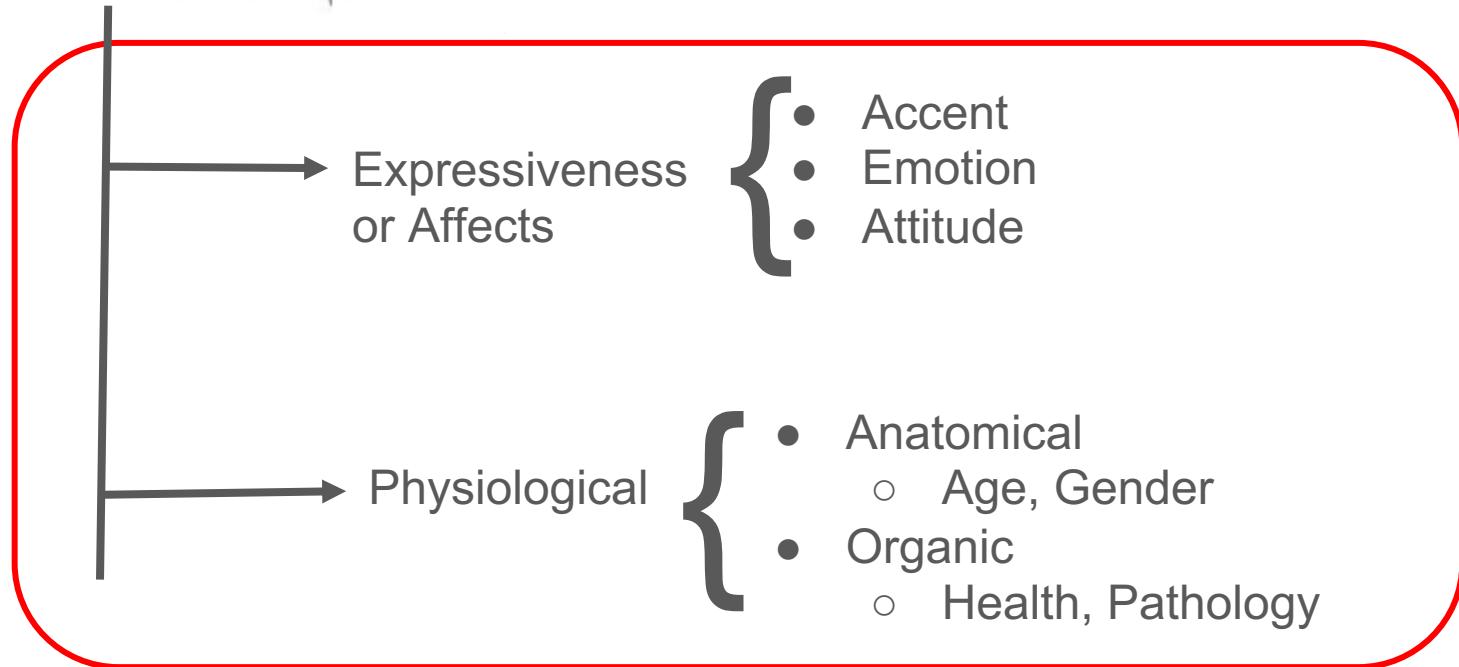


Computational Paralinguistics

Tilak Purohit

tilak.purohit@{idiap,epfl}.ch

Paralinguistics



Computational + Paralinguistics

Roughly means something is done by a computer and not by a human being

‘Paralinguistics’ means ‘alongside linguistics’ (from the Greek preposition παρά)

Term coined in 1950’s

Safe to claim that 30 years ago, neither the term ‘computational paralinguistics’ nor the field it denotes existed !

Paralinguistics: Going beyond linguistics

Paralinguistics deals with *traits* (long-term events) and *states* (short-term events)

- Long-term traits:
 - Biological (age, gender)
 - Cultural (ethnicity, race [dialect])
 - Personality ('big-five' personality traits)
- Medium-term b/w traits and states:
 - sleepiness, intoxication (e.g., alcoholisation), health state (e.g. depression), mood.
- Short-term states:
 - emotion-related states or affects, such as stress, happy, excited, frustration, pain

!! concerned with **how you say something**
rather than **what you say !!**

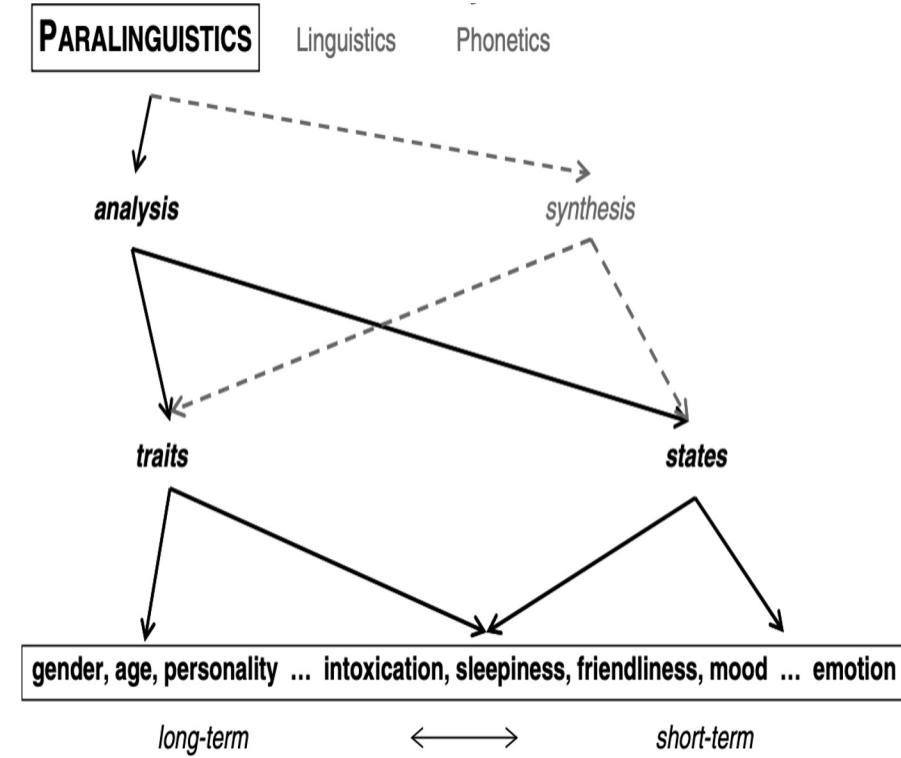


Image credit: computational paralinguistics book

Application areas

Understanding the user's states and traits can enhance the interactions between humans and human-computer interaction (HCI) interfaces.

