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Chapter IV - Electroacoustic systems and radiation

H. Lissek

Fall semester 2017

Exercise 1. Double panel partition

1. We see two velocities v; and vy corresponding to the two individual panels (masses M; and
M), and we also add a line for the reference velocity v,y = 0. We obtain the following
symbolic scheme (velocities v; corresponding to "potentials") :
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2. We deduce the inverse scheme (in black) :
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1 Zmeq

jWMQ + Rm2 + Zmeq + (jWMl + le + m

Then, H = T
jWCmZ
1

Finally : H = - T - -
JWMQ + Rypo + m(l +]WCa(.7WM1 + Ryt +

) +jWM1 + le + ijl'm1

1
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Exercise 2. Helmholtz resonators

1 /S
fs = m = % VI The resonance frequencies can be arranged in the following order :
fo<fa<fa</fe

Exercise 3. Silencer
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Figure 1 — Schematic representation of a silencer.

Figure 2 — Equivalent circuit of the silencer.

The acoustic mass in the duct of length L; is given by mg1 = pLi/ (71'7”62!), and that the duct
of length Lo by mga = pLa/ (777“3). The effective acoustic compliance in the coupling cavity is
given by C, = V/(pc?). The analog acoustic scheme is illustrated in Fig. 7.

The input impedance of the silencer can be derived as

— Ma2
1
Jwmea2

b1 (jw?)ma1Co + Bt 41
Loy =—
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Exercise 4. Boomwhacker

9o _ _p%
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Ly % S
Ox 52 ’ 8@75
1 1
Then 22 — —z—p = 0, where ¢y =
ox? g ot? V/POXs
2. If we derive p(z,t) = P(x)e/! in the wave equation, we obtain the Helmholtz equation
d*P

S 4+ k2P =0, where k = —
dr co

The solution of the wave equations are then of the form :
P(x) = Pyye 9% 4 py_etike,

0 )
Taking the first equation (Euler’s generalized equation), and since 8—? = jwQ(x)elt, we
deduce :

Qr) =

7 <P0+€—jkx — P()_e—"_jkx).
ac

P(z) = Pype ik 4 py_elke
Vz S ) )
’ — —jkx __ P jkx
Q)= (e citr)
If we denote Py(z) = Pyye % and P_(z) = Py_e/*, we can write the diffusion

relationship :

P@\_| 1L | P
Q@) ) | 7= 7 |\ P@

kL —jkL
Plz—L v e P
Then : ( (x-1L) ) — | kL kL ( +@) )

—L - P
-1 )| & - ®
We can also invert the diffusion matrix and it yields :
1
( P—‘r($) ) _ Zac _ch -1 ( P(J:) )
P_(x 2 — 1 Qx
() 7 ()
And finally :
. . 1
kL —jkL
P(a - L) o | Ze| Tz, V| P@
Q( L) = e_]kL ef]kL 5 fC Q( ) =
x — — - 1 x
Zac Zac Zac
cos kL JZgcsin kL P(z)
sin kL coskL Q(x)
V_vhiccilc also holds for x = L.
4. The duct is closed at the right termination, then Q(L) = 0.
P(0) .
Then Z,(0) = —= = —jZ,.cot kL
(0) o)~ 7
5. If the left termination is open (P(0) = 0), then we should have Z,(0) = 0. The resonance
2 1
frequencies correspond then to cot kL = 0, then f, = (n:L)CO
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For a length of 19 cm, the first resonance frequency occurs at f; = 447 Hz (almost Ay40).

Z, 1
6. at low frequencies (kL << 1), Z,(0) =~ —j k—aLC = T The low-frequency behavior is
v PO
an acoustic compliance Cy = —, and the acoustical scheme is the following :
POCyH
Q(0)

o <} ‘.

Exercise 5. Bi-directional and cardioid sources

4
The directivity factor is computed as : A = T (referred to an

Jo Ji—o D2(0, ¢) sin 0dfd¢

omnidirectional source with solid angle 4).

