learned by discrim-
inating the phone classes at the output of the CNN. So, for the output
of the convolution filter to be informative (for phone classification), the
filter has to operate on stationary segments of the speech signal spanned
by w;,. It can be argued that such a stationary assumption would clearly
hold for one glottal cycle or pitch period of the speech signal. In such
a case suppose if the limit of the observed pitch frequency is assumed
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to be 500 Hz, i.e. beyond adult speakers’ pitch frequency range, then a
window size of 2 ms or less would ensure that the filters operate on sta-
tionary segments, i.e. within a glottal cycle, which mainly contains vo-
cal tract response related information. This is consistent with traditional
feature extraction methods (see Rabiner and Juang (1993), Davis and
Mermelstein (1980) and Hermansky (1990) for example), where the
main emphasis is towards modeling vocal tract response information.

5.1.2. Learned filters

The first convolution layer learns a set of filters that operates on the
speech signal in a similar way to filter bank analysis during MFCC or PLP
cepstral feature extraction. In the case of MFCC or PLP cepstral feature
extraction the number of filter banks and their characteristics are de-
termined a priori using speech perception knowledge. For instance, the
filters are placed either on Mel scale or on Bark scale. Further, each of
the filters covers only a part of the bandwidth, out of which the response
is strictly zero. The number of filters is chosen based on bandwidth in-
formation. For instance, in the case of Mel scale around 24 filters for
4kHz bandwidth (narrow band speech) and 40 filters for 8 kHz band-
width (wide band speech) are typically used. While in the case of Bark
scale, there are 15 filters for 4 kHz bandwidth and 19 filters for 8 kHz
bandwidth (Honig et al., 2005).

In contrast, in the proposed approach the number filters and their
responses are learned in data-driven manner, i.e. while learning to esti-
mate P(i|s). It can be observed from Table 3 that the number of filters
for all the tasks is 80. This is well above the range typically used in
speech processing. In order to understand the learned filter characteris-
tics, we analyzed the filters learned on WSJ, MP-DE and MP-FR task in
the following manner:

(i) The complex Fourier transform F of the filters learned on the
WSJ, MP-DE and MP-FR tasks for CNN-1H case are computed
using 1024 point FFT. The 512 point magnitude spectrum |F,,| of
each filter m is then normalized, i.e. converted into a probability
mass function. F,, denotes the normalized magnitude spectrum
of filter m.

For each filter m =1, ... , 80 learned on WSJ, we find the closest
filtern =1, ... ,80learned on MP-DE and MP-FR using symmetric
Kullback-Leibler divergence,

(i)

1
d(Fy, Fy) = 5 - [Dg L (FylIF) + D (FyII )], ©)
512 Fu
Dy (FylIF,) = Y Fyiln—. (10)
u=1 n

where F) is the normalized magnitude at uth point of FFT of
filter m of WSJ CNN-1H and F is the normalized magnitude at
uth point of FFT of filter n of MP-DE CNN-1H or MP-FR CNN-1H.

Fig. 8 presents the magnitude of the Fourier transform of a few filters
learned on WSJ (on the left column) and the closest filters learned on the
MP-DE task (on the middle column) and on the MP-FR task (on the right
column). We can make two observations. First, the filters are focusing
on different parts of the spectrum. However, unlike the filter banks in
the MFCC or PLP cepstral feature extraction, the frequency response
of the filters covers the whole bandwidth. Second, it can be observed
that similar filters can be found across domains and languages, although
there is a difference in the spectral balance, especially as observed in the
case of Fig. 8(b).