- **Call Centers**
 - Quality of service
 - Coping with frustrated users
- **Education**
 - Detect attention & frustration
- **Observational practices**
 - Diagnosis and coaching
- **Healthcare**
 - Empathy detection in medical training
 - Assessment of therapist

Speech Analysis: 3 main speech organ groups

Lungs → Respiration, **Larynx** → Phonation and **Vocal Tract** → Articulation

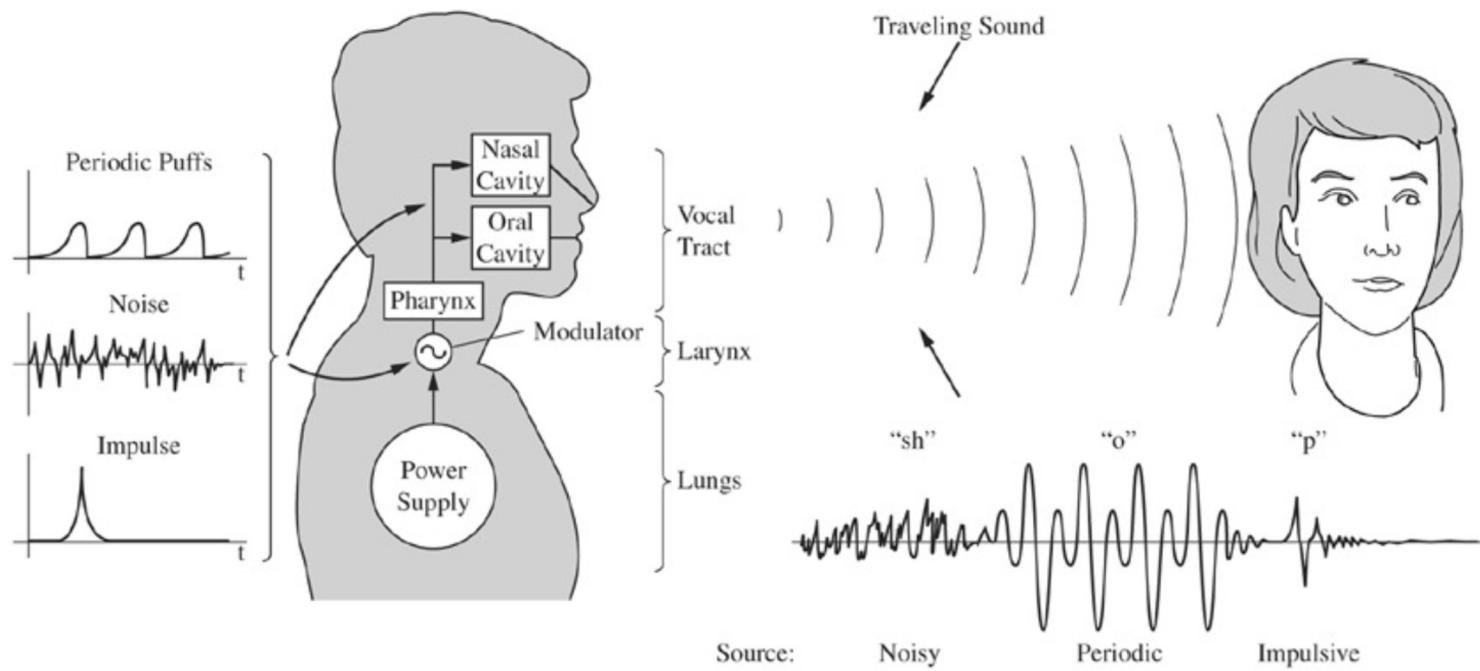
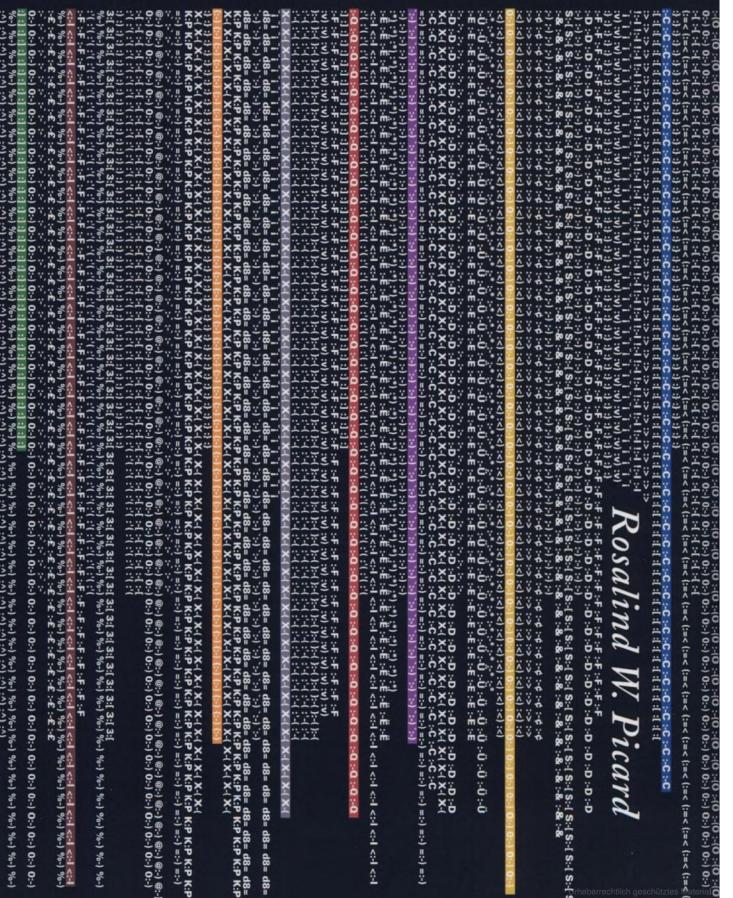


Image credit: USC SAIL

Speech Emotion Recognition

GOAL→ Design SER algorithms that replicate the human perception process to infer emotions.

AFFECTIVE COMPUTING



Speech Emotion Recognition

Categorical attributes : **(Classification task)**

4 basic emotion categories namely:

Happy(😊) Angry(😡) Neutral(😐) Sad(😢)

Dimensional attributes: **(Regression task)**

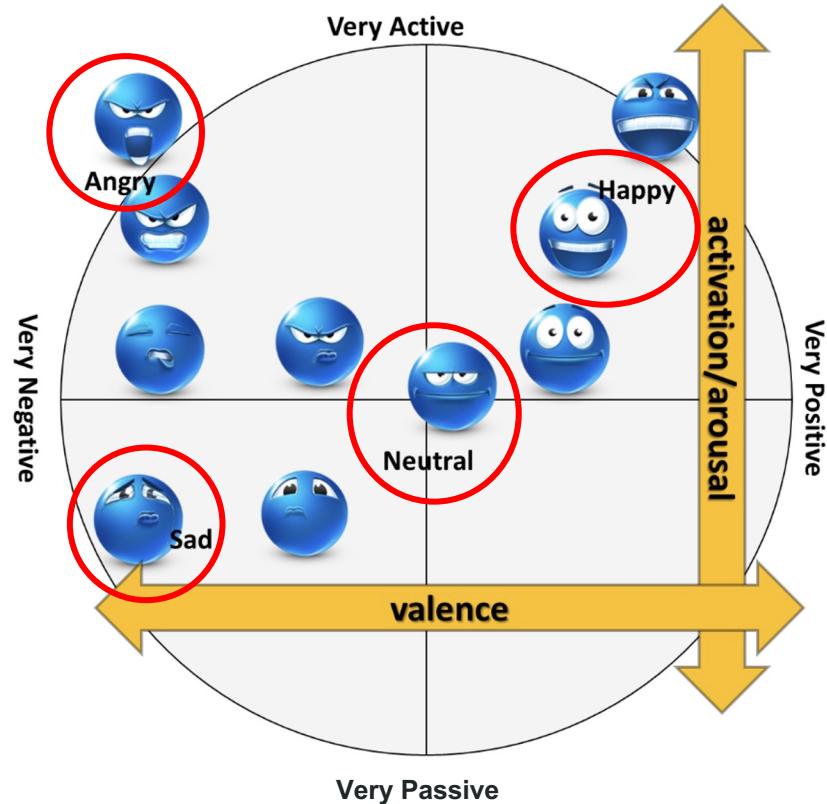
Valence (negative vs. positive)

