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a b s t r a c t 

In hidden Markov model (HMM) based automatic speech recognition (ASR) system, modeling the statistical rela- 

tionship between the acoustic speech signal and the HMM states that represent linguistically motivated subword 

units such as phonemes is a crucial step. This is typically achieved by first extracting acoustic features from the 

speech signal based on prior knowledge such as, speech perception or/and speech production knowledge, and, 

then training a classifier such as artificial neural networks (ANN), Gaussian mixture model that estimates the 

emission probabilities of the HMM states. This paper investigates an end-to-end acoustic modeling approach us- 

ing convolutional neural networks (CNNs), where the CNN takes as input raw speech signal and estimates the 

HMM states class conditional probabilities at the output. Alternately, as opposed to a divide and conquer strategy 

(i.e., separating feature extraction and statistical modeling steps), in the proposed acoustic modeling approach 

the relevant features and the classifier are jointly learned from the raw speech signal. Through ASR studies and 

analyses on multiple languages and multiple tasks, we show that: (a) the proposed approach yields consistently a 

better system with fewer parameters when compared to the conventional approach of cepstral feature extraction 

followed by ANN training, (b) unlike conventional method of speech processing, in the proposed approach the 

relevant feature representations are learned by first processing the input raw speech at the sub-segmental level 

( ≈ 2 ms). Specifically, through an analysis we show that the filters in the first convolution layer automatically 

learn “in-parts ” formant-like information present in the sub-segmental speech, and (c) the intermediate feature 

representations obtained by subsequent filtering of the first convolution layer output are more discriminative 

compared to standard cepstral features and could be transferred across languages and domains. 
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. Introduction 

State-of-the-art automatic speech recognition (ASR) systems typi-
ally divide the task of recognizing speech into several sub-tasks, which
re optimized in an independent manner ( Rabiner and Juang, 1993;
ourlard and Morgan, 1994 ). Specifically, as a first step, acoustic feature
bservations, such as Mel frequency cepstral coefficients (MFCCs) or
erceptual linear prediction cepstral features (PLPs), are extracted from
he short-term speech signal based on speech production and speech
erception knowledge. Next, likelihood of subword units, which are typ-
cally based on phonemes, are estimated using a statistical model that
aptures the relationship between the features and the subword units
n either generative or discriminative manner. Finally, given the likeli-
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ood estimates of the subword units, the best matching word hypothesis
s searched by integrating lexical and syntactical constraints. 

Recent advances in machine learning have shown that systems can
e trained in an end-to-end manner, i.e. systems where every step is
earned simultaneously, taking into account all the other steps and the
nal task of the whole system. It is typically referred to as deep learn-

ng ( Hinton et al., 2006; Bengio et al., 2007 ), mainly because such
rchitectures are usually composed of many layers (supposed to pro-
ide an increasing level of abstraction), compared to classical “shal-
ow ” systems. As opposed to “divide and conquer ” approaches pre-
ented previously where each step is independently optimized, deep
earning approaches are often claimed to lead to more optimal sys-
ems. As they alleviate the need of finding the right features by instead
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raining a stack of features in an end-to-end manner, for a given task of
nterest. 

While there is a good success record of such approaches in the com-
uter vision ( LeCun et al., 1998; Krizhevsky et al., 2012; He et al.,
015 ) or text processing fields ( Collobert et al., 2011b ), deep learn-
ng approaches for speech recognition has largely focused on the classi-
er step, where a neural network with many hidden layers is typically
rained to classify subword units ( Hinton et al., 2012 ). These systems
till rely on standard short-term spectral-based feature extraction. The
raining optionally can involve pre-training schemes. In such a case, it is
eferred to as deep belief neural networks (DBNs) otherwise deep neural
etworks (DNNs). 

More recently, there has been efforts toward modeling raw speech
ignal with little or no pre-processing ( Jaitly and Hinton, 2011; Palaz
t al., 2013b; Tüske et al., 2014; Golik et al., 2015; Sainath et al.,
015 ). Towards that, as one of the first efforts, we proposed a novel
pproach based on convolution neural networks ( Palaz et al., 2013b ).
n this approach, the input to the CNN is raw speech signal. The neu-
al network architecture consists of two stages: a feature learning stage
onsisting of several convolution layers followed by a classifier stage
onsisting of multilayer perceptron, which are jointly learned by mini-
izing a cost function based on relative entropy. Phoneme recognition

tudies on the TIMIT corpus showed that the proposed approach is capa-
le of achieving performance comparable to or better than the standard
pproach of extraction of cepstral features followed by ANN training.
ubsequent works in the ASR community have explored different archi-
ectures. For instance, in Tüske et al. (2014) use of DNNs was investi-
ated. It was found that such an acoustic model yields inferior system
hen compared to standard acoustic modeling. In a subsequent follow
p work ( Golik et al., 2015 ), it was found that addition of convolution
ayers at the input helps in improving the system performance and re-
ucing the performance gap w.r.t standard acoustic modeling technique.
n Sainath et al. (2015) , a composite architecture referred to as CLDNN
as investigated, where the raw speech signal is fed as input to CNNs,

he CNN stage output is subsequently processed by a bidirectional long-
hort term memory (BLSTM) stage and fed into a DNN stage to classify
hones. All these stages are jointly learned. This approach was found to
ield performance comparable to the case where the input to CLDNN is
og filter bank energies. 

An aspect that differentiates our approach from the subsequent
orks ( Tüske et al., 2014; Golik et al., 2015; Sainath et al., 2015 ) is

he manner in which the input speech signal is processed by the ANN.
ore precisely, in Sainath et al. (2015) the first CNN layer consisted

f 40 filters following the standard practise in MFCC or PLP cepstral
eature extraction for 8 kHz bandwidth speech signal; the filter lengths
ere set to 25 ms (400 samples) following standard short-term process-

ng practise; and were initialized with Gammatone impulse response,
.e. based on auditory knowledge. In Tüske et al. (2014) the input to
NN was non-overlapping 10 ms speech signal. They also investigated

nitialization of the first layer of the DNN with Gammatone impulse re-
ponse. In Golik et al. (2015) , the input convolution layer consisted of
28 filters and the filter lengths were set to 16 ms (256 ms). In our ap-
roach, however, the filter length and the number of filters in the first
onvolution layer is not set a priori, rather they are determined during
he training process through cross validation. In other words, the ANN
earns how the speech signal should be blocked or windowed as short
egments and spectrally processed for phone classification. As a conse-
uence of this flexibility, as we will see later in the present paper, the
rocessing of speech at the input of ANN in the proposed approach con-
iderably departs from the current understanding of short-term speech
rocessing. 

The present paper builds on our previous works ( Palaz et al., 2013b;
015b; 2015a ) along two directions, 

1. From phoneme recognition to automatic speech recognition: a first
set of fundamental question that arises is: does the findings on
16 
phoneme recognition task scale well across speech recognition task
across different languages and domains? In that respect, the con-
tributions of the present paper are: (1) we first benchmark the
proposed approach on TIMIT corpus by extending our previous
study ( Palaz et al., 2013b ) to the standardized protocol of classifying
183 phones output (61 phones × 3 states) and using phone bigram
for decoding; (2) We then present investigations on large vocabu-
lary continuous speech recognition task on a variety of corpora that
differ in terms of languages. Specifically, we extend our previous in-
vestigations on WSJ English ( Palaz et al., 2015b ) to Swiss French
and Swiss German on Mediaparl corpus that contains spontaneous
speech. Our studies show that the architecture of three convolution
layers followed by a multilayer layer perceptron originally devel-
oped in the context of phoneme sequence recognition task scales
well for continuous speech recognition tasks and consistently yields
a better system than conventional cepstral feature-based system for
all the investigated corpora. 

2. Understanding the learned features: as it would be seen in the ASR
studies the proposed approach yields a system that performs bet-
ter than the system based on conventional approach with consid-
erably less parameters. Thus, a second set of questions that arise
are: what information is the neural network learning and how it is
learning? Since the features are learned along with the classifier au-
tomatically from the data, yet another question that arises is: are
these features domain or language dependent? To understand these
aspects, we first analyze the first convolution layer. We present a
novel signal theoretic approach to understand the information that
is collectively modeled by the first convolution layer. This analysis
shows that: (i) the proposed approach transforms the speech signal
at sub-segmental level (about 2 ms) as opposed to conventional ap-
proach of transforming the signal at segmental level (20–30 ms), (ii)
unlike auditory motivated filter banks, the learned set of filters are
not of constant Q nature, and (iii) as opposed to an adhoc approach
presented in our earlier work ( Palaz et al., 2015a ), through the novel
signal theoretic interpretation, we show that the first convolution
layer learns a spectral dictionary that models in-parts formant-like
information in the envelop of magnitude spectrum of sub-segmental
speech. We then focus the analysis on the classifier stage, where we
show that the learned features are more discriminative than the con-
ventional cepstral features and can be classified well with a simple
classifier such as a single layer perceptron. Finally, through cross-
domain and cross-lingual studies we show that the learned features
could be transferred across languages and domains. 

The remainder of the paper is organized as follows.
ection 2 presents a background on hybrid HMM/ANN ASR, fea-
ure extraction and use of deep neural networks, and motivates the
resent work. Section 3 presents the architecture of the CNN-based
ystem. Section 4 presents the recognition studies and Section 5 presents
he analyses. Section 6 presents a discussion and concludes the paper. 

. Background 

This section briefly introduces standard hybrid HMM/ANN ASR sys-
em. It then presents a concise survey on two aspects of acoustic mod-
ling: features and ANN-based classifier upon which the present paper
ocuses on. 

.1. Hybrid HMM/ANN ASR system 

As presented in Fig. 1 , hybrid HMM/ANN based ASR system is com-
osed of three parts: features extraction, classification and decoding. In
he first step, input features x t at time t are extracted from the short-
erm signal s t . They are then given as input to an artificial neural
etwork (ANN). In literature, ANNs with different architectures have
een proposed such as multilayer perceptron (MLP) ( Bourlard and Mor-
an, 1994 ), time delay neural networks ( Waibel et al., 1989 ) which
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Fig. 1. Hybrid HMM/ANN system. s t denotes the input speech segment, x t here 

denotes cepstral features and i denotes a phoneme class. 
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s also referred to as convolutional neural networks, recurrent neural
etworks (RNN) ( Robinson, 1994; Graves et al., 2013 ). The ANN es-
imates the class conditional probabilities P ( i | x t ) for each phone class
 ∈ {1 , … , 𝐼} . The emission probabilities p e ( x t | i ) of the HMM states are
caled likelihoods which, as given below, are obtained by dividing the
NN output by the prior probability of the class P ( i ), 

 𝑒 ( 𝐱 𝑡 |𝑖 ) ∝ 𝑝 ( 𝐱 𝑡 |𝑖 ) 
𝑝 ( 𝐱 𝑡 ) 

= 

𝑃 ( 𝑖 |𝐱 𝑡 ) 
𝑃 ( 𝑖 ) 

∀𝑖 ∈ 1 , … , 𝐼 . (1)

he prior class probability P ( i ) is often estimated by counting on
he training set. The phone classes {1 , … , 𝐼} can be either context-
ndependent phones or clustered context-dependent HMM states, typi-
ally obtained by decision tree based state clustering and tying. Depend-
ng upon that the system is referred to as either context-independent
hone-based ASR system or context-dependent phone-based ASR sys-
em, respectively. 