To further visualize the learned filters, we ordered the filters accord-
ing to the frequency at which the response is maximum. We treat these
frequencies as the center frequencies of the learned filters. Fig. 9 plots
the center frequencies of the learned filters along with the center fre-
quencies of 80 critical bands mel-scale filter bank and Gammatone filter
bank. It can be observed that the learned filter placements to a certain
extent tend to match the auditory motivated filter banks, in particular
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Fig. 8. Examples of three close pairs of filters learned. The left column is from CNN-1H WSJ, the center one is from CNN-1H MP-DE, the right one is from CNN-1H

MP-FR.

mel scale filter bank, in the lower half of the bandwidth, i.e. 0 Hz and
4 kHz but differ considerably in the upper half of the bandwidth. In con-
trast, in the works of Sainath et al. (2015) and Tiiske et al. (2014) the
filter placements were found to be close to Gammatone filter bank. A
potential reason for this difference could be that in these works the fil-
ter lengths and the number of filters were set based on prior knowl-
edge. When comparing across WSJ, MP-DE and MP-FR, the learned
filter placements for MP-FR and MP-DE are similar to each other but
differ from that of WSJ. Having said that it is worth pointing out that
the learned filters can have more than one pass band, as can be seen
in Fig. 8. So generalizing these observations in comparison to auditory
motivated filter banks is not trivial.

To further understand the characteristics of the learned filters, we
estimated the cumulative frequency response of all the learned filters:

80
Foum = Z F, (11)
n=1
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Fig. 10 presents the gain normalized cumulative frequency responses
for CNN-1H WSJ, CNN-1H MP-DE and CNN-1H MP-FR. We can make
three key observations,

(i) Emphasis is given to frequency regions below 3500 Hz (telephone
bandwidth) and high frequency region in the range of 6000-
8000 Hz.

Though the filters are learned on different languages and corpora,
we can see that below 4000 Hz and above 6500 Hz the frequency
response for WSJ, MP-DE and MP-FR are similar. As the filters are
operating on sub-segmental speech, we speculate that the peaks
(high energy regions) are more related to the resonances in the
vocal tract or phoneme discriminative invariant information. Be-
tween 4000 Hz and 6500 Hz, we can see that MP-DE and MP-FR
have responses that closely match but are different than WSJ.
Overall, we observe that the spectral balance for WSJ is different
than for MP-DE and MP-FR. We attribute this balance mismatch
mainly to the fact that the WSJ and the Mediaparl corpora are

(i)
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Fig. 10. Cumulative frequency responses of the learned filters on WSJ, MP-DE
and MP-FR.

different domains in terms of type of speech (read vs. sponta-
neous) and recording environment (controlled vs real world). In
the following sub-section and Section 5.2.2 we touch upon this
aspect again.

Auditory filter banks such as Mel scale filter banks or Bark scale
filter banks are usually designed to have a cumulative frequency
response that is flat. In other words, constant Q bandpass filter
bank. In contrast to that, it can be seen that the cumulative fre-
quency response of the learned filters is not constant Q band-
pass. The main reason for that is standard filter banks emerged
from human sound perception studies considering the complete
auditory frequency range or the bandwidth, so as to aid analy-
sis and synthesis (reconstruction) of the audio signal. However,
in our case these filters are learned for the purpose of discrimi-
nating phones, and the speech signal contains information other
than just phones. The figure suggests that, for discriminating only
phones, constant Q bandpass filter bank is not a necessary condi-
tion.

(iii)
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5.1.3. Response of filters to input speech signal

In Section 5.1.1, we observed that the speech signal of time span
190-310 ms is processed in sub-segmental manner. In the previous sec-
tion, we observed that the filters that operate on sub-segment of speech
signal are tuned to different parts of the spectrum during training. In
other words, matched to different parts of the spectrum relevant for
phone discrimination. In this section, we ascertain that by analyzing
the response of the filters to the input speech signal in relationship with
phones.

The CNNs in the WSJ, MP-DE and MP-FR studies are trained to clas-
sify cCD units, which can be quite distinctive across languages. So, in
order to facilitate the analysis across languages, we train CNNs with
single hidden layer on WSJ, MP-DE and MP-FR data to classify context-
independent phones with the same hyper parameters. We denote these
CNNs as CNN-1H-mono WSJ, CNN-1H-mono MP-DE and CNN-mono
MP-FR, respectively.