Arousal (calm vs. active)

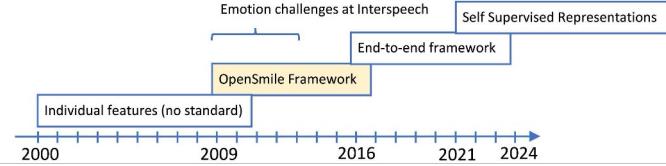
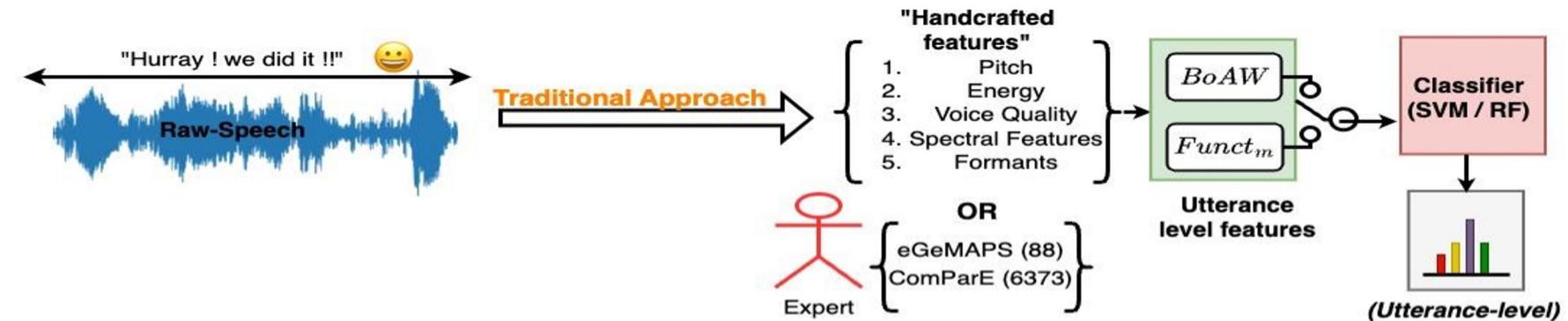
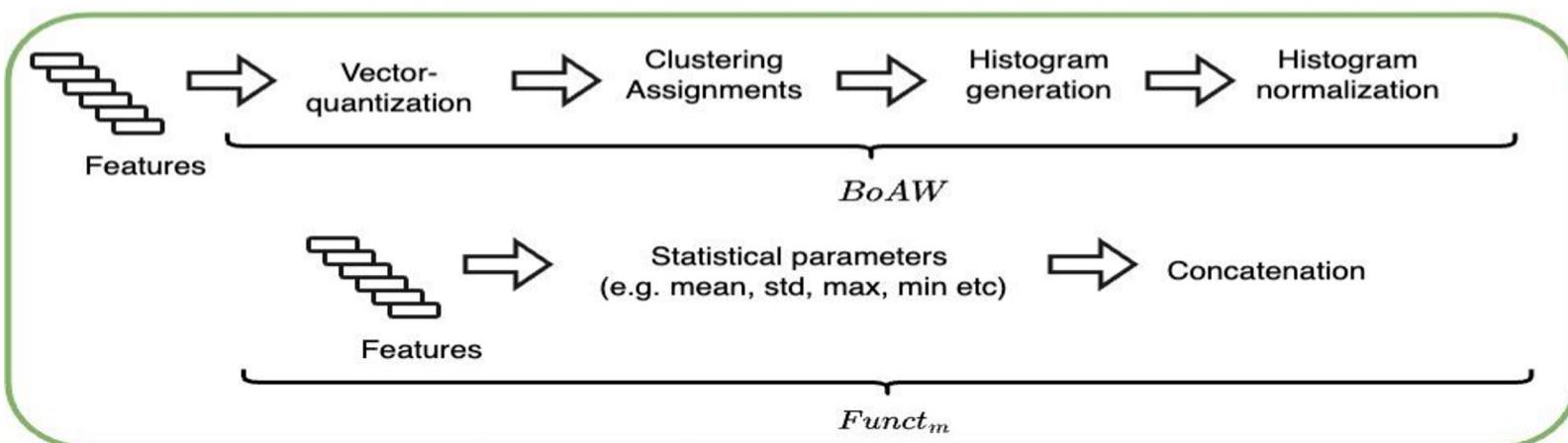
Happy

Angry

Sad



RECAP: Using handcrafted features



Study design (SER)

Categorical attributes :

Corpus **IEMOCAP**, 4 basic emotion categories namely:

Happy(😊) Angry(😡) Neutral(😐) Sad(😢)

Happy

Angry

Sad

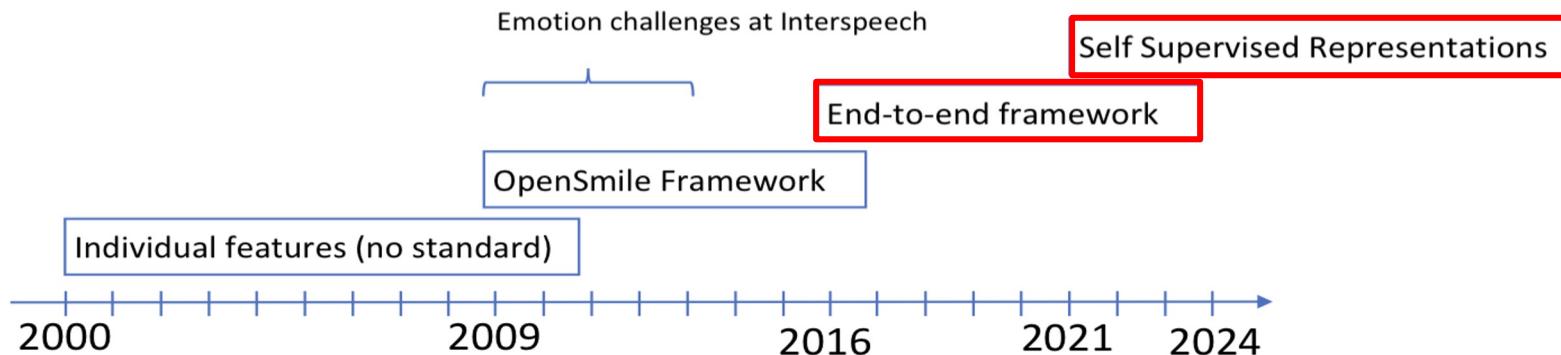
Protocol:

Conducted speaker-independent experiments by following **Leave-One-Speaker-Out (LOSp0)** methodology for training.