Given the scaled-likelihood estimates, a phonetic lexicon and a lan-
uage model, the decoder finally infers the best matching word hypoth-
sis through search. 

.2. Feature and classifier 

Speech signal is a non-stationary signal. Alternately, the statistical
haracteristics of the signal change over time due to various reasons
uch as the speech sound being produced, speaker variation, emotional
tate variation. In the case of ASR, we are primarily interested in the
haracteristic of the speech signal that relates to or differentiates the
peech sounds. In other words, the primary goal is to estimate statisti-
al evidence about speech sounds given the speech signal. To achieve
hat, guided by statistical pattern recognition techniques, originally the
roblem has been split into two steps, namely, feature extraction and
odeling of the features by a statistical classifier. 

Speech coding studies in telephony have shown that speech can
e processed as short segments, transformed, transmitted and recon-
tructed while keeping the intelligibility or message intact ( Rabiner and
chafer, 1978 ). In particular, the studies have shown that short-term
peech signal could be considered as output of a linear time invari-
nt vocal tract filter excited by periodic or aperiodic vibration of vo-
al cords ( Rabiner and Schafer, 1978 ). Furthermore, speech intelligibil-
ty can be preserved by preserving the envelop structure of the short-
erm spectrum of speech signal, which characterizes the vocal tract sys-
em ( Schroeder and Atal, 1985 ). The two most common spectral-based
eatures Mel frequency cepstral coefficients (MFCCs) ( Davis and Mer-
elstein, 1980 ) and perceptual linear prediction (PLP) cepstral coeffi-

ients ( Hermansky, 1990 ) are built on those aspects while integrating
he knowledge about speech and sound perception. 

As illustrated in Fig. 2 (a), the extraction of MFCC or PLP feature in-
olves: (1) transformation of short-term speech signal to frequency do-
ain; (2) filtering the spectrum based on critical bands analysis, which

s derived from speech perception knowledge; (3) applying a non-linear
peration; and (4) applying a transformation to get reduced dimension
ecorrelated features. This process only models the local spectral level
nformation on a short time window typically of 20–30 ms. The infor-
ation about speech sound is spread over time. To model the temporal

nformation intrinsic in the speech signal dynamic features are com-
17 
uted by taking approximate first and second derivative of the static
eatures ( Furui, 1986 ). 

To estimate statistical evidence of speech sounds given the speech
ignal, the cepstral features are modeled by classifiers such as k-means
or vector quantization), Gaussian mixture models, ANNs, k-nearest
eighbor. In the beginning of the hybrid HMM/ANN theory, the ANNs
ypically had single hidden layer. There were two particular reasons
or that. First, it has been shown theoretically that ANN with single
idden layer is an universal approximator ( Hornik et al., 1989 ). Sec-
nd, both acoustic and computing resources were then limited. In re-
ent years, with the advancements in computing and availability of in-
reased amount of acoustic resources, it has been shown that ANNs with
eep architecture, i.e. with multiple hidden layers, can yield better sys-
ems ( Hinton et al., 2006; Seide et al., 2011; Dahl et al., 2012; Hinton
t al., 2012 ). 

.3. Motivation 

The standard acoustic modeling mechanism can be seen as a process
f applying transformations guided by prior knowledge about speech
roduction and perception on the speech signal, and subsequent mod-
ling of the resulting features by a statistical classifier. More recently,
nspired by the success of deep learning approaches in the fields of text
rocessing and vision ( Collobert et al., 2011b; Krizhevsky et al., 2012;
e et al., 2015 ) towards building end-to-end systems as well as by the

uccess of DNNs in ASR, researchers have started questioning the in-
ermediate step of feature extraction. In that direction, several studies
ave been carried where filter bank or critical band energies estimated
rom the short-term signal instead of cepstral features are used as input
f convolutional neural networks based systems ( Abdel-Hamid et al.,
012; Sainath et al., 2013; Swietojanski et al., 2014 ) or short-term mag-
itude spectrum is used as input to the DNN ( Mohamed et al., 2012; Lee
t al., 2009 ). Fig. 2 (b) illustrates a case where, instead of transforming
he critical band energies into cepstral features, the critical band ener-
ies and its derivatives are fed as input to the ANN. 

In this article, as opposed to the idea of applying spectral transform
nd then learning feature and classifier, we go one step further where the
eural network also learns short-term windowing and spectral process-
ng along with the features and the classifier for phone classification.
ore precisely, in this approach the raw speech signal is input to an
NN that classifies speech sounds. During training the neural network

earns the appropriate window size and filtering process that operates
n the signal to model the relevant features and the classifier for phone
lassification. The output of the trained neural network is then used as
mission probabilities of HMM states as done in hybrid HMM/ANN ap-
roach. Such an approach can not only be motivated by recent advances
n machine learning ( Collobert et al., 2011b; Krizhevsky et al., 2012 ) but
lso from previous works in the speech literature, which have investi-
ated methods to directly model raw speech signal for speech recogni-
ion, as presented below. 

The first initiative towards directly modeling the raw speech signal
as inspired by speech production model, i.e. an observed speech signal

an be seen as an output of a time varying filter excited by a time vary-
ng source. Specifically, one of the first theoretical work in that direction
y Poritz (1982) was inspired by linear prediction techniques, which
an deconvolve the excitation source and the vocal tract system through
ime domain processing. Poritz’s work was later revisited as switching
utoregressive HMM ( Ephraim and Roberts, 2005 ), and more recently
n the framework of switching linear dynamical systems ( Mesot and
arber, 2008 ). These techniques were investigated in an isolated word
ecognition setup where word-based models are trained. It was found
hat in comparison to HMM-based ASR system using cepstral features
hese approaches yield performance comparable under clean conditions
nd significantly better performance under noisy conditions ( Mesot and
arber, 2008 ). In Sheikhzadeh and Deng (1994) , an approach to model
aw speech signal was proposed using auto-regressive HMM. In this ap-
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Fig. 2. Illustration of several feature extraction pipelines. |DFT| denotes the magnitude of the discrete Fourier transform, DCT denotes the magnitude of the discrete 

cosine transform, AR modeling stands for auto-regressive modeling, Δ and ΔΔ denote the first and second order derivatives across time, respectively. P ( i | x t ) denotes 

the conditional probabilities for each input frame x t , for each label i . It is worth noting that typically, in addition to x t , the input to the ANN also consists of features 

from preceding and following frames. 

Fig. 3. Overview of the proposed CNN-based approach. 
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roach, each sample of the speech signal is an observation, as opposed
o a vector of speech samples in the approach proposed in Poritz (1982) .
ach state models the observed speech sample as a linear combination of
ast samples plus a ”driving sequence ” (assumed to be a Gaussian i.i.d
rocess). The potential of the approach was demonstrated on classifi-
ation of speaker-dependent discrete utterances consisting of 18 highly
onfusable stop consonant-vowel syllables. However, their gain com-
ared to conventional cepstral-based features is not clear, and they were
ever studied on continuous speech recognition task. 

More recently, use of raw speech signal as input to discriminative
ystems has been investigated. In that direction, combination of raw
peech and cepstral features in the framework of support vector machine
as been investigated for noisy phoneme classification ( Yousafzai et al.,
009 ). Feature learning from raw speech using neural networks-based
ystems has been investigated in Jaitly and Hinton (2011) . In this ap-
roach, the learned features are post-processed by adding their temporal
erivatives and used as input for another neural network. Thus, this ap-
roach still follows the “divide and conquer ” approach. In comparison to
hese approaches, as presented in the following section, in our approach
he features and the classifier are learned in an end-to-end manner to
stimate the phone class conditional probability P ( i | x t ) in Eq. (1) . 

. Proposed CNN-based approach 

We present a novel acoustic modeling approach based on convo-
utional neural networks (CNN), where the input speech signal 𝐬 𝑐 

𝑡 
=

 𝑠 𝑡 − 𝑐 … 𝑠 𝑡 … 𝑠 𝑡 + 𝑐 } is a segment of the raw speech signal taken in con-
ext of 2 c frames spanning w in milliseconds. The input signal is processed
y several convolution layers and the resulting intermediate representa-
ions are classified to estimate 𝑃 ( 𝑖 |𝐬 𝑐 

𝑡 
) , ∀i , as illustrated in Fig. 3 . 𝑃 ( 𝑖 |𝐬 𝑐 

𝑡 
)

s subsequently used to estimate emission scaled-likelihood 𝑝 𝑒 ( 𝐬 𝑐 𝑡 |𝑖 ) . As
resented in Fig. 4 , the network architecture is composed of several fil-
er stages, followed by a classification stage. A filter stage involves a
18 
onvolutional layer, followed by a temporal pooling layer and a non-
inearity, HardTanh ( · ). The number of filter stages is determined during
raining. The feature stage and the classifier stage are jointly trained
sing the backpropagation algorithm. 

The proposed approach employs the following understandings: 

1. Speech is a non-stationary signal. Thus, it needs to be processed in a
short-term manner. Traditionally, in the literature guided by Fourier
spectral theory and speech analysis-synthesis studies the short-term
window size is set as 20–40 ms. The proposed approach follows the
general idea of short-term processing. However, the size of the short-
term window is a hyper-parameter which is determined during train-
ing. 

2. Feature extraction is a filtering operation. This can be simply ob-
served from the fact that generic operations such as Fourier trans-
form, discrete cosine transform etc. are filtering operations. In con-
ventional speech processing, the filtering takes place in both fre-
quency (e.g. filter-bank operation) and time (e.g. temporal deriva-
tive estimation). The convolution layers in the proposed approach
build on these understandings. However, aspects such as the number
of filtering layers and their parameters are determined and learned
during training, respectively. 

