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Chapter IV - Electroacoustic systems and radiation

H. Lissek

Fall semester 2017

Exercise 1. Double panel partition

1. We see two velocities v1 and v2 corresponding to the two individual panels (masses M1 and
M2), and we also add a line for the reference velocity vref = 0. We obtain the following
symbolic scheme (velocities vi corresponding to "potentials") :

2. We deduce the inverse scheme (in black) :

And finally the direct scheme (see the red scheme overlaying the black inverse scheme) :

3. H = v2
Fp

, since Zmeq = Cma ∥ (Rm2, Cm2, M2) =
jωM2 + Rm2 + 1

jωCm2

1 + jωCma(jωM2 + Rm2 + 1
jωCm2

)
,

we get : Zmeq

Zmeq + (jωM1 + Rm1 + 1
jωCm1

)
Fp = (jωM2 + Rm2 + 1

jωCm2
)v2.
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Then, H = 1
jωM2 + Rm2 + 1

jωCm2

Zmeq

Zmeq + (jωM1 + Rm1 + 1
jωCm1)

Finally : H = 1
jωM2 + Rm2 + 1

jωCm2
(1 + jωCa(jωM1 + Rm1 + 1

jωCm1
) + jωM1 + Rm1 + 1

jωCm1

.

Exercise 2. Helmholtz resonators

fs = 1
2π

√
maCa

= c

2π

√
S

V L
The resonance frequencies can be arranged in the following order :

fb < fd < fa < fc

Exercise 3. Silencer

Figure 1 – Schematic representation of a silencer.

Figure 2 – Equivalent circuit of the silencer.

The acoustic mass in the duct of length L1 is given by ma1 = ρL1/(πr2
d), and that the duct

of length L2 by ma2 = ρL2/(πr2
d). The effective acoustic compliance in the coupling cavity is

given by Ca = V/(ρc2). The analog acoustic scheme is illustrated in Fig. 7.

The input impedance of the silencer can be derived as

Za = p1
q1

=
(jω2)ma1Ca + ma1

ma2
+ 1

jωCa + 1
jωma2

2



Audio Engineering (MA1) - H. Lissek Corrections - Ch. IV

Exercise 4. Boomwhacker

1.


∂p

∂x
= −ρ0

S

∂q

∂t
∂q

∂x
= −χsS

∂p

∂t

Then ∂2p

∂x2 − 1
c2

0

∂2p

∂t2 = 0, where c0 = 1
√

ρ0χs

2. If we derive p(x, t) = P (x)ejωt in the wave equation, we obtain the Helmholtz equation
d2P

dx2 + k2P = 0, where k = ω

c0
The solution of the wave equations are then of the form :
P (x) = P0+e−jkx + P0−e+jkx.

Taking the first equation (Euler’s generalized equation), and since ∂q

∂t
= jωQ(x)ejωt, we

deduce :
Q(x) = 1

Zac

(
P0+e−jkx − P0−e+jkx

)
.

3.

∀x,


P (x) = P0+e−jkx + P0−ejkx

Q(x) = S

ρ0c0

(
e−jkx − P−ejkx

)
If we denote P+(x) = P0+e−jkx and P−(x) = P0−ejkx, we can write the diffusion
relationship :

 P (x)
Q(x)

 =

 1 1
1

Zac
− 1

Zac


 P+(x)

P−(x)



Then :

 P (x − L)
Q(x − L)

 =

 ejkL e−jkL

ejkL

Zac
−e−jkL

Zac


 P+(x)

P−(x)


We can also invert the diffusion matrix and it yields : P+(x)

P−(x)

 = Zac

2

 − 1
Zac

−1

− 1
Zac

1


 P (x)

Q(x)


And finally : P (x − L)

Q(x − L)

 =

 ejkL e−jkL

ejkL

Zac
−e−jkL

Zac

 .
Zac

2

 − 1
Zac

−1

− 1
Zac

1


 P (x)

Q(x)

 =

 cos kL jZac sin kL
j

Zac
sin kL cos kL


 P (x)

Q(x)


which also holds for x = L.

4. The duct is closed at the right termination, then Q(L) = 0.

Then Za(0) = P (0)
Q(0)

= −jZac cot kL

5. If the left termination is open (P (0) = 0), then we should have Za(0) = 0. The resonance

frequencies correspond then to cot kL = 0, then fn = (2n + 1)c0
4L
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For a length of 19 cm, the first resonance frequency occurs at f1 = 447 Hz (almost A440).