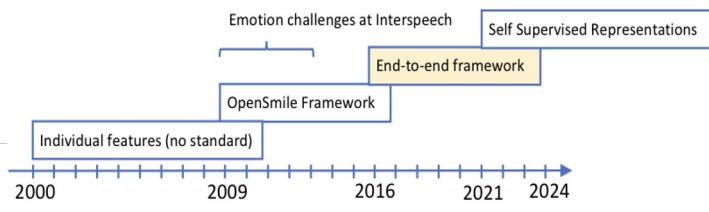
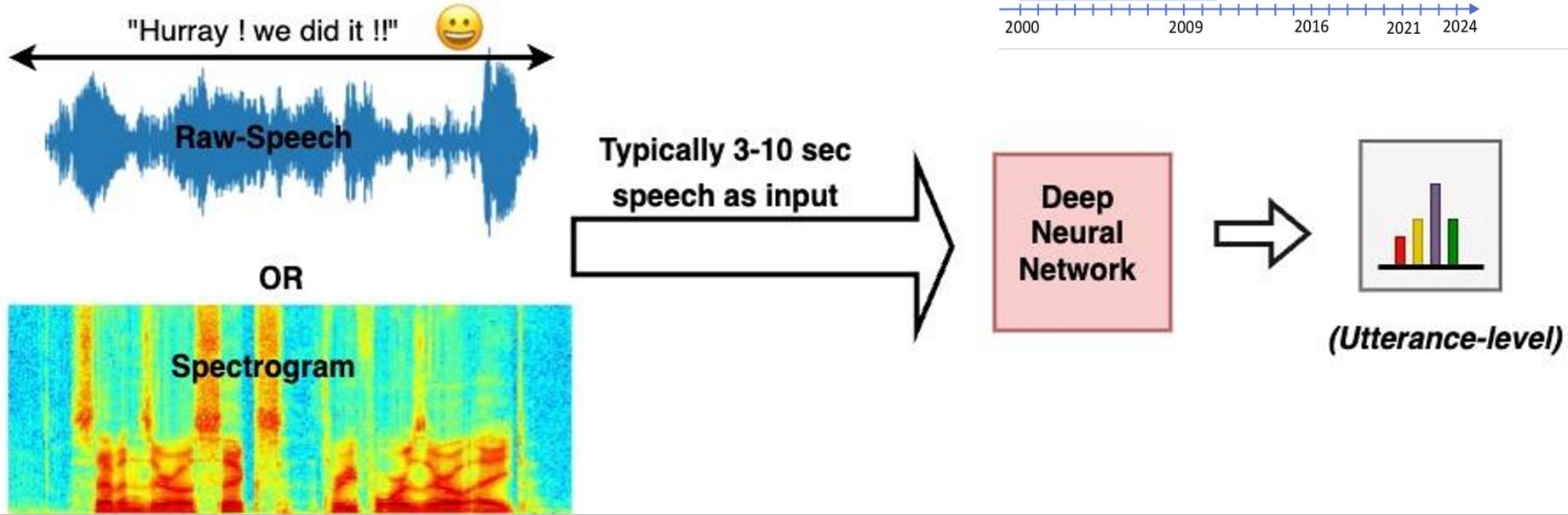
Evaluation Matrices:

Performance measurement : **Unweighted Average Recall (UAR)** .

Moving on to DL based methods



Goal: Learn features from data



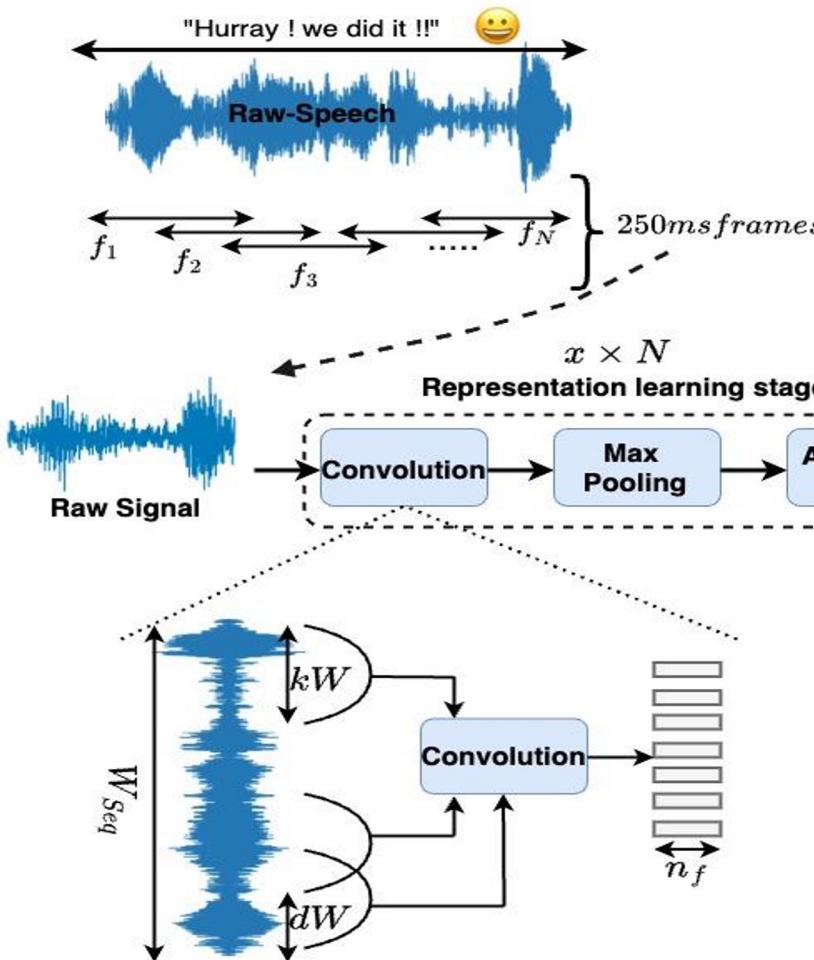
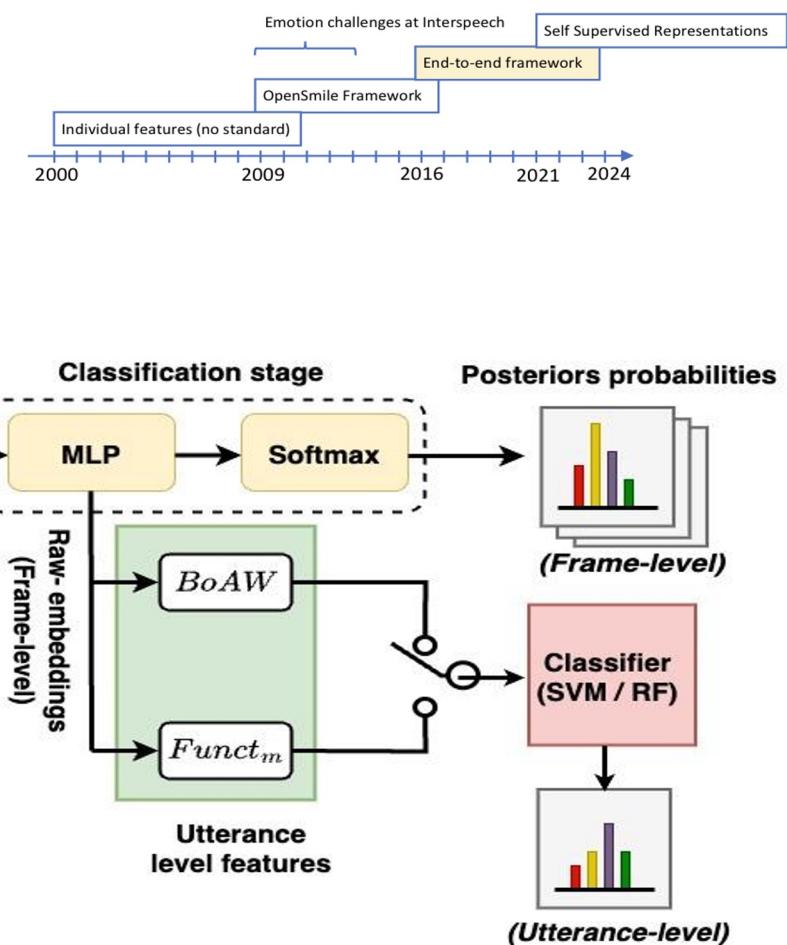
M. Neumann and T. Vu, "Attentive convolutional neural network based speech emotion recognition: A study on the impact of input features, signal length, and acted speech," in Proc. of Interspeech, 2017.