3. Though the speech signal is processed in a short-term manner, the
information about the speech sounds is spread across time. In con-
ventional approach, the information spread across time is modeled
by estimating temporal derivatives and by using contextual informa-
tion, i.e. by appending features from preceding and following frames,
at the classifier input. In the proposed approach the intermediate
representations feeding into the classifier stage are estimated using
long time span of input speech signal, which is again determined
during training. Alternately, w in is a hyper-parameter. 

In essence the proposed approach with minimal assumptions or prior
nowledge learns to process the speech signal to estimate 𝑃 ( 𝑖 |𝐬 𝑐 

𝑡 
) . 

.1. Convolutional layer 

While “classical ” linear layers in standard MLPs accept a fixed-size
nput vector, a convolution layer is assumed to be fed with a sequence
f T vectors/frames: { 𝐲 1 … 𝐲 𝑡 … 𝐲 𝑇 } . As illustrated in Fig. 5 , a convolu-
ional layer applies the same linear transformation over each successive
or interspaced by dW frames) windows of kW frames. In this work, y t is
ither a segment of input raw speech 𝐬 𝑐 

𝑡 
(for the first convolution layer)

r an intermediate representation output by the previous convolution



D. Palaz, M. Magimai-Doss and R. Collobert Speech Communication 108 (2019) 15–32 

Fig. 4. Overview of the convolutional neural network architecture. Several stages of convolution/pooling/HardTanh might be considered. Our network included 

three stages. The classification stage can have multiple hidden layers. 

Fig. 5. Illustration of a convolutional layer. d in and d out are the dimensions of 

the input and output frames. kW is the kernel width (here 𝑘𝑊 = 3 ) and dW is 

the shift between two linear applications (here, 𝑑𝑊 = 2 ). 
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ayer. Formally, the transformation at frame t is written as: 

 

⎛ ⎜ ⎜ ⎝ 
𝐲 𝑡 −( 𝑘𝑊 −1)∕2 

⋮ 
𝐲 𝑡 +( 𝑘𝑊 −1)∕2 , 

⎞ ⎟ ⎟ ⎠ , (2)

here M is a d out × ( kW · d in ) matrix of parameters, d in denotes the di-
ension of each input frame and d out denotes the output dimension of

ach frame. In other words, d out filters (rows of the matrix M ) are applied
o the input sequence. 

.2. Max-pooling layer 

This kind of layers perform local temporal max operations over an
nput sequence. More formally, the transformation at frame t is written
s: 

max 
 −( 𝑘𝑊 𝑚𝑝 −1)∕2 ≤ 𝑘 ≤ 𝑡 +( 𝑘𝑊 𝑚𝑝 −1)∕2 

𝐲 𝑑 
𝑘 

∀𝑑, (3)

ith y being the input and d ∈ {1, ⋅⋅⋅d out }. These layers increase the
obustness of the network to minor temporal distortions in the input.
hey also bring some level of invariance to the phase of the signal, as a
hase difference between two signals can be seen as a temporal shift. 

.2.1. Non-linearity 

This kind of layer applies a non-linearity to the input. In this work,
e use the HardTanh layer, defined as: 

𝑎𝑟𝑑𝑇 𝑎𝑛ℎ ( 𝑥 ) = 

⎧ ⎪ ⎨ ⎪ ⎩ 
−1 if 𝑥 < −1 
𝑥 if − 1 ≤ 𝑥 ≤ 1 
1 if 𝑥 > 1 

(4)

This layer is a hard version of the hyperbolic tangent. It has the ad-
antage of being cheaper to compute while keeping the generalization
erformance of the exact tangent ( Collobert, 2004 ). It is worth men-
ioning that other types of non-linearities such as, rectified linear unit
ReLU) ( Nair and Hinton, 2010; Zeiler et al., 2013 ) can also be applied
e.g., see ( Palaz, 2016 , Chapter 6)). 
19 
.3. Softmax layer 

The Softmax ( Bridle, 1990 ) layer interprets network output scores
 𝑖 ( 𝐬 𝑐 𝑡 ) as conditional probabilities, for each class label i : 

 ( 𝑖 |𝐬 𝑐 
𝑡 
) = 

𝑒 𝑓 𝑖 ( 𝐬 
𝑐 
𝑡 
) ∑

𝑗 

𝑒 𝑓 𝑗 ( 𝐬 
𝑐 
𝑡 
) 
. (5)

.4. Network training 

The network parameters 𝜃 are learned by maximizing the log-
ikelihood  , given by: 

 ( 𝜃) = 

∑
𝑡 

log ( 𝑃 ( 𝑖 𝑡 |𝐬 𝑐 𝑡 , 𝜃)) , (6)

or each speech segment 𝐬 𝑐 
𝑡 

and its corresponding label i t , over the whole
raining set, with respect to the parameters of each layer of the network.
efining the logadd operation as: 

ogadd 
𝑗 

( 𝑧 𝑗 ) = log 

( ∑
𝑗 

𝑒 𝑧 𝑗 

) 

. (7)

he log-likelihood  𝑡 of frame t can be expressed as: 

 𝑡 = log ( 𝑃 ( 𝑖 𝑡 |𝐬 𝑐 𝑡 )) = 𝑓 𝑖 𝑡 
( 𝐬 𝑐 

𝑡 
) − logadd 

𝑗 

( 𝑓 𝑗 ( 𝐬 𝑐 𝑡 )) , (8)

here 𝑓 𝑖 𝑡 ( 𝐬 
𝑐 
𝑡 
) described the network score for the frame label i t . Maxi-

izing this likelihood is performed using the stochastic gradient ascent
lgorithm ( Bottou, 1991 ). 

.5. Illustration of a trained network 

In the proposed approach, in addition to the number of hidden units
n each hidden layer of the classification stage, the filter stage has num-
er of hyper-parameters, namely, time span of input speech signal w in 

sed to estimate 𝑃 ( 𝑖 |𝐬 𝑐 
𝑡 
) , number of convolution layers, kernel or tem-

oral window width kW at input of each convolution layer, dW shift
f the temporal window at the input of each convolution layer, max
ooling kernel width kW mp and shift of max pooling kernel dW mp . In
he present work, all of these hyper-parameters are determined during
raining based on frame level classification accuracy on validation data.

Fig. 7 illustrates the trained feature stage of the proposed CNN ap-
roach on the TIMIT corpus. The details of the training can be found
n the following Section 4 . The filter stage has three convolution layers
nd it takes a window of 250 ms speech signal w in as input to estimate
 ( 𝑖 |𝐬 𝑐 

𝑡 
) every 10 ms. The figure also illustrates the temporal information

modeled by the output of each convolution layer and the temporal
hift 𝛿. Briefly, the first convolution layer models in a fine grain man-
er the changes in the signal characteristics over time, i.e. processes
.8 ms of speech ( 𝑘𝑊 = 30 samples ) every 0.6ms ( 𝑑𝑊 = 10 samples ).
he subsequent convolution layers then filter and temporally integrate
he output of the first convolution layer to yield an intermediate fea-
ure representation that is input to the classifier stage, which eventually
ields an estimate of 𝑃 ( 𝑖 |𝐬 𝑐 

𝑡 
) . 

It is worth pointing out that the dimensionality of the intermediate
epresentation at the feature learning stage output depends upon the
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Fig. 6. Illustration of max-pooling layer. kW is the number of frames taken 

for each max operation (here, 𝑘𝑊 𝑚𝑝 = 2 and 𝑑𝑊 𝑚 𝑝 = 2 ) and d represents the 

dimension of input/output frames (which are equal). 
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umber of convolution stages and the max-pooling kernel width. As it
an be seen that max-pooling is done without temporal overlap. So, at
ach convolution stage, in addition to filtering minor temporal distor-
ions, max-pooling operation acts as a down sampler. 

. Recognition studies 

In this section, we present automatic speech recognition studies to
how the potential of the proposed approach. We compare it against
he conventional approach of spectral-based feature extraction fol-
owed by ANN training on different tasks and languages, namely, (a)
IMIT phoneme recognition task, (b) Swiss French Mediaparl task and
c) Swiss German Mediaparl task. The Wall Street Journal (WSJ) 5k
ask ( Palaz et al., 2015b ) is also reported for the sake of complete-
ess. The objective of these studies is to demonstrate the potential of
he proposed end-to-end acoustic modeling approach by comparing it
gainst the standard cepstral feature-based acoustic modeling for esti-
ating phoneme class posterior probability. 

The reminder of the section is organized as follows.
ection 4.1 presents the different datasets and setup used for the
tudies. Section 4.2 presents the different systems that are trained and
valuated. Section 4.3 presents the recognition studies. 

.1. Databases and setup 

.1.1. TIMIT 

The TIMIT acoustic-phonetic corpus ( Garofolo et al., 1993 ) consists
f 3696 training utterances (sampled at 16 kHz) from 462 speakers, ex-
luding the SA sentences. The validation set consists of 400 utterances
rom 50 speakers. The core test set is used to report the results. It con-
ains 192 utterances from 24 speakers, excluding the validation set. Ex-
eriments are performed using 61 phoneme labels, with three states,
or a total of 183 targets as in Mohamed et al. (2009) . After decoding,
he 61 hand labeled phonetic symbols are mapped to 39 phonemes, as
resented in Lee and Hon (1989) . 

.1.2. Wall street journal 

The Wall Street Journal (WSJ) corpus is an English corpus consist-
ng of read microphone speech ( Paul and Baker, 1992 ). The SI-284
et of the corpus is formed by combining data from WSJ0 and WSJ1
atabases ( Woodland et al., 1994 ). The set contains 36,416 sequences
ampled at 16 kHz, representing around 80 h of speech. 10% of the set
s taken as the validation set. The Nov’92 set is selected as test set. It
ontains 330 sequences from 10 speakers. The dictionary is based on the
MU phoneme set, 40 context-independent phonemes. We obtain 2776
lustered context-dependent (cCD) units, i.e. tied-states, by training a
ontext-dependent HMM/GMM system with decision tree-based state ty-
ng using HTK ( Young et al., 2002 ). We use the bigram language model
rovided with the corpus. The test vocabulary contains 5000 words. 

.1.3. Mediaparl 

MediaParl is a bilingual corpus ( Imseng et al., 2012 ) containing data
debates) in both Swiss German and Swiss French which were recorded
t the Valais parliament in Switzerland. Valais is a state which has both
rench and German speakers with high variability in local accents spe-
ially among German speakers. Therefore, MediaParl provides a real-
peech corpus that is suitable for ASR studies. In our experiments, audio
ecordings with 16 kHz sampling rate are used. 