As a first step, we analyze the energy output of the fil-
ters to the input speech signal. Formally, for a given input s, =

{Si—aw =12 -+ Stxgew—-1y/2}s the output y, of the first convolution layer
is given by:
I=+(kW —1)/2
viml= Y fulll-sy Ym=1,.d,, (12)
I=—(kW =1)/2

where f,, denotes the mth filter in first convolution layer and y,[m] de-
notes the output of the filter at time frame t. Fig. 11 presents the output
of the filters of CNN-1H-mono WSJ given a segment of speech signal
corresponding to phoneme /I/ as input.

It can be seen that at each time frame only a few filters out of the
80 filters have high energy output. An informal analysis across different
phones showed similar trends, except that the filters with high energy
output were different for different phones. Together with the findings
of the previous section, this suggests that the learned filters could be a
dictionary that models the information in the frequency domain in-parts
for each phone. With that assumption, we extended the analysis where,

1. the magnitude spectrum S, of the input signal s, based on the dic-
tionary is estimated as:

M
S, =1 y,ml-F,l, (13)
m=1
where y,[m] is the output of filter m as in Eq. (12) and F,, is the
complex Fourier transform of filter f,,.
It is worth noting that if the dictionary was to correspond to a bank
of kW Fourier sine and cosine bases then S, is nothing but the Fourier
magnitude spectrum of the input signal s,. As y,[m] would be a pro-
jection on to the Fourier basis corresponding to discrete frequency
m, and F,, would ideally be a Dirac delta distribution centred at the
discrete frequency m.

2. A frame level magnitude spectrum S; for phone i is estimated by av-
eraging the magnitude spectrum S, obtained over speech signal of
length equal to frameshift, which in our case is 10 ms. More pre-
cisely, with in 10ms speech, S, is estimated every 10 samples as per
Eq. (13) and averaged by the number of sub-segmental frames in
10 ms or 160 samples speech, i.e. 16. S; can be seen as the average
spectral information that is modeled every 10 ms.

We performed a qualitative analysis on American English vowels
dataset, which contains 12 vowels produced by 45 men, 48 women, and
46 in h-V-d syllables (e.g., had, hid, hood) (Hillenbrand et al., 1995). The
analysis was carried out using the filters in the first convolution layer of
WSJ CNN-1H-mono. We used 256 points for DFT. Fig. 12 presents the
S, estimated for a frame of /ah/, /eh/, /er/, /oa/, /uw/ and /iy/ pro-
duced by male speaker m01, female speaker wO1, boy speaker bO1 and
girl speaker gO1. In the plots, the observed first and second spectral
peaks have been marked and contrasted with the F1-F2 (first format-
second formant) range obtained in the coarse sampling part of the orig-
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inal study by Hillenbrandt et al.? It can be observed that the spectrum
estimates are different for different vowels. Furthermore, except for few
cases, the marked spectral peaks correspond to F1-F2 range. In the case
of /ah/, only one peak is discernible due to merger of the first two for-
mants. Similarly, in the case of /oa/ for speaker bO1, only one peak
is discernible due to merger of the first two formants. Merging of for-
mants appears to happen in the case for the second spectral peak of /iy/
of speaker g01, due to merger of F2 and F3. The magnitude spectrum
also has ripples. The ripples and the merger of close by formants could
potentially be a consequence of the short kernel width i.e. 30 samples,
i.e. sub-segmental speech processing. We performed similar analysis on
a few other speakers in the American vowel dataset and found that the
detected peaks tend to correspond to F1-F2 formant ranges obtained
in the original acoustic analysis study. It is interesting to note that the
analysis holds well for children speech, despite the net being trained on
adult speech.