J.L. Li et al., "A waveform-feature dual branch acoustic embedding network for emotion recognition," Frontiers in Computer Science, 2020.

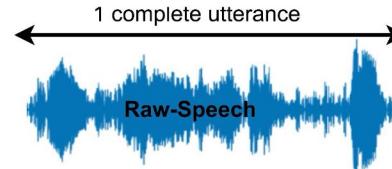
P. Kumawat and A. Routray, "Applying TDNN Architectures for Analyzing Duration Dependencies on Speech Emotion Recognition," in Proc. of Interspeech, 2021.

What is the smallest acoustic unit/segment in speech that contains emotion discriminative information?

Can emotion discriminative information be effectively learned-modeled from short segment of speech (of duration around 250 ms)?



Performance



$f_1 \longleftrightarrow f_2 \longleftrightarrow \dots \longleftrightarrow f_N$

250ms – frames
10ms – shift

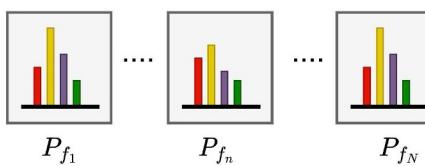
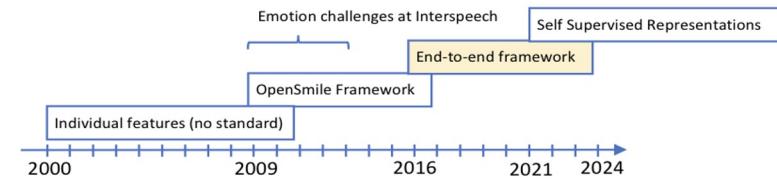


Table 2. Performance of previously reported systems measured in terms of UAR and Weighted Accuracy (WA); Utterance level (UL)

Method (Feature) – Duration	Metric	%
Att. CNN (logMel) – 7.5s [9]	WA	56.1
DBN-ivector (MFCC) – UL [13]	WA	57.2
CNN+LSTM (raw aud.) – 6s [14]	UAR	52.8
TDNN (MFCC) – 4s [15]	UAR	58.6

Systems Classifier UAR

Baseline systems - Speaker Independent

COMPARE _{LLD} × F	SVM	56.57
BoAW(COMPARE _{LLD})	SVM	56.63

Proposed systems - Speaker Independent

Raw-CNN	Softmax	57.4
Funct _{m, sd, sk, k} (S-EMBEDDINGS)	SVM	56.7

Takeaway:

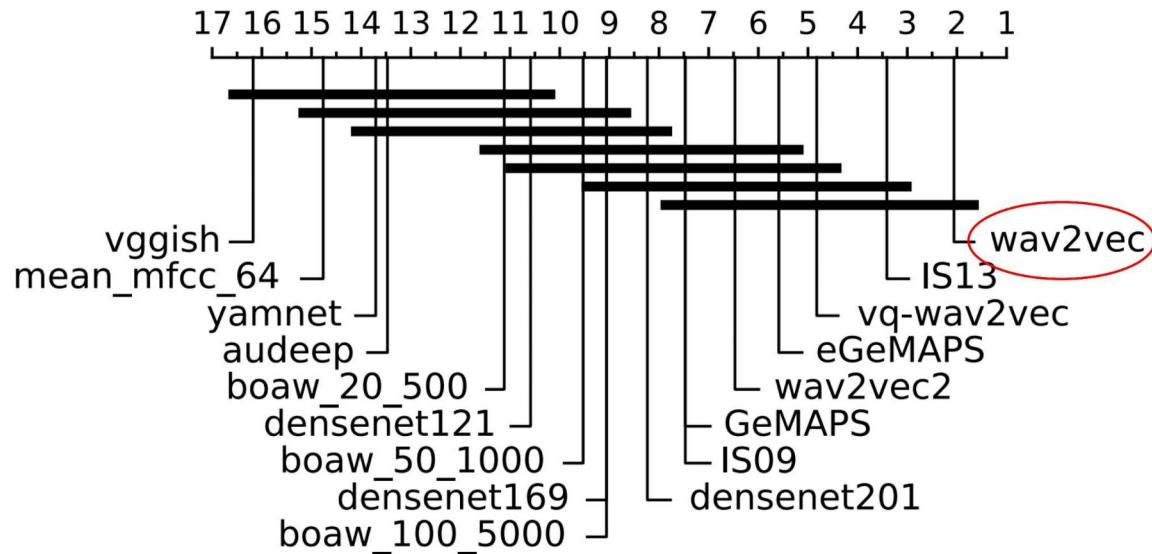
End-to-End modelling system can capture emotion discrimination information from short speech-segments

Different Acoustic feature & Neural Rep. Evaluation

17 different SER corpus and 17 different representations were evaluated by Keesing et al.

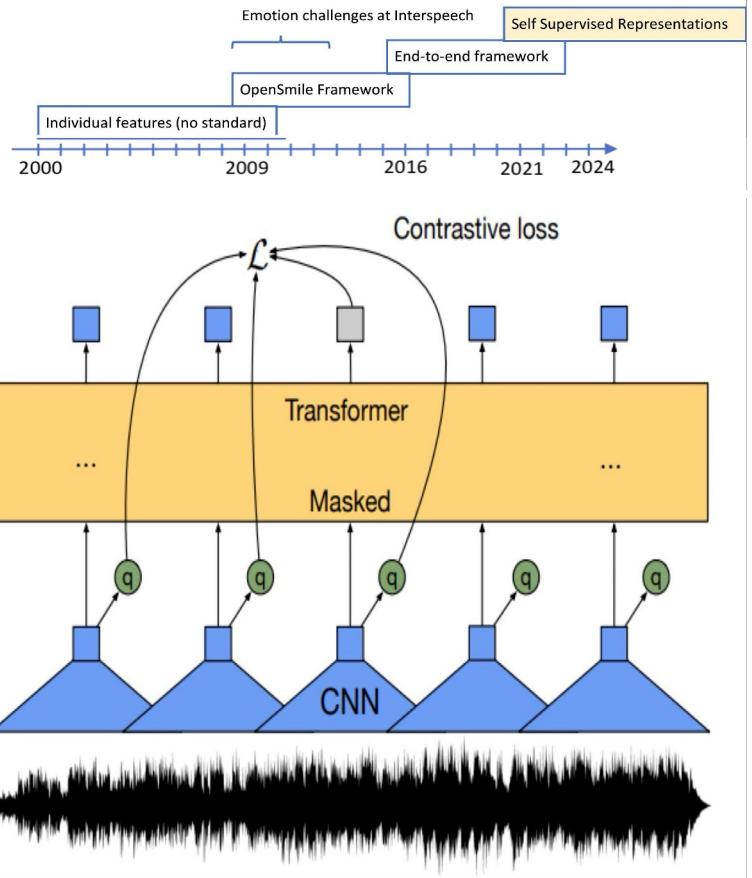
Observation:

Self-supervised representation achieved the best average performance.