The Swiss German part of the database, referred to as MP-DE , is par-
itioned into 5955 sequences from 73 speakers for training (14 h), 876
equences from 8 speakers for validation (2 h) and 1692 sequences from
 speakers (4 h) for test. 1101 tied-states are used in the experiments,
ollowing the best system available on this corpus ( Razavi et al., 2014 ).
he vocabulary size is 16,755 words. The dictionary is provided in the
AMPA format with a phone set of size 57 (including sil) and contains
20 
ll the words in the training, validation and test set. A bigram language
odel is used. 

The Swiss French part of the database, referred to as MP-FR , is par-
itioned into 5471 sequences from 107 speakers for training (14 h), 646
equences from 9 speakers for validation (2 h) and and 925 sequences
rom 7 speakers (4 h) for test. 1084 tied-states are used in the exper-
ments, as presented in Razavi and Magimai.-Doss (2014) . The vocab-
lary size is 12,035 words. The dictionary is provided in the SAMPA
ormat with a phone set of size 38 (including sil) and contains all the
ords in the training, validation and test sets. A bigram language model

s used. 

.2. Systems 

In this section, for each task studied, we present the details of the
onventional spectral feature based baseline systems ( Section 4.2.1 )
nd the proposed CNN-based system using raw speech signal as in-
ut ( Section 4.2.2 ). All neural networks were initialized randomly and
rained using the Torch7 toolbox ( Collobert et al., 2011a ). The HTK
oolbox ( Young et al., 2002 ) was used for the HMMs and the cepstral
eatures extraction. 

.2.1. Conventional cepstral feature based system 

On each task, we have two baseline hybrid HMM/ANN systems
hich differ in terms of ANN architecture. More precisely, 1 hidden

ayer MLP (denoted as ANN-1H) based system and 3 hidden layers MLP
denoted as ANN-3H) based system. These ANNs estimate P ( i | x t ), where
 t is a cepstral feature vector at time frame t . The details of the baseline
ystems for the different tasks are as follows, 

• TIMIT: We treat the one hidden layer MLP based system and the
three hidden layers MLP based system without pre-training i.e. ran-
dom initialization reported in Mohamed et al. (2012) , Fig. 6 as the
baseline systems. Our motivation in doing so is that they are one
of the best cepstral feature-based systems without use of adapta-
tion methods reported in the literature on this task. In these sys-
tems, the inputs to the MLPs were 39 dimensional MFCC features
( 𝑐 0 − 𝑐 12 + Δ + ΔΔ) with five frames preceding and five frames fol-
lowing context (i.e. input dimension 39 ×11). ANN-1H has 2048
nodes in the hidden layer and ANN-3H has 1024 nodes in each of
the three hidden layers. 

• WSJ: We trained an ANN-1H and an ANN-3H to classify 2776 tied-
states. The inputs to the MLP are 39 dimensional MFCC features
( 𝑐 0 − 𝑐 12 + Δ + ΔΔ) with four frames preceding and four frames fol-
lowing context (i.e. input dimension 39 ×9). The MFCC features are
computed with a frame size of 25 ms and a frame shift of 10 ms.
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Fig. 7. Illustration of the feature stage of CNN trained on TIMIT to classify 183 

phoneme classes. 𝜅 and 𝛿 indicates the temporal information modeled by the 

layer and the shift respectively. Non-linearity layers are applied after each max- 

pooling. 
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Table 1 

Ranges of hyper parameters for the grid search. 

Parameters Units Range 

Input window size ( w in ) ms 100–700 

Kernel width of the first conv. ( kW 1 ) Samples 10–90 

Kernel width of the n th conv. ( kW n ) Frames 1–11 

Number of filters per kernel ( d out ) Filters 20–100 

Max-pooling kernel width ( kW mp ) Frames 2–6 

Number of hidden units in the classifier Units 200–1500 

Table 2 

Number of samples processed per second for the baselines 

and the proposed approach, during the training and evaluation 

phases. The measurements were done on a single CPU Intel i7 

2600K 3.4 GHz. 

System Training Evaluation 

[ sample / sec ] [ sample / sec ] 

ANN-1H 1371 3330 

ANN-3H 177 2199 

CNN-1H 240 1164 

CNN-3H 113 741 

Table 3 

Architecture of CNN-based system for different tasks. HL=1 denotes CNN-1H 

and HL=3 denotes CNN-3H. w in is expressed in terms of milliseconds. The 

hyper-parameters kW, dW, d out and kW mp for each convolution layer is comma 

separated. HU denotes the number of hidden units. 2 ×1500 means 1500 hid- 

den units per hidden layer. 

HL w in kW dW d out kW mp HU 

TIMIT 1 250 30,7,7 10,1,1 80,60,60 3,3,3 1000 

3 250 30,7,7 10,1,1 80,60,60 3,3,3 3x1000 

WSJ 1 210 30,7,7 10,1,1 80,60,60 3,3,3 1000 

3 310 30,7,7 10,1,1 80,60,60 3,3,3 3x1000 

MP-DE 1 210 30,7,7 10,1,1 80,60,60 3,3,3 1000 

3 310 30,7,7 10,1,1 80,60,60 3,3,3 1800,2x1500 

MP-FR 1 190 30,7,7 10,1,1 80,60,60 3,3,3 1000 

3 310 30,7,7 10,1,1 80,60,60 3,3,3 1800,2x1500 
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e  

s  
ANN-1H has 1000 nodes in the hidden layer and ANN-3H has 1000
nodes in each hidden layer. 

• MediaParl: We use the setup of the best performing hybrid
HMM/ANN system using a three hidden layers MLP, classifying
1101 and 1084 clustered context-dependent units for Swiss German
and Swiss French respectively, reported in Razavi et al. (2014) and
in Razavi and Magimai.-Doss (2014) as the baseline ANN-3H sys-
tem. The ANN-1H has 1000 nodes in each hidden layer. The ANN-
3H has 1800 nodes in the first hidden layer and 1500 nodes in the
second and third hidden layer. The inputs to the ANNs were 39 PLP
cepstral features ( 𝑐 0 − 𝑐 12 + Δ + ΔΔ) with four frames preceding and
four frames following context. The frame size and frame shift are
25 ms and 10ms, respectively. 

.2.2. Proposed CNN-based system 

We train the proposed CNN-based 𝑃 ( 𝑖 |𝐬 𝑐 
𝑡 
) estimator using raw speech

ignal. The inputs are simply composed of a window of the speech signal
hence d in = 1, for the first convolutional layer). The utterances are
ormalized such that they have zero mean and unit variance, which
s in line with the literature ( Sheikhzadeh and Deng, 1994 ). No further
re-processing is performed. The hyper-parameters of the network are:
he time span of the input signal ( w in ), the kernel width kW and shift dW

f the convolutions, the number of filters d out , maxpooling kernel width
W mp , maxpooling kernel shift dW mp and the number of nodes in the
idden layer(s). Note that the input d in for the first convolution layer is
ne (i.e. a sample of the speech signal). For the remaining layers, the d in 
s the product of d out of the previous layer and kW of that layer. These
yper parameters are determined by early stopping on the validation set,
ased on frame classification accuracy. The ranges which are considered
or a coarse grid search are reported in Table 1 . We use the TIMIT task
o narrow down the hyper-parameters search space, as it provided fast
urnaround experiments. 

For each of the tasks, we train CNNs with one hidden layer (denoted
s CNN-1H) and three hidden layers (denoted as CNN-3H) similar to
21 
he different MLP architectures in the baseline systems. We found that
hree convolution layers consistently yield the best cross validation ac-
uracy across all the tasks. The CNN architecture found for each of the
ask is presented in Table 3 . The shift of max-pooling kernel 𝑑𝑊 𝑚𝑝 = 3
s found for all the layers on all the tasks. As we will observe later, the
omplexity of the CNN-based approach in terms of number of parame-
ers lies at the classifier stage. So, for fair comparison with the baseline
ystems, we restricted the search for the number of hidden nodes in the
idden layer(s) such that the number of parameters is comparable to
he respective baseline systems. The output classes are the same as the
ase of cepstral feature-based system, i.e. for the TIMIT task 183 phone
lasses, for the WSJ task 2776 cCD units, for the MP-DE task 1101 cCD
nits and for the MP-FR task 1084 cCD units. 

The computation cost of the proposed architecture would be higher
han the ANN baseline, as the raw speech signal has to be processed,
hereas for the baseline systems the features are already computed.
able 2 presents the number of frames processed per second for the
aseline, the CNN-1H and the CNN-3H systems during the training and
valuation phases. One can see that while training the baseline with one
idden layer (ANN-1H) is much faster than training the CNN-1H (5.7x
peed factor), the gap reduces drastically when training the three layers
ystems (1.5x speed factor). 

.3. Results 

In this section we present the results of the studies on differ-
nt tasks. For the sake of completeness, for the speech recognition
tudies we also report performance on HMM/GMM system. For MP-
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Table 4 

Phoneme error rate of different systems on the core test set of 

the TIMIT corpus. The ANN-1H and ANN-3H performances are 

reported in Mohamed et al. (2012) . #Conv. Params. denotes the 

number of parameters in the convolution layers, #Class. Params. 

denotes the number of parameters in the classifier stage. M stands 

for million. 

Input System #Conv. #Class. PER 

params. params. (in %) 

MFCC ANN-1H na 1.2M 24.5 

MFCC ANN-3H na 2.6M 22.6 

RAW CNN-1H 63k 0.92M 22.8 

RAW CNN-3H 52k 2.9M 21.9 

Table 5 

Phoneme error rate of different systems reported in literature on the core test 

set of the TIMIT corpus. 

Method (input) PER (in %) 

Augmented CRFs (MFCC) ( Hifny and Renals, 2009 ) 26.6 

HMM/DNNs 6 layers (MFCC) ( Mohamed et al., 2012 ) 22.3 

Deep segmental NN (MFCC) ( Abdel-Hamid et al., 2013 ) 21.9 

Proposed approach 21.9 

HMM/DNNs 6 layers (MFCC + LDA + MLLT + fMLLR) ( Lu et al., 2016 ) 18.5 

CTC transducers (FBANKs) ( Graves et al., 2013 ) 17.7 

Attention-based RNN (FBANKs) ( Chorowski et al., 2015 ) 17.6 

Segmental RNN (MFCC + LDA + MLLT + fMLLR) ( Lu et al., 2016 ) 17.3 

D  

i  

t  

t  

4

 

o  

b  

s  

l  

m  

w  

p  

p  

d  

t
 

T  

p  

b  

M  

l  

l  

l  

c  

o  

f  

t  

t  

p  

i  

s  

s  

H  

(  

i  

i  

r  

Table 6 

Word Error Rate on the Nov’92 testset of the WSJ corpus. 