4
21 [ cos?(6) sin 0df

1. Here D(6,¢) = cosf, then A =
Integrating by parts, u = cos(f) and du = —sin(0)d6, one gets : A = 3 or Lp = 4.8 dB.
Half-power beamwidth : D?(#) = 3 — 0_3qp= 45°, the total aperture (beamwidth) is then

90° (symmetry over the axis)
2. Same as before : A = 3 or La = 4.8 dB, and 0_3qg= 45°.

Exercise 6. Directivity of a loudspeaker

Directivity function of a circular piston in a screen

1 T T T T T T T T
2.Ji (kasinf)
kasin
08 .

0.6 - 1

o

DU (6)

04 b

02 | | | | | 1 1 | |
0 162 4 6 8 10 12 14 16 18 20
kasing

Figure 3 — Directivity function of a piston on screen

We assume that a source remains "omnidirectional” (with a tolerance of 3 dB) if its directivity

(
1 1
function remains higher than Dg(0) > —,V0 € [—-Z ] (since 20.log;y) —= = —3 dB(re. Dy(0) =
g 0(0) > 0 € [<33] ( £10 75 (ve. D(0)

s
2
1)). According to the figure above, that means that ka sin 0,,,;,, = 1.6 (where 6,,,;,, designates the

angle at which the directivity reaches %)
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1. For f = 500 Hz and 0,,;, = 90°, a < -
f S amin
so that the half-bandwidth angle is + 90°, ie. omnidirectional)

2. For f = 2000 Hz and 6,,;,, = 90°, a < 5,46 cm (same assumption)

3. For f = 1000 Hz and 6,,;,, = 30°, a < 21,8 cm (here the half-bandwidth should be £ 30°).

= 21,8 cm (here we consider 0,,;, = 7/2

Exercise 7. Radiation of a 2-way loudspeaker - monopole hypo-
thesis

Reminder :
Field radiated by a monopole :

. pc
BM(T) :]mkge gk

Field radiated by a monopole on a closed box (semi-monopole) :
pc
—k

2mr ae

1. Monopole on a closed box with flow velocity q; or qs :

BE(T) = ] —Ikr

27y 27y 6 Lpy —3 —3
= - =—F7—-(20-107°-10 =4,9-10 .
B= P (r1) 2 f e ( w0) =4, m.s
@ =39ms>

If synchronous source, microphone ~ in the loudspeaker’s main axis, with wavelength \ ~
1m
—> the pressure waves are in phase and therefore :

Lp1 Lpo
Piy2 =p1 +p2 = Ly, = 20-log [1020 + 1020} =93 dB

2. At 350 Hz, the boomer becomes slightly directive = attenuation of the off-axis measu-
rements. For the medium however, no changes.
If measurement points are off-axis, the phase difference varies between the two signals =
a quadratic summation must be done (of the energy) and the expression before changes
to be :

Ly Ly
L :10-log{1010 + 10 10}:89,6dB

P1+2

Exercise 8. Radiation of a small speaker

) pc (ka)? . . ) c
1. At low-frequencies, Ry ~ — . It is valid until ka ~ 1 then for f < — =909 Hz.
wa? 2 . ' 2ma
2. On axis, the sound pressure reads p(r,0 = 0) = j ;—kqe_ﬂ’”, where ¢ is the volume
Tr
velocity, linked to the excursion ¢ as ¢ = jw(ma?)E.
202\ _ 3 wa
Then (if we denote o the rms value of quantity v) : p(r,0) = pw2(7ra )5 = \[Zw a Emax
wr r

(here the peak-to-peak elongation is given).

— at 250 Hz, p(r = 10m) = 0.158 Pa or L, ~ 78 dB (re. 20 pPa)

— at 500 Hz, p(r = 10m) = 0.633 Pa or L, ~ 90 dB (re. 20 pPa)

— at 1000 Hz, we should (theoretically) not consider the low-frequency approximation.
However, the actual limitation corresponds to ka = v/2 (instead of ka = 1), then the
frequency bound is frax ~ 1287Hz. In this cas we can still consider the low-frequency
approximation.

p(r =10m) = 2.5 Pa or L, ~ 102 dB (re. 20 pPa)