Self Supervised Representations (SSLs)

- Trained using 1000 hrs of unlabelled speech data in a self supervised fashion.
- Model **learns some intrinsic properties** of the data.
- Four major speech SSL models or Speech Foundation Models (SFMs):
 - Wav2vec2.0 → HuBERT
 - Hubert → WavLM



A Baevski et al, "wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations". In Proc. of Neurips 2020, (Virtual).

A bit of detail on Speech Foundation Models (SFMs)

Wav2vec2.0

WavLM

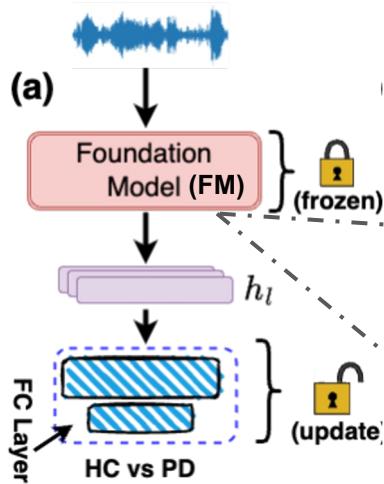
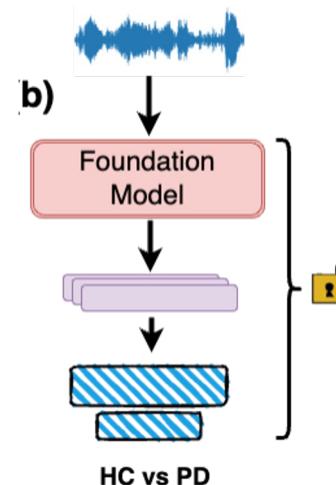
HuBERT

Whisper

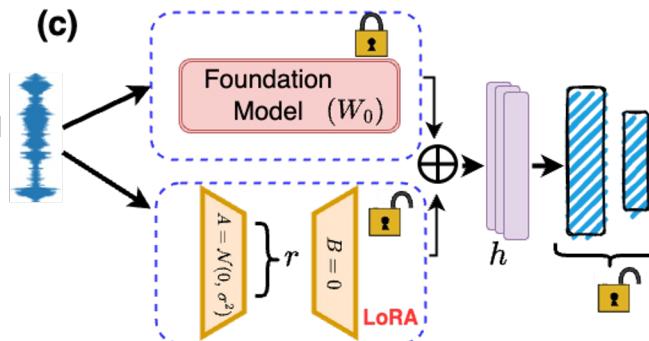
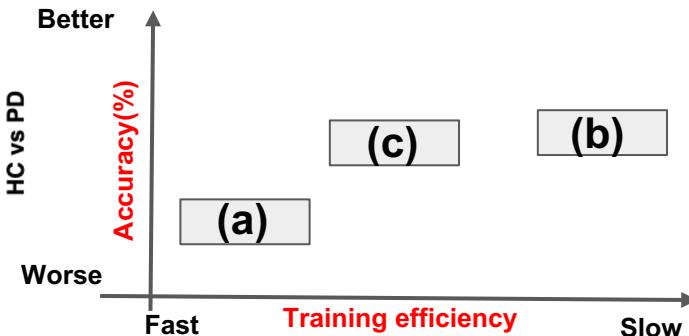
		BASE	LARGE	X-LARGE
Wav2vec2.0	CNN Encoder	strides kernel width channel	5, 2, 2, 2, 2, 2, 2 10, 3, 3, 3, 3, 2, 2 512	
WavLM	Transformer	layer embedding dim. inner FFN dim. layerdrop prob attention heads	12 768 3072 0.05 8	24 1024 4096 0 16
HuBERT	Projection	dim.	256	768
Whisper		Num. of Params	95M	317M
				964M

Model architecture summary for BASE, LARGE, and X-LARGE

How to use these models



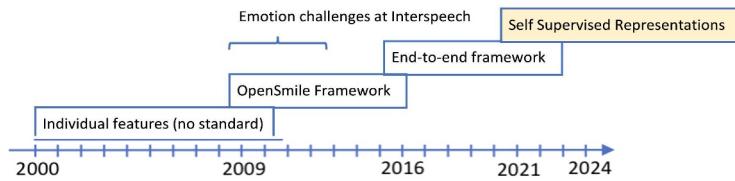
- PEFT
- There exists a low dimension reparameterization that is as effective for fine-tuning as the full parameter space.



Armen Aghajanyan, et.al, "Intrinsic Dimensionality Explains the Effectiveness of Language Model Fine-Tuning."

- Save only task specific parameters

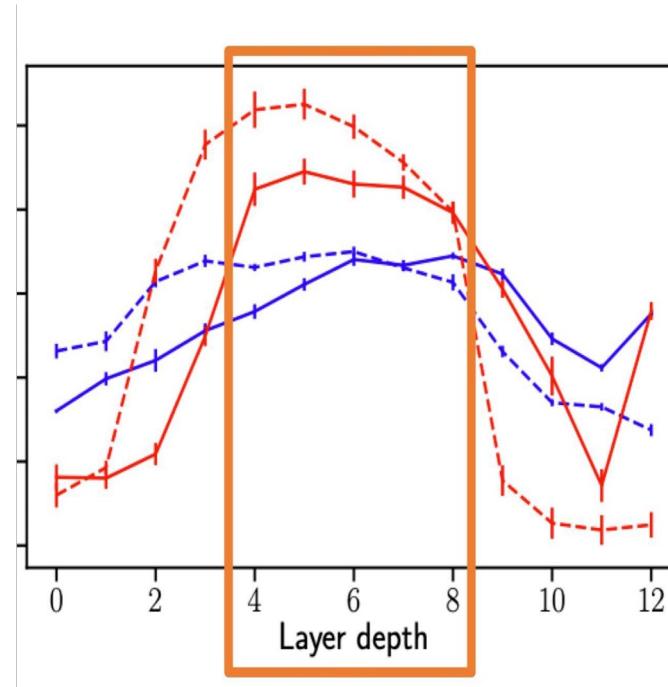
Layer-depth for SER



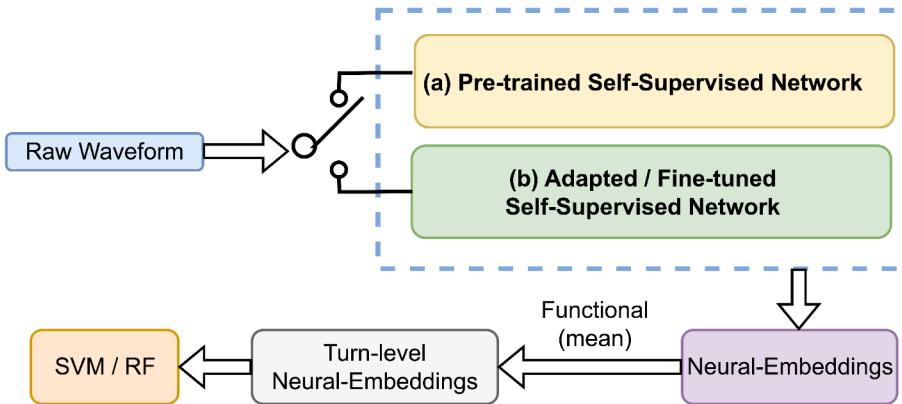
Analysed layers that contributes towards emotion recognition task.