#Conv. Params. denotes the number of parameters in the 

convolution layers, #Class. Params. denotes the number of 

parameters in the classifier stage. M stands for million. 

Input System #Conv. #Class. WER 

params. params. (in %) 

MFCC GMM na 4M 5.1 

MFCC ANN-1H na 3.1M 7.0 

MFCC ANN-3H na 5.6M 6.4 

RAW CNN-1H 46k 3.1M 6.7 

RAW CNN-3H 61k 5.6M 5.6 

Table 7 

Word Error Rate on the testset of the MP-DE corpus. 

The GMM and ANN-3H baseline performances are reported 

in Razavi et al. (2014) . #Conv. Params. denotes the num- 

ber of parameters in the convolution layers, #Class. Params. 

denotes the number of parameters in the classifier stage. M 

stands for million. 

Input System #Conv. #Class. WER 

params. params. (in %) 

PLP GMM na 3.8M 26.6 

PLP ANN-1H na 2.2M 26.7 

PLP ANN-3H na 8.8M 25.5 

RAW CNN-1H 61k 1.6M 24.4 

RAW CNN-3H 92k 8.7M 23.5 

Table 8 

Word Error Rate on the testset of the MP-FR corpus. The GMM 

and ANN-3H performances are reported in Razavi and Magimai.- 

Doss (2014) . #Conv. Params. denotes the number of parameters 

in the convolution layers, #Class. Params. denotes the number 

of parameters in the classifier stage. M stands for million. 

Input System #Conv. #Class. WER 

params. params. (in %) 

PLP GMM na 3.8M 26.8 

PLP ANN-1H na 2.2M 27.0 

PLP ANN-3H na 8.8M 25.5 

RAW CNN-1H 61k 1.5M 25.9 

RAW CNN-3H 92k 8.7M 23.9 
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A  
E and MP-FR, the best performing HMM/GMM systems reported
n Razavi et al. (2014) and Razavi and Magimai.-Doss (2014) , respec-
ively are presented. These systems have a greater number of tied states
han the hybrid HMM/ANN and the CNN-based system presented here.

.3.1. TIMIT 

Table 4 presents the results on TIMIT phone recognition task in terms
f phoneme error rate (PER). It can be observed that the proposed CNN
ased approach outperforms the conventional cepstral feature-based
ystem. In Mohamed et al. (2012 , Fig. 6), ANNs with different hidden
ayers were investigated with cepstral feature as input. The best perfor-
ance of 23.0% PER for the case of random initialization is achieved
ith 7 hidden layers, 3072 hidden nodes per layer and 17 frames tem-
oral context (8 preceding and 8 following). With pre-training, the best
erformance of 22.3% PER is achieved with 6 hidden layers, 3072 hid-
en nodes per layer and 17 frames temporal context. The CNN-3H sys-
em performs better than those systems as well. 

Table 5 contrasts our results with a few prominent results on
IMIT using ANNs. Inputs of these systems are either MFCCs (com-
uted as presented in Section 4.2.1 ), Mel filterbanks energies (ab-
reviated as FBANKs) or “improved ” MFCC features (denoted as
FCC + LDA + MLLT + fMLLR), which are obtained by applying decorre-

ation processes (linear discriminant analysis and maximum likelihood
inear transform) and speaker normalization (feature-space maximum
ikelihood linear regression) ( Rath et al., 2013 ) to the original MFCC
oefficient. One can see that the proposed approach outperforms most
f the systems using MFCCs features. Systems using improved MFCCs
eatures yields better results than the proposed approach, mainly due
o the speaker normalization technique, which could be developed for
he proposed approach. For instance, speaker adaptation in our ap-
roach could be achieved in an unsupervised manner by using learn-
ng hidden unit contributions (LHUC) method at the classifier/MLP
tage ( Swietojanski et al., 2016 ). At the filter stage, one could pos-
ibly adopt an approach similar to the approach proposed in ( Abdel-
amid and Jiang, 2013 ). Finally, one can see that RNN-based systems

the three last entries of Table 5 ) clearly yield the best performance. It
s worth noting that the proposed CNN-based approach could be used
n a RNN-based architecture, where the MLP-based classifier stage is
eplaced by a RNN. This approach raises the issue of the high dimen-
22 
ionality of the filter stage output. It could be addressed by adding more
onvolution and max-pooling layers, which will effectively reduce the
utput dimensionality. Such an approach we have explored successfully
n the context of extension of our approach where the MLP is replaced
y single layer perceptron to reduce the overall complexity of the sys-
em in terms of parameters while retaining the performance ( Palaz et al.,
014 ). 

.3.2. WSJ 

The results for the LVCSR study ( Palaz et al., 2015b ) on the WSJ cor-
us is presented in Table 6 . For the baseline systems and the proposed
ystem. As can be observed, the CNN-1H based system outperforms the
NN-1H based baseline system, and the CNN-3H based system also out-
erforms the ANN-3H based system with as many parameters. 

.3.3. MP-DE 

The results on the Mediaparl German corpus are presented in Table 7 .
he CNN-1H based system outperforms the GMM-based system, the
NN-1H based system and the ANN-3H system with four times less pa-
ameters. The CNN-3H system also outperforms the baseline. 

.3.4. MP-FR 

The results on the Mediaparl French corpus are presented in Table 8 .
gain, a similar trend can be observed, i.e. the CNN-1H based system
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utperforms the ANN-1H baseline and the CNN-3H outperforms the
NN-3H based system. 

In summary, these studies show that with minimal assumptions the
roposed approach is able to learn to process the speech signal to esti-
ate phone class conditional probabilities 𝑃 ( 𝑖 |𝐬 𝑐 

𝑡 
) and yield a system that

utperforms conventional cepstral feature based system using DNNs.
urthermore, we consistently observe that the CNN-1H system yields
erformance comparable to ANN-3H system with considerably fewer
arameters. 

. Analysis 

The aim of this section is to gain insight into the proposed approach.
owards that this section focuses on analysis at two levels: (a) analysis
f the first convolution layer ( Section 5.1 ) which operates on the speech
ignal directly. Thus, can be related to and can be contrasted with tra-
itional speech processing; and (b) analysis of the intermediate feature
epresentations obtained at the output of the feature stage ( Section 5.2 ).

.1. First convolution layer 

In this section, we present an analysis of the first convolution layer.
e first provide an input level analysis, where the hyper-parameters of

he layer (found experimentally) are compared against the conventional
peech processing approach. We then show that the convolution layer
an be interpreted as a bank of matching filters. Finally, we analyze
ow these filters respond to various inputs and present a method to
nderstand the filtering process. 

.1.1. Input level analysis 

To learn to process raw speech signal and estimate 𝑃 ( 𝑖 |𝐬 𝑐 
𝑡 
) the pro-

osed approach employs many hyper-parameters which are decided
ased on validation data. We can get insight into the approach by re-
ating or contrasting a few of the hyper-parameters to the traditional
peech processing. First among that is time span of the signal w in used
o estimate 𝑃 ( 𝑖 |𝐬 𝑐 

𝑡 
) . From Table 3 , we can observe that w in varies from

90 ms to 310 ms. This is consistent with the literature which supports
he idea of processing syllable length speech signal (around 200 ms)
or classification of phones ( Hermansky, 1998 ). This aspect can be also
bserved in another way. Usually, in hybrid HMM/ANN system the in-
ut is the cepstral features (static + Δ + ΔΔ) at the current time frame
nd features of four preceding frames and four following frames. If the
rame shift is 10 ms and the temporal derivatives are computed using
wo frames preceding and two frames following context then the 9 frame
eature input models 170 ms of speech signal. 

Next, we can understand how the speech signal of time span of 190–
10 ms is processed at the input of the network through the kernel width
 kW ) and kernel shift ( dW ) of the first convolution stage. We can see
rom Table 3 that for all tasks kW is 30 speech samples and dW is 10
peech samples. Given that the sampling frequency is 16 kHz, this trans-
ates into a window of 1.8 ms and shift of about 0.6 ms. This is contrary
o the conventional speech processing where typically the window size
s about 25 ms, the shift is about 10 ms and the resulting features are
oncatenated at the classifier input. Note that in our case w in is shifted
y 10 ms, however within the window of 190–310 ms the speech is
rocessed at the sub-segmental level at the first convolution layer and
ubsequently processed by later convolution layers to estimate 𝑃 ( 𝑖 |𝐬 𝑐 

𝑡 
) . 

Such a sub-segmental processing at the first convolution layer could
ossibly be reasoned through signal stationarity assumptions. More pre-
isely, the convolution filters at the first stage are learned by discrim-
nating the phone classes at the output of the CNN. So, for the output
f the convolution filter to be informative (for phone classification), the
lter has to operate on stationary segments of the speech signal spanned
y w in . It can be argued that such a stationary assumption would clearly
old for one glottal cycle or pitch period of the speech signal. In such
 case suppose if the limit of the observed pitch frequency is assumed
23 
o be 500 Hz, i.e. beyond adult speakers’ pitch frequency range, then a
indow size of 2 ms or less would ensure that the filters operate on sta-

ionary segments, i.e. within a glottal cycle, which mainly contains vo-
al tract response related information. This is consistent with traditional
eature extraction methods (see Rabiner and Juang (1993) , Davis and
ermelstein (1980) and Hermansky (1990) for example), where the
ain emphasis is towards modeling vocal tract response information. 

.1.2. Learned filters 

The first convolution layer learns a set of filters that operates on the
peech signal in a similar way to filter bank analysis during MFCC or PLP
epstral feature extraction. In the case of MFCC or PLP cepstral feature
xtraction the number of filter banks and their characteristics are de-
ermined a priori using speech perception knowledge. For instance, the
lters are placed either on Mel scale or on Bark scale. Further, each of
he filters covers only a part of the bandwidth, out of which the response
s strictly zero. The number of filters is chosen based on bandwidth in-
ormation. For instance, in the case of Mel scale around 24 filters for
 kHz bandwidth (narrow band speech) and 40 filters for 8 kHz band-
idth (wide band speech) are typically used. While in the case of Bark

cale, there are 15 filters for 4 kHz bandwidth and 19 filters for 8 kHz
andwidth ( Hönig et al., 2005 ). 