6. at low frequencies (kL << 1), Za(0) ≈ −j
Zac

kL
= 1

jω
V

ρ0c2
0

. The low-frequency behavior is

an acoustic compliance Ca = V

ρ0c2
0
, and the acoustical scheme is the following :

P (0)

Q(0)

Ca

Exercise 5. Bi-directional and cardioid sources

The directivity factor is computed as : ∆ = 4π∫ 2π
ϕ=0

∫ π
θ=0 D2(θ, ϕ) sin θdθdϕ

(referred to an

omnidirectional source with solid angle 4π).

1. Here D(θ, ϕ) = cos θ, then ∆ = 4π

2π
∫ π

θ=0 cos2(θ) sin θdθ
.

Integrating by parts, u = cos(θ) and du = − sin(θ)dθ, one gets : ∆ = 3 or L∆ = 4.8 dB.
Half-power beamwidth : D2(θ) = 1

2 → θ−3dB= 45◦, the total aperture (beamwidth) is then
90◦ (symmetry over the axis)

2. Same as before : ∆ = 3 or L∆ = 4.8 dB, and θ−3dB= 45◦.

Exercise 6. Directivity of a loudspeaker

Figure 3 – Directivity function of a piston on screen

We assume that a source remains "omnidirectional" (with a tolerance of 3 dB) if its directivity
function remains higher than D0(θ) ≥ 1√

2
, ∀θ ∈ [−π

2
π
2 ] (since 20. log10

1√
2

= −3 dB(re. D0(0) =

1)). According to the figure above, that means that ka sin θmin = 1.6 (where θmin designates the
angle at which the directivity reaches 1√

2).
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1. For f = 500 Hz and θmin = 90°, a ≤ c

f sin θmin
= 21,8 cm (here we consider θmin = π/2

so that the half-bandwidth angle is ± 90°, ie. omnidirectional)
2. For f = 2000 Hz and θmin = 90°, a ≤ 5,46 cm (same assumption)
3. For f = 1000 Hz and θmin = 30°, a ≤ 21,8 cm (here the half-bandwidth should be ± 30°).

Exercise 7. Radiation of a 2-way loudspeaker - monopole hypo-
thesis

Reminder :
Field radiated by a monopole :

p
M

(r) = j
ρc

4πr
kqe−jkr

Field radiated by a monopole on a closed box (semi-monopole) :

p
E

(r) = j
ρc

2πr
kqe−jkr

1. Monopole on a closed box with flow velocity q1 or q2 :

q1 = 2πr1
ρck

pM1(r1) = 2πr1
ρc2πf/c

· (20 · 10−6 · 10
Lp1
20 ) = 4, 9 · 10−3 m.s−3

q2 = 3, 9 m.s−3

If synchronous source, microphone ∼ in the loudspeaker’s main axis, with wavelength λ ∼
1m
=⇒ the pressure waves are in phase and therefore :

p1+2 = p1 + p2 =⇒ Lp1+2 = 20 · log
[
10

Lp1
20 + 10

Lp2
20

]
= 93 dB

2. At 350 Hz, the boomer becomes slightly directive =⇒ attenuation of the off-axis measu-
rements. For the medium however, no changes.
If measurement points are off-axis, the phase difference varies between the two signals =⇒
a quadratic summation must be done (of the energy) and the expression before changes
to be :

Lp1+2 = 10 · log
[
10

Lp1
10 + 10

Lp2
10

]
= 89, 6 dB

Exercise 8. Radiation of a small speaker

1. At low-frequencies, Rar ≈ ρc

πa2
(ka)2

2
. It is valid until ka ≈ 1 then for f <

c

2πa
= 909 Hz.

2. On axis, the sound pressure reads p(r, θ = 0) = j
ρc

2πr
kqe−jkr, where q is the volume

velocity, linked to the excursion ξ as q = jω(πa2)ξ.

Then (if we denote ν̃ the rms value of quantity ν) : p̃(r, 0) = ρω2(πa2)
2πr

ξ̃ =
√

2ρω2a2

4r
ξmax

(here the peak-to-peak elongation is given).
— at 250 Hz, p̃(r = 10m) = 0.158 Pa or Lp ≈ 78 dB (re. 20 µPa)
— at 500 Hz, p̃(r = 10m) = 0.633 Pa or Lp ≈ 90 dB (re. 20 µPa)
— at 1000 Hz, we should (theoretically) not consider the low-frequency approximation.

However, the actual limitation corresponds to ka =
√

2 (instead of ka = 1), then the
frequency bound is fmax ≈ 1287Hz. In this cas we can still consider the low-frequency
approximation.
p̃(r = 10m) = 2.5 Pa or Lp ≈ 102 dB (re. 20 µPa)
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