SSL better than Spectrograms.

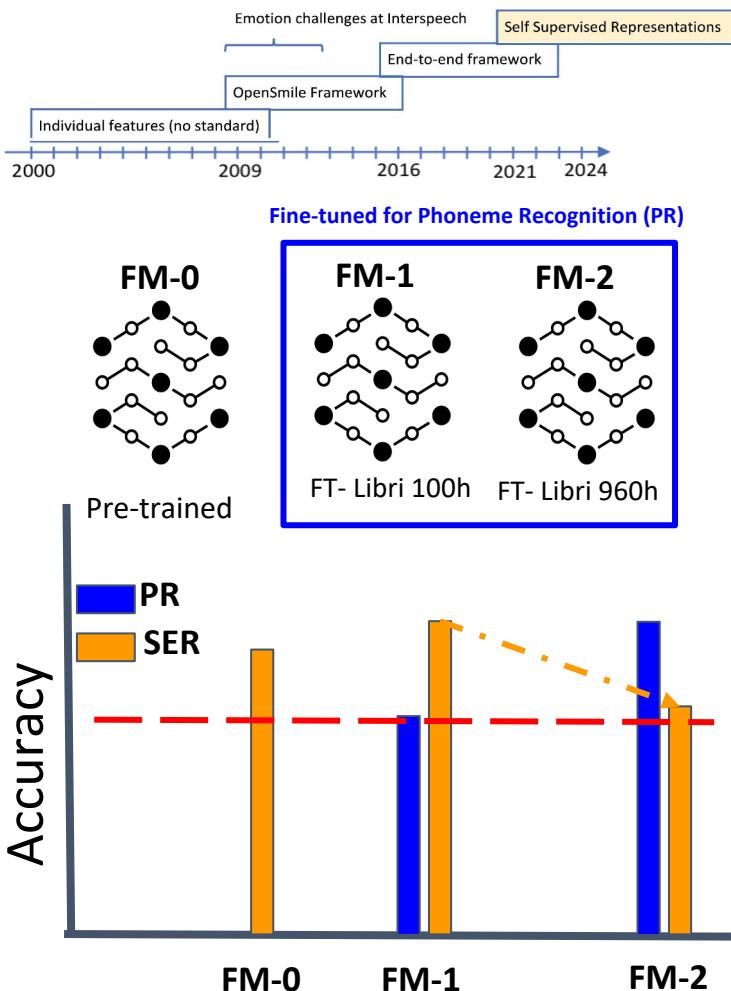
Fine-tuning needed ?



Fine-tuning for Auxiliary task

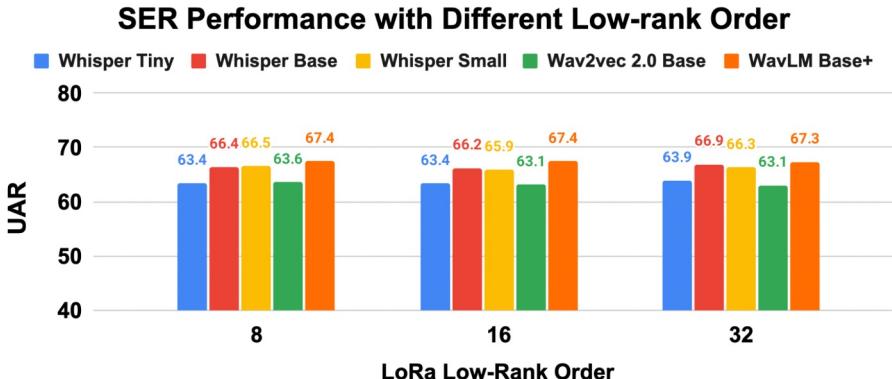
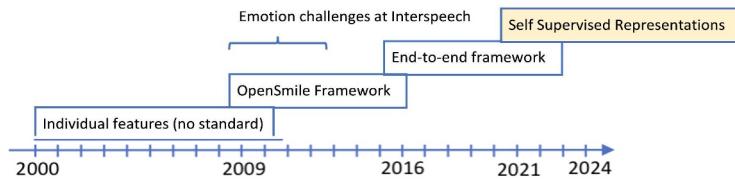
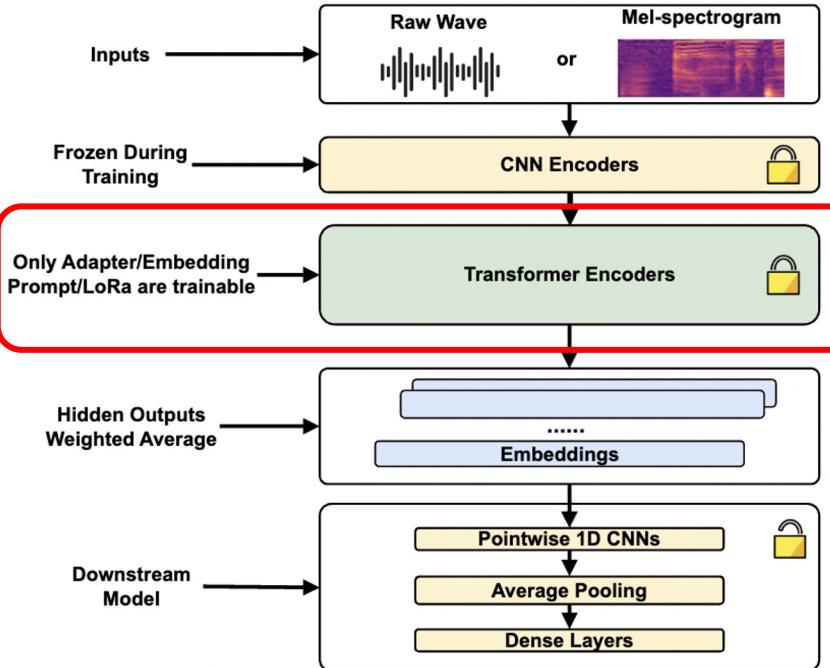


- Phonetic embeddings yield improved SER performance compared to Handcrafted features.
- SER inverse relation with ASR.



Parameter efficient tuning for SER

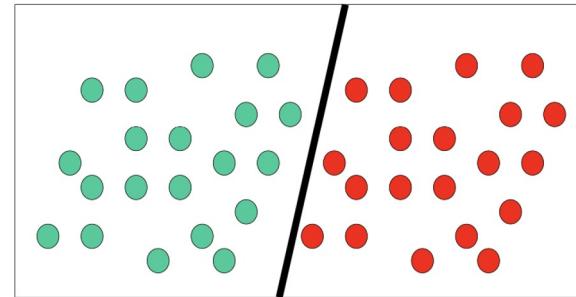
- Used PEFT on transformer representation model for SER
- Utilized low rank approximation (LoRA).
- Best performance with reduced parameters.