American English vowel dataset is a controlled dataset, where the
phonetic context is restricted. In order to ascertain that the observations
made above holds true irrespective of the phonetic context or speak-
ers, we performed an analysis on the validation data of WSJ, MP-DE
and MP-FR using the filters in the first convolution layer of respective
CNN-1H-mono, where given the segmentation the frame level spectrum
estimates S; are averaged across all the speakers for each phone i. We
denote the speaker averaged spectrum as S;. Fig. 13 displays S; of a
few prominent vowels (notated in the SAMPA format) for WSJ, MP-DE
and MP-FR. It can be observed that the frame level magnitude spectrum
averaged across speakers is different for each vowel. This difference is
particularly observable in the frequency regions below 4000 Hz and in
the frequency regions between 6000 Hz and 8000 Hz. We had earlier ob-
served in Section 5.1.2 that these are frequency regions that the learned
filters give emphasis to. The prominent spectral peaks could be related
to the formants. However, a detailed formant analysis similar to the
frame level analysis on American English vowels dataset is practically
infeasible for two main reasons:

(a) First, the formant frequencies and their bandwidths for males and
females are different. The frequency responses here are result of
averaging over several male and female speakers in the respective
validation data set; and

2 https://homepages.wmich.edu/~hillenbr/voweldata/vowdata.dat.
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(b) Second, the analysis here has been carried on validation data,
not on actual training data. So there can be spurious information
present due to unseen condition or variation.

For instance, in the case of /A/, see Fig. 13(e), we observe a promi-
nent peak at around 1000 Hz, which could be seen as merger of first for-
mant and second formant as a consequence of window effect and aver-
aging over male and female speakers. Taking these aspects into account,
we examined the frequency responses in the case of WSJ (Fig. 13(a)).
We found that the prominent spectral peak locations tend to relate well
to the first formant, second formant and third formant information pro-
vided for English vowels in Deng and O’Shaughnessy (2003, p. 233). It is
worth mentioning that a similar observation that filters capture formant
information has been made when learning jointly feature and classifier
from short-term magnitude spectrum (Biem et al., 2001). When compar-
ing across the languages (Fig. 13(d) and Fig. 13(e)) we observe a trend
similar to the cumulative response of the filters (Fig. 10). Specifically,
the spectral peak locations and spectral balance match well for MP-DE
and MP-FR. However, in the case of WSJ the spectral peak locations tend
to match but the spectral balance is different than MP-DE and MP-FR.

The analysis on American English vowels dataset, WSJ, MP-DE and
MP-FR together indicates that the first convolution layer is learning for-
mants related information.

5.2. Intermediate feature level analysis

In this section, we focus on the analysis of intermediate feature rep-
resentations that are being learned at the output of the feature learning
stage. In that regard, Section 5.2.1 focuses on the discriminative aspects
of the learned feature representations. Section 5.2.2 then focuses on the
cross-domain and cross-lingual aspects.

5.2.1. Discriminative features

In the recognition studies presented earlier in Section 4, it was ob-
served that CNN-1H system with much fewer parameters outperforms
ANN-3H system on all the tasks. Furthermore, we also observed that the
complexity of the proposed CNN-based system lies more at the classifier
stage. Given that the intermediate feature representations are learned in
the process of training P(i|s{) estimator, it can be presumed that these
features are more discriminative compared to cepstral-based feature rep-
resentations, and thus needs less parameters at the classifier stage. To
fully ascertain that aspect, we conduct an experiment to compare the
cepstral features and the intermediate feature representations learned
by the CNN. Specifically, we train and test three single layer perceptron
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Fig. 12. Magnitude spectrum S; for a 10 ms frame of American English vowels (a) /ah/, (b) /eh/, (c) /er/, (d) /oa/, (e) /uw/ and (f) /iy/ of speakers mO01, wO1,
b01 and gO1. As mentioned earlier, the F1-F2 ranges were obtained from the coarse sampling part of the original study.