In contrast, in the proposed approach the number filters and their
esponses are learned in data-driven manner, i.e. while learning to esti-
ate 𝑃 ( 𝑖 |𝐬 𝑐 

𝑡 
) . It can be observed from Table 3 that the number of filters

or all the tasks is 80. This is well above the range typically used in
peech processing. In order to understand the learned filter characteris-
ics, we analyzed the filters learned on WSJ, MP-DE and MP-FR task in
he following manner: 

(i) The complex Fourier transform  of the filters learned on the
WSJ, MP-DE and MP-FR tasks for CNN-1H case are computed
using 1024 point FFT. The 512 point magnitude spectrum | 𝑚 | of
each filter m is then normalized, i.e. converted into a probability
mass function. F m 

denotes the normalized magnitude spectrum
of filter m . 

(ii) For each filter 𝑚 = 1 , … , 80 learned on WSJ, we find the closest
filter 𝑛 = 1 , … , 80 learned on MP-DE and MP-FR using symmetric
Kullback-Leibler divergence, 

𝑑 ( 𝐹 𝑚 , 𝐹 𝑛 ) = 

1 
2 
⋅ [ 𝐷 𝐾 𝐿 ( 𝐹 𝑚 ||𝐹 𝑛 ) + 𝐷 𝐾𝐿 ( 𝐹 𝑛 ||𝐹 𝑚 )] , (9) 

𝐷 𝐾𝐿 ( 𝐹 𝑚 ||𝐹 𝑛 ) = 

512 ∑
𝑢 =1 

𝐹 𝑢 
𝑚 
ln 

𝐹 𝑢 
𝑚 

𝐹 𝑢 
𝑛 

, (10) 

where 𝐹 𝑢 
𝑚 

is the normalized magnitude at u th point of FFT of
filter m of WSJ CNN-1H and 𝐹 𝑢 

𝑛 
is the normalized magnitude at

u th point of FFT of filter n of MP-DE CNN-1H or MP-FR CNN-1H.

Fig. 8 presents the magnitude of the Fourier transform of a few filters
earned on WSJ (on the left column) and the closest filters learned on the
P-DE task (on the middle column) and on the MP-FR task (on the right

olumn). We can make two observations. First, the filters are focusing
n different parts of the spectrum. However, unlike the filter banks in
he MFCC or PLP cepstral feature extraction, the frequency response
f the filters covers the whole bandwidth. Second, it can be observed
hat similar filters can be found across domains and languages, although
here is a difference in the spectral balance, especially as observed in the
ase of Fig. 8 (b). 

To further visualize the learned filters, we ordered the filters accord-
ng to the frequency at which the response is maximum. We treat these
requencies as the center frequencies of the learned filters. Fig. 9 plots
he center frequencies of the learned filters along with the center fre-
uencies of 80 critical bands mel-scale filter bank and Gammatone filter
ank. It can be observed that the learned filter placements to a certain
xtent tend to match the auditory motivated filter banks, in particular
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Fig. 8. Examples of three close pairs of filters learned. The left column is from CNN-1H WSJ, the center one is from CNN-1H MP-DE, the right one is from CNN-1H 

MP-FR. 
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el scale filter bank, in the lower half of the bandwidth, i.e. 0 Hz and
 kHz but differ considerably in the upper half of the bandwidth. In con-
rast, in the works of Sainath et al. (2015) and Tüske et al. (2014) the
lter placements were found to be close to Gammatone filter bank. A
otential reason for this difference could be that in these works the fil-
er lengths and the number of filters were set based on prior knowl-
dge. When comparing across WSJ, MP-DE and MP-FR, the learned
lter placements for MP-FR and MP-DE are similar to each other but
iffer from that of WSJ. Having said that it is worth pointing out that
he learned filters can have more than one pass band, as can be seen
n Fig. 8 . So generalizing these observations in comparison to auditory
otivated filter banks is not trivial. 

To further understand the characteristics of the learned filters, we
stimated the cumulative frequency response of all the learned filters: 

 𝑐𝑢𝑚 = 

80 ∑
𝑛 =1 

𝐹 𝑛 (11)
 

24 
Fig. 10 presents the gain normalized cumulative frequency responses
or CNN-1H WSJ, CNN-1H MP-DE and CNN-1H MP-FR. We can make
hree key observations, 

(i) Emphasis is given to frequency regions below 3500 Hz (telephone
bandwidth) and high frequency region in the range of 6000–
8000 Hz. 

(ii) Though the filters are learned on different languages and corpora,
we can see that below 4000 Hz and above 6500 Hz the frequency
response for WSJ, MP-DE and MP-FR are similar. As the filters are
operating on sub-segmental speech, we speculate that the peaks
(high energy regions) are more related to the resonances in the
vocal tract or phoneme discriminative invariant information. Be-
tween 4000 Hz and 6500 Hz, we can see that MP-DE and MP-FR
have responses that closely match but are different than WSJ.
Overall, we observe that the spectral balance for WSJ is different
than for MP-DE and MP-FR. We attribute this balance mismatch
mainly to the fact that the WSJ and the Mediaparl corpora are
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Fig. 9. Plot of learned filters for WSJ, MP-DE and MP-FR ordered according 

to the frequency of maximum response along with the center frequencies of 80 

critical band Mel-scale and Gammatone filter banks. 

Fig. 10. Cumulative frequency responses of the learned filters on WSJ, MP-DE 

and MP-FR. 
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different domains in terms of type of speech (read vs. sponta-
neous) and recording environment (controlled vs real world). In
the following sub-section and Section 5.2.2 we touch upon this
aspect again. 

(iii) Auditory filter banks such as Mel scale filter banks or Bark scale
filter banks are usually designed to have a cumulative frequency
response that is flat. In other words, constant Q bandpass filter
bank. In contrast to that, it can be seen that the cumulative fre-
quency response of the learned filters is not constant Q band-
pass. The main reason for that is standard filter banks emerged
from human sound perception studies considering the complete
auditory frequency range or the bandwidth, so as to aid analy-
sis and synthesis (reconstruction) of the audio signal. However,
in our case these filters are learned for the purpose of discrimi-
nating phones, and the speech signal contains information other
than just phones. The figure suggests that, for discriminating only
phones, constant Q bandpass filter bank is not a necessary condi-

tion. s  

25 
.1.3. Response of filters to input speech signal 

In Section 5.1.1 , we observed that the speech signal of time span
90–310 ms is processed in sub-segmental manner. In the previous sec-
ion, we observed that the filters that operate on sub-segment of speech
ignal are tuned to different parts of the spectrum during training. In
ther words, matched to different parts of the spectrum relevant for
hone discrimination. In this section, we ascertain that by analyzing
he response of the filters to the input speech signal in relationship with
hones. 

The CNNs in the WSJ, MP-DE and MP-FR studies are trained to clas-
ify cCD units, which can be quite distinctive across languages. So, in
rder to facilitate the analysis across languages, we train CNNs with
ingle hidden layer on WSJ, MP-DE and MP-FR data to classify context-
ndependent phones with the same hyper parameters. We denote these
NNs as CNN-1H-mono WSJ, CNN-1H-mono MP-DE and CNN-mono
P-FR, respectively. 

As a first step, we analyze the energy output of the fil-
ers to the input speech signal. Formally, for a given input 𝐬 𝑡 =
 𝑠 𝑡 −( 𝑘𝑊 −1)∕2 … 𝑠 𝑡 +( 𝑘𝑊 −1)∕2 } , the output y t of the first convolution layer
s given by: 

 𝑡 [ 𝑚 ] = 

𝑙=+( 𝑘𝑊 −1)∕2 ∑
𝑙=−( 𝑘𝑊 −1)∕2 

𝑓 𝑚 [ 𝑙] ⋅ 𝑠 𝑡 + 𝑙 ∀𝑚 = 1 , ., 𝑑 𝑜𝑢𝑡 (12)

here f m 

denotes the m th filter in first convolution layer and y t [ m ] de-
otes the output of the filter at time frame t . Fig. 11 presents the output
f the filters of CNN-1H-mono WSJ given a segment of speech signal
orresponding to phoneme / I / as input. 

It can be seen that at each time frame only a few filters out of the
0 filters have high energy output. An informal analysis across different
hones showed similar trends, except that the filters with high energy
utput were different for different phones. Together with the findings
f the previous section, this suggests that the learned filters could be a
ictionary that models the information in the frequency domain in-parts

or each phone. With that assumption, we extended the analysis where,

1. the magnitude spectrum  𝑡 of the input signal s t based on the dic-
tionary is estimated as: 

 𝑡 = | 𝑀 ∑
𝑚 =1 

𝐲 𝑡 [ 𝑚 ] ⋅  𝑚 |, (13)

where y t [ m ] is the output of filter m as in Eq. (12) and  𝑚 is the
complex Fourier transform of filter f m 

. 
It is worth noting that if the dictionary was to correspond to a bank
of kW Fourier sine and cosine bases then  𝑡 is nothing but the Fourier
magnitude spectrum of the input signal s t . As y t [ m ] would be a pro-
jection on to the Fourier basis corresponding to discrete frequency
m , and  𝑚 would ideally be a Dirac delta distribution centred at the
discrete frequency m . 

2. A frame level magnitude spectrum  𝑖 for phone i is estimated by av-
eraging the magnitude spectrum  𝑡 obtained over speech signal of
length equal to frameshift, which in our case is 10 ms. More pre-
cisely, with in 10ms speech,  𝑡 is estimated every 10 samples as per
Eq. (13) and averaged by the number of sub-segmental frames in
10 ms or 160 samples speech, i.e. 16.  𝑖 can be seen as the average
spectral information that is modeled every 10 ms. 

We performed a qualitative analysis on American English vowels
ataset, which contains 12 vowels produced by 45 men, 48 women, and
6 in h-V-d syllables (e.g., had, hid, hood) ( Hillenbrand et al., 1995 ). The
nalysis was carried out using the filters in the first convolution layer of
SJ CNN-1H-mono. We used 256 points for DFT. Fig. 12 presents the
 𝑖 estimated for a frame of /ah/, /eh/, /er/, /oa/, /uw/ and /iy/ pro-
uced by male speaker m01 , female speaker w01 , boy speaker b01 and
irl speaker g01 . In the plots, the observed first and second spectral
eaks have been marked and contrasted with the F1-F2 (first format-
econd formant) range obtained in the coarse sampling part of the orig-
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Fig. 11. Normalized energy output of each filter in the 

first convolution layer of CNN-1H-mono WSJ for an in- 

put speech segment corresponding to phoneme / I /. 
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nal study by Hillenbrandt et al. 2 It can be observed that the spectrum
stimates are different for different vowels. Furthermore, except for few
ases, the marked spectral peaks correspond to F1-F2 range. In the case
f /ah/, only one peak is discernible due to merger of the first two for-
ants. Similarly, in the case of /oa/ for speaker b01 , only one peak

s discernible due to merger of the first two formants. Merging of for-
ants appears to happen in the case for the second spectral peak of /iy/

f speaker g01 , due to merger of F2 and F3. The magnitude spectrum
lso has ripples. The ripples and the merger of close by formants could
otentially be a consequence of the short kernel width i.e. 30 samples,
.e. sub-segmental speech processing. We performed similar analysis on
 few other speakers in the American vowel dataset and found that the
etected peaks tend to correspond to F1-F2 formant ranges obtained
n the original acoustic analysis study. It is interesting to note that the
nalysis holds well for children speech, despite the net being trained on
dult speech. 