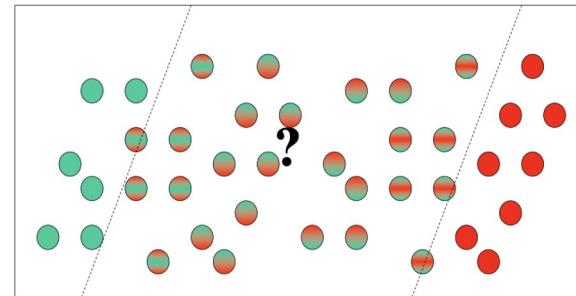
Challenges in the SER community

- Emotions are fuzzy in nature, annotation becomes challenging.
- Acted vs real emotions.
- Lack of Naturalistic databases.
- Low resource data.
- Domain adaptation: train on language-1 test on language-2.
Does language matter?
- Cross cultural generalization.
- Privacy issue.

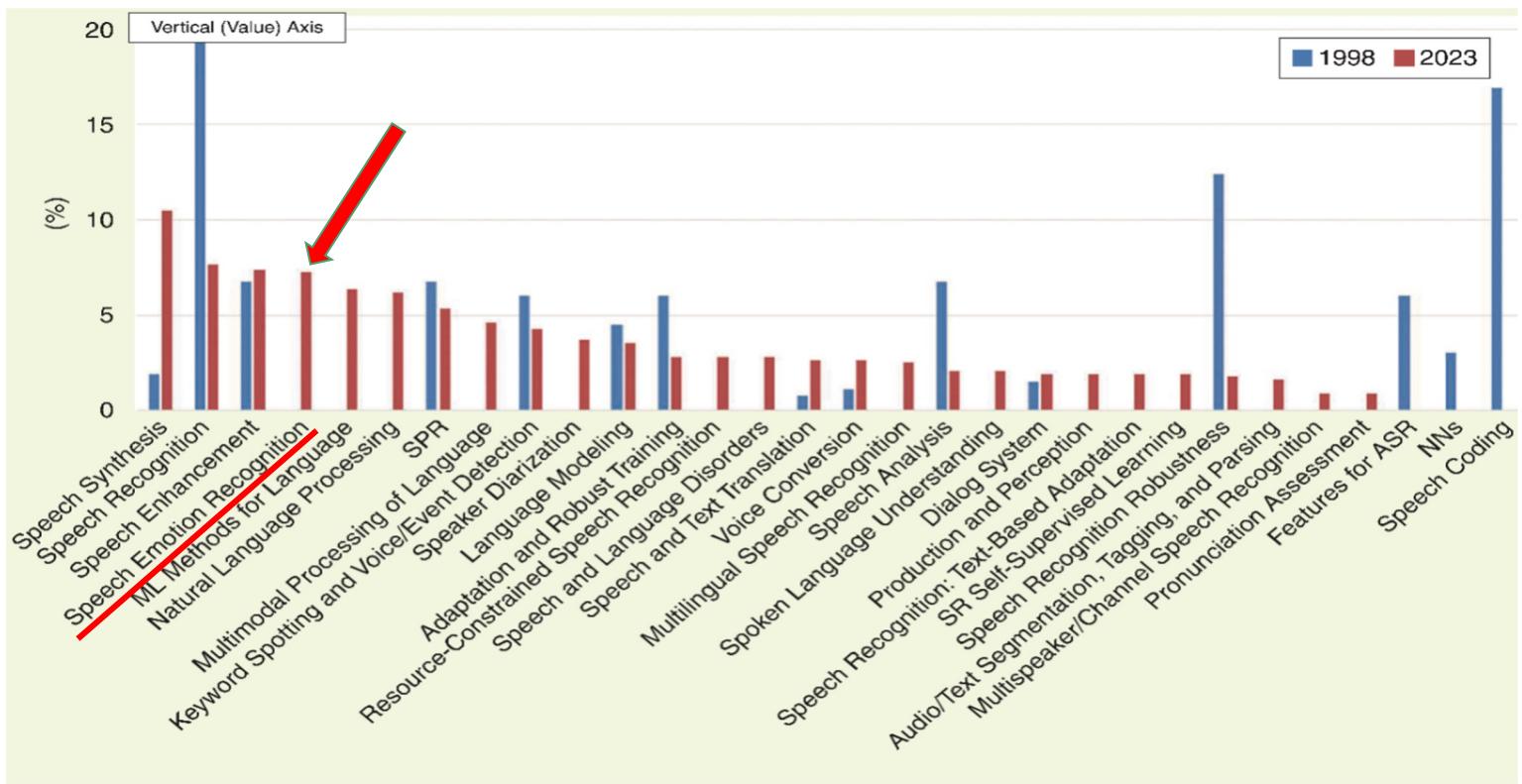
Conventional machine learning problem



Emotion recognition



Looking on the bright side..



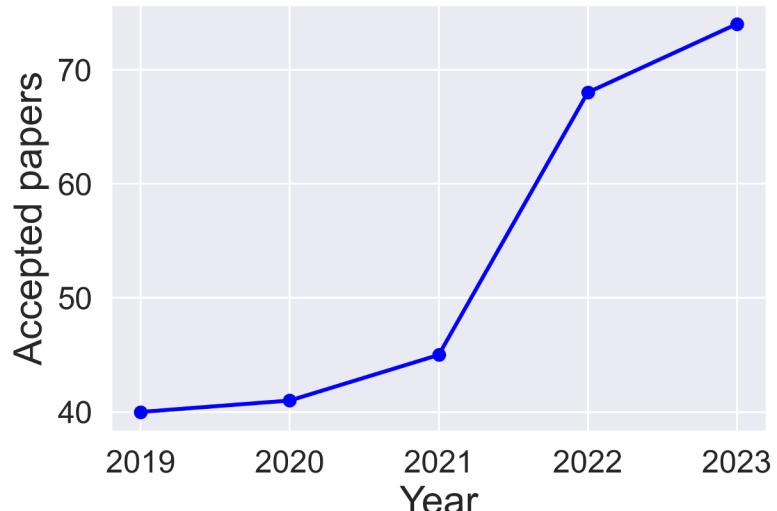
*Yu, Dong, et al. "Twenty-Five Years of Evolution in Speech and Language Processing." *IEEE Signal Processing Magazine* 40.5 (2023): 27-39.

Stats..

≡ Google Scholar

Top publications

IEEE ICASSP - ER



Interspeech 2024 (Kos Island, Greece)
57 accepted papers ; several sessions

Categories > Engineering & Computer Science > Signal Processing ▾

Publication	<u>h5-index</u>	<u>h5-median</u>
1. IEEE Transactions on Image Processing	<u>150</u>	202
2. IEEE Transactions on Wireless Communications	<u>139</u>	205
3. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)	<u>129</u>	195
4. Conference of the International Speech Communication Association (INTERSPEECH)	<u>111</u>	171
5. IEEE Wireless Communications Letters	<u>97</u>	142
6. IEEE Transactions on Circuits and Systems for Video Technology	<u>94</u>	131
7. IEEE Transactions on Signal Processing	<u>93</u>	147
8. IEEE Journal of Selected Topics in Signal Processing	<u>75</u>	124
9. IEEE/ACM Transactions on Audio, Speech, and Language Processing	<u>74</u>	124
10. IEEE Signal Processing Magazine	<u>71</u>	147
11. Signal Processing	<u>69</u>	112