Table 9
Single layer perceptron-based system results on the
Nov’92 test set of the WSJ task.

Features Dimension WER
(in %)
MFCC 351 10.6
CNN-1H 540 7.9
CNN-3H 540 7.9

(SLP) based systems on WSJ task. One with the MFCCs with tempo-
ral context (39 x9) as input and the others with intermediate features
learned by CNN-1H and CNN-3H. In the case of CNN-3H, w;, is kept
same as CNN-1H i.e. 210 ms. Table 9 presents the performances of the
three systems. We can observe that the learned features lead to a bet-
ter system than the cepstral features. Thus, indicating that the learned
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features are indeed more discriminative than the cepstral feature repre-
sentation. Furthermore, it is interesting to note that the features learned
by CNN-1H and CNN-3H yield similar systems. It suggests that the gain
in ASR performance for the WSJ task using CNN-3H over CNN-1H is
largely due to more hidden layers

5.2.2. Cross-domain and cross-lingual studies

Conventional cepstral-based features, like MFCC, are known to be
independent of the language or the domain, which is one of the main
reasons they become “standard” features. In the proposed system, the
features are learned in a data-driven manner, thus they may have some
level of dependencies on the data. In order to ascertain, to what extent
the learned features are domain or language independent, we conducted
cross-domain and cross-lingual experiments. More precisely, as illus-
trated in Fig. 14, in these experiments the filter stage was first trained
on one domain or language. It was then used as feature extractor to train
the classifier stage of another domain or language.
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Fig. 13. Magnitude spectrum averaged across speakers S, (a) for phonemes /E/, /A/, /0/, /1/ and /U/ estimated by CNN-1H-mono WSJ; (b) for phonemes /E/, /A/,
/0/, /I/ and /U/ estimated by CNN-1H-mono MP-DE; (c) for phonemes /E/, /A/, /O/, /I/ and /U/ estimated by CNN-1H-mono MP-FR; (d) for phoneme /I/ in WSJ,
MP-DE and MP-FR; and (e) for phoneme /A/ in WSJ, MP-DE and MP-FR. The phonemes are notated in the SAMPA format.
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Fig. 14. Illustration of the cross-domain experiment. The filter stage is trained
on domain 1, then used as feature extractor on domain 2.

Table 10
Cross-domain results on English. The TIMIT results are in
terms of PER. The WSJ task results are in terms of WER.

Classifier stage Feature stage Error rate

(Domain 2) (Domain 1) (in %)

TIMIT Learned on TIMIT 22.8
Learned on WSJ 23.3

WSJ Learned on WSJ 6.7
Learned on TIMIT 7.8

We use the TIMIT task and WSJ task for cross-domain experiments.
We investigate

1. the use of feature stage of CNN-1H of WSJ task as feature extractor
for the TIMIT task. The classifier stage with single hidden layer is
trained on TIMIT to classify 183 phone classes.

2. the use of feature stage of CNN-1H of TIMIT task as feature extrac-
tor for the WSJ task. The classifier stage with single hidden layer is
trained to classify 2776 clustered context-dependent units.

In both of the studies, we set the number of hidden nodes to 1000,
similar to the systems reported in Section 4. The results of the two stud-
ies are presented in Table 10. In the case of TIMIT task the results are
presented in terms of PER, and in the case of WSJ task in terms of WER.
In the TIMIT task, we can observe that, despite the feature stage being
trained to classify clustered context dependent units on a much larger
corpus, the PER is inferior to the case where the feature stage is learned
on TIMIT. In the case of WSJ task, we observe that with feature stage
trained on TIMIT the WER is slightly worse (6.7% vs 7.8%).

