

1. **Describe and illustrate, what is (a) an analysis window: definition, typical length, for what etc., (b) a power spectrum, and (c) a spectrogram? On power spectrum as well as on spectrogram, what are the typical properties of the speech signal that can be observed? (30 points)**

Second part of the question (30 points)

2. In the course, we have learned that the speech signal can be decomposed into source and system components, which can be put back together to get the speech signal.

- a) What are the two main methods to achieve that? Explain concisely. (10 points)
- b) How is this understanding applied in speech coding to reduce the bit rate? Describe concisely what happens on the transmitter side and what happens on the receiver side. Illustrate with an example calculation how the bit rate is reduced when compared to sample-by-sample coding and transmission of the speech waveform. (20 points)
- c) (30 points)

3. Given “only” two speech utterances recordings (no additional information whatsoever is available), (a) how to automatically determine if those two speech utterances represent the same lexical item, i.e., word and (b) how to automatically determine if those utterances were uttered by the same speaker? Clearly explain the steps, the features, and the matching algorithm. Discuss concisely the decision errors. (30 points)

Second part of the question (30 points)

4. Sequence matching in speech processing

- a) Describe concisely the principle of dynamic programming. (6 points)
- b) How is it applied in instance-based speech recognition? (12 points)
- c) How is it applied in the hidden Markov model based automatic speech recognition? (12 points)
- d)
- e)

For each case, clearly describe the methodology, like what is being matched along with the typical equation, local score, local constraints, and the optimization criteria.

Missing parts of the question will cover 30 points.

5. Compare automatic speech recognition (ASR) and text-to-speech synthesis (TTS) systems.

- **What is the input and what is the output? (4 points)**
- **What are the major building blocks of each system? (14 points)**
- **What kind of resources are needed to build ASR and TTS systems? Which resources could be shared for development of the two systems? (12 points)**
-
●

Missing parts of the question will cover 30 points.

6. Starting from the speech waveform, clearly describe the different processes (building blocks) involved in statistical continuous speech recognition and what type of prior information and/or models is being used.

- i. Clear block diagram of the processing steps, including inputs and outputs. (5 points)
- ii. How are the lexical constraints being modeled and exploited? Type of model? Training (if any)? (5 points)
- iii. How are the syntactic/grammatical constraints being modeled and exploited? Type of model? Training? (10 points)
- iv. How is the acoustic information modeled? Type of model? Training? (10 points)
- v.
- vi.

Missing parts of the question will cover 30 points.

7. Automatic speaker recognition.

- Why is speech suitable for biometric person recognition? Which acoustic features can be used for speaker recognition? Justify your answer. (10 points)
- What is a speaker verification system? What is the input? What is the output? (20 points)
 - a. What is the enrollment procedure?
 - b. What is the verification/decision criterion?
 - c. What hyperparameter do we also need to estimate and how does it relate to the decision criterion?
 - d. What are the types of errors the system can commit and how is the system evaluated?
-
-

Missing parts of the questions will cover 30 points.

8. Evaluation of speech processing systems.

- How to evaluate text-to-speech systems? (15 points)
- How to evaluate automatic speaker verification systems? (15 points)
-
-

For each of these systems, describe concisely the types of errors, the performance measure, the method to measure performance and the resources needed to evaluate the systems.

Missing parts of the question will cover 30 points.

9. What is the main difference between statistical automatic speech recognition (ASR) and automatic speaker verification (ASV)?

- Definition of each problem (goal, input, output). (*5 points*)
- The “theoretical” decision criteria for each case? (*5 points*)
- Describe concisely how the different statistical quantities in the decision criteria for ASR and ASV are modeled? (*20 points*)
-
-

Missing parts of the question will cover 30 points.

10. Describe text-to-speech synthesis system

- **What is input? What is output? (2 points)**
- **What are the two major building blocks of a text-to-speech (TTS) system and how are they put together to synthesize speech? (28 points)**
 - **What is the goal of the natural language processing block?**
 - **What is the goal of the digital signal processing/speech processing block?**
 - **Illustrate the synthesis process (or steps) at a broad level for an example input phrase: "Dr. Mary had a 10 Kg little lamb".**
-
-

Missing parts of the questions will cover 30 points.

11. Sequence modeling using Markov models

- Define concisely discrete Markov models (DMM)? What are the parameters of a DMM? How is DMM employed in statistical automatic speech recognition systems? How are the DMM parameters estimated? *(15 points)*
- Define concisely hidden Markov models (HMM)? What are the parameters of an HMM? How is HMM employed in statistical automatic speech recognition systems? How are the HMM parameters estimated? *(15 points)*
- *(30 points)*

12. Lexical constraints

- a) Illustrate the following hidden Markov model (HMM) topologies

- i. a K-state left-to-right HMM
- ii. a K-state fully connected ergodic HMM

For illustration, choose a value of K of your choice. (10 points)

- b) In automatic speech recognition systems, what resource is needed to integrate lexical constraints and how is it obtained? How can the lexical constraints for new words (e.g., a new name, a new place) be obtained in an “automatic” manner? How can pronunciation variation be handled? Which of the HMM topology in part a) is best suited to integrate lexical constraints in ASR systems? Justify concisely. (20 points)

- c) (30 points)

13. Expectation-Maximization (EM) algorithm

- a) Define concisely the general idea of EM algorithm. (5 points)
- b) How is the EM algorithm employed to train parameters of Gaussian mixture model? How can we use the Gaussian mixture modeling for speaker verification? (25 points)
- c) (30 points)

For b) and c) clearly explain: what is the optimization criterion? What does E-step involve? and What does M-step involve?

14. Linear prediction

- What is linear prediction? (5 *points*)
- Why is linear prediction modeling well suited for speech signal processing? (5 *points*)
- What do the linear prediction coefficients model? How are they estimated (cost function)? (10 *points*)
- What is the residual signal or the linear prediction error signal model? How is the residual signal obtained? (10 *points*)
- (30 *points*)

15. Statistical Speech Recognition

Let $X = \{x_1, \dots, x_T\}$ be a sequence of acoustic features and $W = \{w_1, \dots, w_K\}$ a sequence of words.

- How can $P(X|W)$ be estimated? Type of model? What assumptions are required to efficiently estimate its parameters? What resources are necessary to build the $P(X|W)$ estimator? Discuss concisely the answers. (10 points)
- How can $P(W)$ be estimated? Type of model? What assumptions are required to efficiently estimate its parameters? What resources are necessary to build the $P(W)$ estimator? Discuss concisely the answers. (10 points)
- How are estimates $P(X|W)$ and $P(W)$ are put together for speech recognition? What does it involve? (10 points)
- (30 points)