American English vowel dataset is a controlled dataset, where the
honetic context is restricted. In order to ascertain that the observations
ade above holds true irrespective of the phonetic context or speak-

rs, we performed an analysis on the validation data of WSJ, MP-DE
nd MP-FR using the filters in the first convolution layer of respective
NN-1H-mono, where given the segmentation the frame level spectrum
stimates  𝑖 are averaged across all the speakers for each phone i . We
enote the speaker averaged spectrum as ̄ 𝑖 . Fig. 13 displays ̄ 𝑖 of a
ew prominent vowels (notated in the SAMPA format) for WSJ, MP-DE
nd MP-FR. It can be observed that the frame level magnitude spectrum
veraged across speakers is different for each vowel. This difference is
articularly observable in the frequency regions below 4000 Hz and in
he frequency regions between 6000 Hz and 8000 Hz. We had earlier ob-
erved in Section 5.1.2 that these are frequency regions that the learned
lters give emphasis to. The prominent spectral peaks could be related
o the formants. However, a detailed formant analysis similar to the
rame level analysis on American English vowels dataset is practically
nfeasible for two main reasons: 

(a) First, the formant frequencies and their bandwidths for males and
females are different. The frequency responses here are result of
averaging over several male and female speakers in the respective
validation data set; and 
2 https://homepages.wmich.edu/~hillenbr/voweldata/vowdata.dat . 
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f  

c  
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26 
(b) Second, the analysis here has been carried on validation data,
not on actual training data. So there can be spurious information
present due to unseen condition or variation. 

For instance, in the case of /A/, see Fig. 13 (e), we observe a promi-
ent peak at around 1000 Hz, which could be seen as merger of first for-
ant and second formant as a consequence of window effect and aver-

ging over male and female speakers. Taking these aspects into account,
e examined the frequency responses in the case of WSJ ( Fig. 13 (a)).
e found that the prominent spectral peak locations tend to relate well

o the first formant, second formant and third formant information pro-
ided for English vowels in Deng and O’Shaughnessy (2003 , p. 233). It is
orth mentioning that a similar observation that filters capture formant

nformation has been made when learning jointly feature and classifier
rom short-term magnitude spectrum ( Biem et al., 2001 ). When compar-
ng across the languages ( Fig. 13 (d) and Fig. 13 (e)) we observe a trend
imilar to the cumulative response of the filters ( Fig. 10 ). Specifically,
he spectral peak locations and spectral balance match well for MP-DE
nd MP-FR. However, in the case of WSJ the spectral peak locations tend
o match but the spectral balance is different than MP-DE and MP-FR. 

The analysis on American English vowels dataset, WSJ, MP-DE and
P-FR together indicates that the first convolution layer is learning for-
ants related information. 

.2. Intermediate feature level analysis 

In this section, we focus on the analysis of intermediate feature rep-
esentations that are being learned at the output of the feature learning
tage. In that regard, Section 5.2.1 focuses on the discriminative aspects
f the learned feature representations. Section 5.2.2 then focuses on the
ross-domain and cross-lingual aspects. 

.2.1. Discriminative features 

In the recognition studies presented earlier in Section 4 , it was ob-
erved that CNN-1H system with much fewer parameters outperforms
NN-3H system on all the tasks. Furthermore, we also observed that the
omplexity of the proposed CNN-based system lies more at the classifier
tage. Given that the intermediate feature representations are learned in
he process of training 𝑃 ( 𝑖 |𝐬 𝑐 

𝑡 
) estimator, it can be presumed that these

eatures are more discriminative compared to cepstral-based feature rep-
esentations, and thus needs less parameters at the classifier stage. To
ully ascertain that aspect, we conduct an experiment to compare the
epstral features and the intermediate feature representations learned
y the CNN. Specifically, we train and test three single layer perceptron

https://homepages.wmich.edu/~hillenbr/voweldata/vowdata.dat
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Fig. 12. Magnitude spectrum  𝑖 for a 10 ms frame of American English vowels (a) /ah/, (b) /eh/, (c) /er/, (d) /oa/, (e) /uw/ and (f) /iy/ of speakers m01 , w01 , 
b01 and g01 . As mentioned earlier, the F1-F2 ranges were obtained from the coarse sampling part of the original study. 

Table 9 

Single layer perceptron-based system results on the 

Nov’92 test set of the WSJ task. 

Features Dimension WER 

(in %) 

MFCC 351 10.6 

CNN-1H 540 7.9 

CNN-3H 540 7.9 
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SLP) based systems on WSJ task. One with the MFCCs with tempo-
al context (39 ×9) as input and the others with intermediate features
earned by CNN-1H and CNN-3H. In the case of CNN-3H, w in is kept
ame as CNN-1H i.e. 210 ms. Table 9 presents the performances of the
hree systems. We can observe that the learned features lead to a bet-
er system than the cepstral features. Thus, indicating that the learned
27 
eatures are indeed more discriminative than the cepstral feature repre-
entation. Furthermore, it is interesting to note that the features learned
y CNN-1H and CNN-3H yield similar systems. It suggests that the gain
n ASR performance for the WSJ task using CNN-3H over CNN-1H is
argely due to more hidden layers 

.2.2. Cross-domain and cross-lingual studies 

Conventional cepstral-based features, like MFCC, are known to be
ndependent of the language or the domain, which is one of the main
easons they become “standard ” features. In the proposed system, the
eatures are learned in a data-driven manner, thus they may have some
evel of dependencies on the data. In order to ascertain, to what extent
he learned features are domain or language independent, we conducted
ross-domain and cross-lingual experiments. More precisely, as illus-
rated in Fig. 14 , in these experiments the filter stage was first trained
n one domain or language. It was then used as feature extractor to train
he classifier stage of another domain or language. 
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Fig. 13. Magnitude spectrum averaged across speakers ̄ 𝑖 (a) for phonemes / E /, / A /, / O /, / I / and / U / estimated by CNN-1H-mono WSJ; (b) for phonemes / E /, / A /, 

/ O /, / I / and / U / estimated by CNN-1H-mono MP-DE; (c) for phonemes / E /, / A /, / O /, / I / and / U / estimated by CNN-1H-mono MP-FR; (d) for phoneme /I/ in WSJ, 

MP-DE and MP-FR; and (e) for phoneme / A / in WSJ, MP-DE and MP-FR. The phonemes are notated in the SAMPA format. 

28 
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Fig. 14. Illustration of the cross-domain experiment. The filter stage is trained 

on domain 1, then used as feature extractor on domain 2. 

Table 10 

Cross-domain results on English. The TIMIT results are in 

terms of PER. The WSJ task results are in terms of WER. 

Classifier stage Feature stage Error rate 

(Domain 2) (Domain 1) (in %) 

TIMIT Learned on TIMIT 22.8 

Learned on WSJ 23.3 

WSJ Learned on WSJ 6.7 

Learned on TIMIT 7.8 
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Table 11 

Cross-lingual studies result on English, German and 

French. The feature stage is learned on Domain 1 and 

the classifier stage is learned on Domain 2. 

Classifier stage Feature stage WER 

(Domain 2) (Domain 1) (in %) 

WSJ Learned on WSJ 6.7 

Learned on MP-DE 12.1 

Learned on MP-FR 12.8 

MP-DE Learned on MP-DE 24.4 

Learned on MP-FR 26.1 

Learned on WSJ 30.9 

MP-FR Learned on MP-FR 25.9 

Learned on MP-DE 26.8 

Learned on WSJ 31.7 
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We use the TIMIT task and WSJ task for cross-domain experiments.
e investigate 

1. the use of feature stage of CNN-1H of WSJ task as feature extractor
for the TIMIT task. The classifier stage with single hidden layer is
trained on TIMIT to classify 183 phone classes. 

2. the use of feature stage of CNN-1H of TIMIT task as feature extrac-
tor for the WSJ task. The classifier stage with single hidden layer is
trained to classify 2776 clustered context-dependent units. 

In both of the studies, we set the number of hidden nodes to 1000,
imilar to the systems reported in Section 4 . The results of the two stud-
es are presented in Table 10 . In the case of TIMIT task the results are
resented in terms of PER, and in the case of WSJ task in terms of WER.
n the TIMIT task, we can observe that, despite the feature stage being
rained to classify clustered context dependent units on a much larger
orpus, the PER is inferior to the case where the feature stage is learned
n TIMIT. In the case of WSJ task, we observe that with feature stage
rained on TIMIT the WER is slightly worse (6.7% vs 7.8%). 

In addition to the fact that TIMIT and WSJ are two different cor-
ora, there are two other differences which could have had influence.
irst, WSJ is a much larger corpus than TIMIT in terms of data. Second,
n TIMIT CNN-1H the feature stage is learned by classifying context-
ndependent phones, while in WSJ CNN-1H the feature stage is learned
y classifying clustered context-dependent units. So, we conducted a
tudy on WSJ task to understand the influence of the type of units at the
utput of the CNN on the feature stage learning, while negating the data
ffect. More precisely, we use the feature stage of WSJ CNN-1H-mono
presented earlier in Section 5.1.3 ) as feature extractor and train the
lassifier stage to classify 2776 clustered context-dependent units. This
ystem leads to a performance of 7.3% WER, which is inferior to 6.7%
ER. This shows that indeed the type of units in the output of CNN has

n influence on the feature learning stage. When compared to the case
here the feature stage is learned on TIMIT, this result indicates that

he performance gap is combined effect of the difference between the
SJ and TIMIT data sets and the units used at the output of the CNN

earn the features. Finally, it is worth observing that TIMIT is a very
mall corpus compared to WSJ (3 h vs 88 h). However, the performance
29 
ifference is not drastic, which suggests that the relevant features can
e learned on relatively small amount of data. 