In addition to the fact that TIMIT and WSJ are two different cor-
pora, there are two other differences which could have had influence.
First, WSJ is a much larger corpus than TIMIT in terms of data. Second,
in TIMIT CNN-1H the feature stage is learned by classifying context-
independent phones, while in WSJ CNN-1H the feature stage is learned
by classifying clustered context-dependent units. So, we conducted a
study on WSJ task to understand the influence of the type of units at the
output of the CNN on the feature stage learning, while negating the data
effect. More precisely, we use the feature stage of WSJ CNN-1H-mono
(presented earlier in Section 5.1.3) as feature extractor and train the
classifier stage to classify 2776 clustered context-dependent units. This
system leads to a performance of 7.3% WER, which is inferior to 6.7%
WER. This shows that indeed the type of units in the output of CNN has
an influence on the feature learning stage. When compared to the case
where the feature stage is learned on TIMIT, this result indicates that
the performance gap is combined effect of the difference between the
WSJ and TIMIT data sets and the units used at the output of the CNN
learn the features. Finally, it is worth observing that TIMIT is a very
small corpus compared to WSJ (3 h vs 88 h). However, the performance
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Table 11

Cross-lingual studies result on English, German and
French. The feature stage is learned on Domain 1 and
the classifier stage is learned on Domain 2.

Classifier stage Feature stage WER
(Domain 2) (Domain 1) (in %)
WsJ Learned on WSJ 6.7
Learned on MP-DE 12.1
Learned on MP-FR 12.8
MP-DE Learned on MP-DE 24.4
Learned on MP-FR 26.1
Learned on WSJ 30.9
MP-FR Learned on MP-FR 25.9
Learned on MP-DE 26.8
Learned on WSJ 31.7

difference is not drastic, which suggests that the relevant features can
be learned on relatively small amount of data.

We investigate the cross-lingual aspects on WSJ, MP-DE and MP-
FR tasks. We conduct studies where the feature stage is learned on one
language and the classifier stage is learned on the other language. For
these studies, we use the feature stages of WSJ CNN-1H, MP-DE CNN-1H
and MP-FR CNN-1H systems presented in Section 4. The classifier stage
in all the studies consisted of a single hidden layer with 1000 nodes.
The classes at the output of classifier stage remained same as before, i.e.
2776 cCD units for the WSJ task, 1101 ¢CD units for the MP-DE task
and 1084 cCD units for the MP-FR task. Table 11 presents the results of
the study.

Before we analyze the results in detail, we can consider broader as-
pects. Specifically, in terms of family of languages, English and German
belong to Germanic language family while French belongs to Romance
language family. Given that, it can be expected that the feature stage
learned on MP-DE to suit well for the WSJ task when compared to fea-
ture stage learned on MP-FR and vice versa. In the case of WSJ task
this trend is observed (12.1% vs. 12.8%). However, it is not observed in
the case of MP-DE task (30.9% vs. 26.1%). In general, we observe that
feature stage learned on another language leads to inferior system. The
performance gap is drastic when the feature stage is learned on WSJ
and the classifier stage is learned on Medialparl (MP-DE or MP-FR) and
vice versa. In addition to language differences, this can be attributed
to the other differences in WSJ corpus and Medialparl corpus. More
precisely, WSJ corpus contains read speech collected in controlled envi-
ronment while Mediaparl contains spontaneous speech collected in real
world conditions. This is also supported by the findings of the analysis
presented in Section 5.1.2. Since MP-DE and MP-FR are similar kind of
data except for the language, the drop in the performance is small (24.4-
26.1% in the case of MP-DE task and 25.9-26.8% in the case of MP-FR
task). Languages typically have different phone sets and this difference
gets further enhanced when modeling context-dependent phones. As we
saw earlier in the cross-domain studies the choice of output units influ-
ences the feature stage. So, the small drop in performance in this case
can be more attributed to the phonetic level differences between Ger-
man language and French language.

6. Discussion and conclusions

Motivated from recent advances in deep learning, the present pa-
per investigated a novel CNN-based acoustic modeling approach that in
a data- and task-driven manner determines the appropriate short-term
processing, which consists of determining the window size and the num-
ber of filters for spectral processing, and learns the relevant representa-
tions from the speech signal to estimate phone class conditional proba-
bilities for ASR. In this approach, the acoustic model consists of a feature
stage and a classifier stage which are jointly learned during training.
Specifically, the input to the acoustic model is raw speech signal, which
is processed by several convolution layers (feature stage) and classified
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by an MLP (classifier stage) to estimate phone class conditional prob-
abilities. We evaluated the approach against the conventional acous-
tic modeling approach, which consists of independent steps: short-term
spectral based feature extraction and classifier training. Phone recogni-
tion studies on English and ASR studies on multiple languages (English,
French, German) showed that the proposed acoustic modeling approach
can yield better recognition systems.

To gain further insight, we performed analysis that largely focused
on the filter stage of the approach. The key findings of the analysis are
the following:

1. Both the conventional acoustic modeling approach and the proposed
approach tend to model spectral information present in time span of
about 200 ms for phone classification. However, they differ in the
manner analysis is performed over that time span and feature repre-
sentations are obtained. Indeed, in the proposed approach, contrary
to the conventional wisdom of short-term processing, the signal is
processed at the sub-segmental level (speech signal of about 2 ms)
by the first convolution layer. The subsequent convolution layers
temporally filter and integrate the output of first convolution layer
to yield an intermediate representation. In other words, as illustrated
in Fig. 7, the intermediate representation is obtained by processing
the information at multiple temporal resolutions.

2. The filters in the first convolution layer learn from the sub-segmental

speech a spectral dictionary that discriminate phones. Specifically,
this dictionary was found to model formant related information.
These findings are particularly interesting for different reasons. First,
it validates the notion of formants and phone discrimination in
a data-driven manner, i.e. without making an explicit assumption
about speech production model. Secondly, sub-segmental spectral
processing means high time resolution and low frequency resolu-
tion. Conventional method of short-term processing (i.e. determina-
tion of the window size) has been developed considering the trade-
off between time resolution and frequency resolution and keeping
analysis-synthesis in mind. Our investigations show that loss of fre-
quency resolution due to sub-segmental speech processing is not af-
fecting the ASR performance.
Having said that, in Yegnanarayana and Veldhuis (1998), it has been
shown that formant information can be effectively extracted through
sub-segmental speech analysis. The method proposed in the above
cited article considers details like closed and open glottal phases,
positioning of the analysis window, choice of window size based on
the gender information, choice of appropriate all-pole or pole-zero
model to extract the formant information. The proposed approach
does not make any such prior considerations while processing sub-
segmental speech but still is found to model formant-like informa-
tion. This could be indeed possible in our case without any such
explicit considerations because, as pointed out in Section 5.1.1, the
sub-segmental speech processed in the proposed approach is well be-
low one pitch cycle of an adult male or female speaker (under normal
speech conditions) and max pooling can provide shift invariance.

3. The intermediate feature representations learned at the output of the
convolution stage are more discriminative than standard cepstral-
based features. This reaffirms the point that learning the features and
the classifiers jointly leads to more optimal systems when compared
to conventional ”divide and conquer” approach.

4. The intermediate feature representations learned have some level of
invariance across domains and languages. More specifically, in our
analysis we observed that the variation of the learned features seems
to come more from the domain characteristics as opposed to the set
of subword units from the languages. This suggests that learning fea-
tures in data-driven manner, as done using the proposed approach,
could lead to language-independent features. This needs to be fur-
ther investigated.