We investigate the cross-lingual aspects on WSJ, MP-DE and MP-
R tasks. We conduct studies where the feature stage is learned on one
anguage and the classifier stage is learned on the other language. For
hese studies, we use the feature stages of WSJ CNN-1H, MP-DE CNN-1H
nd MP-FR CNN-1H systems presented in Section 4 . The classifier stage
n all the studies consisted of a single hidden layer with 1000 nodes.
he classes at the output of classifier stage remained same as before, i.e.
776 cCD units for the WSJ task, 1101 cCD units for the MP-DE task
nd 1084 cCD units for the MP-FR task. Table 11 presents the results of
he study. 

Before we analyze the results in detail, we can consider broader as-
ects. Specifically, in terms of family of languages, English and German
elong to Germanic language family while French belongs to Romance
anguage family. Given that, it can be expected that the feature stage
earned on MP-DE to suit well for the WSJ task when compared to fea-
ure stage learned on MP-FR and vice versa. In the case of WSJ task
his trend is observed (12.1% vs. 12.8%). However, it is not observed in
he case of MP-DE task (30.9% vs. 26.1%). In general, we observe that
eature stage learned on another language leads to inferior system. The
erformance gap is drastic when the feature stage is learned on WSJ
nd the classifier stage is learned on Medialparl (MP-DE or MP-FR) and
ice versa. In addition to language differences, this can be attributed
o the other differences in WSJ corpus and Medialparl corpus. More
recisely, WSJ corpus contains read speech collected in controlled envi-
onment while Mediaparl contains spontaneous speech collected in real
orld conditions. This is also supported by the findings of the analysis
resented in Section 5.1.2 . Since MP-DE and MP-FR are similar kind of
ata except for the language, the drop in the performance is small (24.4–
6.1% in the case of MP-DE task and 25.9–26.8% in the case of MP-FR
ask). Languages typically have different phone sets and this difference
ets further enhanced when modeling context-dependent phones. As we
aw earlier in the cross-domain studies the choice of output units influ-
nces the feature stage. So, the small drop in performance in this case
an be more attributed to the phonetic level differences between Ger-
an language and French language. 

. Discussion and conclusions 

Motivated from recent advances in deep learning, the present pa-
er investigated a novel CNN-based acoustic modeling approach that in
 data- and task-driven manner determines the appropriate short-term
rocessing, which consists of determining the window size and the num-
er of filters for spectral processing, and learns the relevant representa-
ions from the speech signal to estimate phone class conditional proba-
ilities for ASR. In this approach, the acoustic model consists of a feature
tage and a classifier stage which are jointly learned during training.
pecifically, the input to the acoustic model is raw speech signal, which
s processed by several convolution layers (feature stage) and classified
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y an MLP (classifier stage) to estimate phone class conditional prob-
bilities. We evaluated the approach against the conventional acous-
ic modeling approach, which consists of independent steps: short-term
pectral based feature extraction and classifier training. Phone recogni-
ion studies on English and ASR studies on multiple languages (English,
rench, German) showed that the proposed acoustic modeling approach
an yield better recognition systems. 

To gain further insight, we performed analysis that largely focused
n the filter stage of the approach. The key findings of the analysis are
he following: 

1. Both the conventional acoustic modeling approach and the proposed
approach tend to model spectral information present in time span of
about 200 ms for phone classification. However, they differ in the
manner analysis is performed over that time span and feature repre-
sentations are obtained. Indeed, in the proposed approach, contrary
to the conventional wisdom of short-term processing, the signal is
processed at the sub-segmental level (speech signal of about 2 ms)
by the first convolution layer. The subsequent convolution layers
temporally filter and integrate the output of first convolution layer
to yield an intermediate representation. In other words, as illustrated
in Fig. 7 , the intermediate representation is obtained by processing
the information at multiple temporal resolutions. 

2. The filters in the first convolution layer learn from the sub-segmental
speech a spectral dictionary that discriminate phones. Specifically,
this dictionary was found to model formant related information.
These findings are particularly interesting for different reasons. First,
it validates the notion of formants and phone discrimination in
a data-driven manner, i.e. without making an explicit assumption
about speech production model. Secondly, sub-segmental spectral
processing means high time resolution and low frequency resolu-
tion. Conventional method of short-term processing (i.e. determina-
tion of the window size) has been developed considering the trade-
off between time resolution and frequency resolution and keeping
analysis-synthesis in mind. Our investigations show that loss of fre-
quency resolution due to sub-segmental speech processing is not af-
fecting the ASR performance. 
Having said that, in Yegnanarayana and Veldhuis (1998) , it has been
shown that formant information can be effectively extracted through
sub-segmental speech analysis. The method proposed in the above
cited article considers details like closed and open glottal phases,
positioning of the analysis window, choice of window size based on
the gender information, choice of appropriate all-pole or pole-zero
model to extract the formant information. The proposed approach
does not make any such prior considerations while processing sub-
segmental speech but still is found to model formant-like informa-
tion. This could be indeed possible in our case without any such
explicit considerations because, as pointed out in Section 5.1.1 , the
sub-segmental speech processed in the proposed approach is well be-
low one pitch cycle of an adult male or female speaker (under normal
speech conditions) and max pooling can provide shift invariance. 

3. The intermediate feature representations learned at the output of the
convolution stage are more discriminative than standard cepstral-
based features. This reaffirms the point that learning the features and
the classifiers jointly leads to more optimal systems when compared
to conventional ”divide and conquer ” approach. 

4. The intermediate feature representations learned have some level of
invariance across domains and languages. More specifically, in our
analysis we observed that the variation of the learned features seems
to come more from the domain characteristics as opposed to the set
of subword units from the languages. This suggests that learning fea-
tures in data-driven manner, as done using the proposed approach,
could lead to language-independent features. This needs to be fur-
ther investigated. 

The proposed approach paves path for further research and develop-
ent. We enumerate and discuss them briefly below. 
30 
1. noise robustness: as relevant features and classifier are automati-
cally learned, a question that arises is: whether such an approach is
robust in noisy conditions? In the analysis part, we have seen that
the first convolution layer models envelop of sub-segmental speech
signal spectrum. In particular formant-like information, which can
be considered as high signal-to-noise ratio regions in the spectrum.
Furthermore, subsequent processing through max pooling could be
seen as filtering of spurious temporal information present in each
filter output, while the second convolution layer filters could be in-
terpreted along the lines of modeling envelop modulations in piece-
wise manner and combining them. Thus, the proposed approach
could be expected to be robust. A preliminary investigation reported
in Palaz et al. (2015a) and the investigations on Aurora2 and Au-
rora4 tasks reported in Palaz (2016 , Chapter 5) indeed indicates that.

2. rapid adaptation of acoustic model: we have observed that the fea-
ture stage has considerably fewer parameters than the classifier
stage. This provides new means to adapt the acoustic model. Specifi-
cally, one of the main challenges often faced in adapting the acoustic
model to new domains is the amount of adaptation data available.
The data may not be sufficient to effectively adapt all the param-
eters in the acoustic model. In the proposed approach, this chal-
lenge could be addressed by only adapting the feature stage. Such
an approach would be analogous to maximum likelihood linear re-
gression (MLLR) ( Gales and Woodland, 1996 ) adaptation approach
where MLLR is used to transform the features as opposed to the
models (i.e. means and variances of the Gaussians). However, in
comparison to that, adaptation in the proposed framework would
present two distinctive advantages. First, the adaptation would by
default be discriminative, i.e. learned by improving discrimination
between the phone classes. Second, upon availability of more adap-
tation data both the feature stage and classifier stage can be adapted
in a straightforward manner. 

3. Sequence discriminative training: In the present work, the CNNs and
MLPs were trained with frame level cross entropy criteria. It has been
observed that sequence discriminative training such as maximum
mutual information (MMI) or the state-level minimum Bayes risk
(sMBR) criterion applied after cross entropy criteria-based training
boosts ASR system performance, for example see Vesely et al. (2013) .
Further investigations are needed to ascertain the benefit of such se-
quence discriminative training applied in the proposed CNN-based
framework. Along this direction we would like to also point to
CRF-based end-to-end phone sequence recognition work reported
in Palaz et al. (2013a) and Palaz (2016 , Chapter 7), where the pro-
posed CNN-based approach has been found to yield better system
than conventional cepstral feature based approach. 

4. End-to-end sequence prediction: in this article, we focused on an
acoustic modeling approach where time local information 𝑃 ( 𝑖 |𝐬 𝑐 

𝑡 
) is

estimated in an end-to-end manner. In our recent works, we have
shown that the proposed approach can be extended using conditional
random fields to perform end-to-end phoneme sequence recogni-
tion ( Palaz et al. (2013a) and Palaz (2016 , Chapter 7)). However,
performing full-fledged speech recognition through end-to-end se-
quence prediction is not trivial. One of the main reasons being that
to search effectively and efficiently the word hypothesis the relation-
ship between words need to be learned or modeled. As evident from
the present state-of-the-art HMM-based approach, the textual data
that is needed to learn the relationship between words is very dif-
ferent than the textual data contained in the acoustic model training
data. So, joint optimization of the acoustic model and the decoder
in end-to-end manner from scratch using a common data set is a
highly challenging problem, and is an up-and-coming research direc-
tion ( Graves and Jaitly, 2014; Amodei et al., 2015; Lu et al., 2016 ).

5. Going beyond conventional short-term speech signal processing: in
the proposed approach one of the novelties in comparison to sim-
ilar existing approaches is that short-term windowing and spectral
processing mechanism is determined during training in a data- and



D. Palaz, M. Magimai-Doss and R. Collobert Speech Communication 108 (2019) 15–32 

 

 

 

 

 

 

 

 

 

 

A

 

(  

T  

a  

c  

i  

t  

s  

D  

a  

i  

5  

f

R

A  

 

A  

 

 

A  

 

 

A  

 

 

 

 

B  

 

B  

 

B  

B  

B  

 

 

C  

 

C
C  

C  

D  

 

D  

 

D  

E  

F  

 

G  

G  

 

G  

 

G  

 

G  

 

H  

H  

H
H  

H  

H  

 

 

H  

H  

 

H  

I  

 

J  

 

K  

 

L  

L  

 

L  

L  

M  

M  

M  

M  

 

M  

 

N  

 

P  

P  

P  

 

 

P  

P  

 

P  
task-dependent manner. As a consequence of that, we found results
that while challenging our understanding about short-term speech
signal processing based on Fourier transform provide a link to alter-
nate sparse coding and dictionary learning based signal processing
methods. Thus, the approach opens the door to go beyond conven-
tional short-term processing and gain further understanding about
the speech signal. In that direction, at Idiap in an on-going work, the
second author is involved in building over the present work to learn
novel features for speaker recognition ( Muckenhirn et al., 2018 ) and
for developing countermeasures for spoofing or presentation attack
detection ( Muckenhirn et al., 2017 ). 
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