The proposed approach paves path for further research and develop-
ment. We enumerate and discuss them briefly below.
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1. noise robustness: as relevant features and classifier are automati-

cally learned, a question that arises is: whether such an approach is
robust in noisy conditions? In the analysis part, we have seen that
the first convolution layer models envelop of sub-segmental speech
signal spectrum. In particular formant-like information, which can
be considered as high signal-to-noise ratio regions in the spectrum.
Furthermore, subsequent processing through max pooling could be
seen as filtering of spurious temporal information present in each
filter output, while the second convolution layer filters could be in-
terpreted along the lines of modeling envelop modulations in piece-
wise manner and combining them. Thus, the proposed approach
could be expected to be robust. A preliminary investigation reported
in Palaz et al. (2015a) and the investigations on Aurora2 and Au-
rora4 tasks reported in Palaz (2016, Chapter 5) indeed indicates that.

. rapid adaptation of acoustic model: we have observed that the fea-

ture stage has considerably fewer parameters than the classifier
stage. This provides new means to adapt the acoustic model. Specifi-
cally, one of the main challenges often faced in adapting the acoustic
model to new domains is the amount of adaptation data available.
The data may not be sufficient to effectively adapt all the param-
eters in the acoustic model. In the proposed approach, this chal-
lenge could be addressed by only adapting the feature stage. Such
an approach would be analogous to maximum likelihood linear re-
gression (MLLR) (Gales and Woodland, 1996) adaptation approach
where MLLR is used to transform the features as opposed to the
models (i.e. means and variances of the Gaussians). However, in
comparison to that, adaptation in the proposed framework would
present two distinctive advantages. First, the adaptation would by
default be discriminative, i.e. learned by improving discrimination
between the phone classes. Second, upon availability of more adap-
tation data both the feature stage and classifier stage can be adapted
in a straightforward manner.

. Sequence discriminative training: In the present work, the CNNs and

MLPs were trained with frame level cross entropy criteria. It has been
observed that sequence discriminative training such as maximum
mutual information (MMI) or the state-level minimum Bayes risk
(sMBR) criterion applied after cross entropy criteria-based training
boosts ASR system performance, for example see Vesely et al. (2013).
Further investigations are needed to ascertain the benefit of such se-
quence discriminative training applied in the proposed CNN-based
framework. Along this direction we would like to also point to
CRF-based end-to-end phone sequence recognition work reported
in Palaz et al. (2013a) and Palaz (2016, Chapter 7), where the pro-
posed CNN-based approach has been found to yield better system
than conventional cepstral feature based approach.

. End-to-end sequence prediction: in this article, we focused on an

acoustic modeling approach where time local information P(i[sy) is
estimated in an end-to-end manner. In our recent works, we have
shown that the proposed approach can be extended using conditional
random fields to perform end-to-end phoneme sequence recogni-
tion (Palaz et al. (2013a) and Palaz (2016, Chapter 7)). However,
performing full-fledged speech recognition through end-to-end se-
quence prediction is not trivial. One of the main reasons being that
to search effectively and efficiently the word hypothesis the relation-
ship between words need to be learned or modeled. As evident from
the present state-of-the-art HMM-based approach, the textual data
that is needed to learn the relationship between words is very dif-
ferent than the textual data contained in the acoustic model training
data. So, joint optimization of the acoustic model and the decoder
in end-to-end manner from scratch using a common data set is a
highly challenging problem, and is an up-and-coming research direc-
tion (Graves and Jaitly, 2014; Amodei et al., 2015; Lu et al., 2016).

. Going beyond conventional short-term speech signal processing: in

the proposed approach one of the novelties in comparison to sim-
ilar existing approaches is that short-term windowing and spectral
processing mechanism is determined during training in a data- and
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task-dependent manner. As a consequence of that, we found results
that while challenging our understanding about short-term speech
signal processing based on Fourier transform provide a link to alter-
nate sparse coding and dictionary learning based signal processing
methods. Thus, the approach opens the door to go beyond conven-
tional short-term processing and gain further understanding about
the speech signal. In that direction, at Idiap in an on-going work, the
second author is involved in building over the present work to learn
novel features for speaker recognition (Muckenhirn et al., 2018) and
for developing countermeasures for spoofing or presentation attack
detection (Muckenhirn et al., 2017).
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