

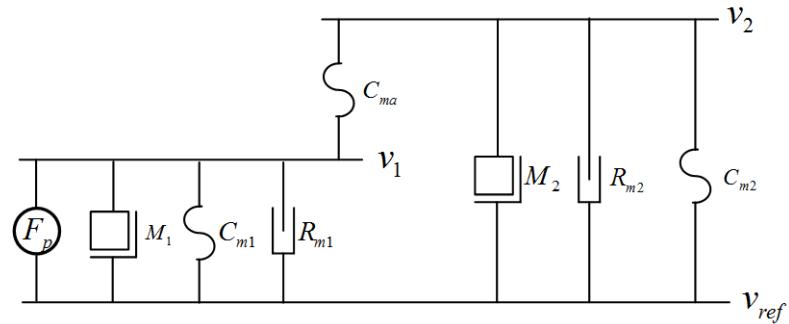
Chapter IV - Electroacoustic systems and radiation

H. Lissek

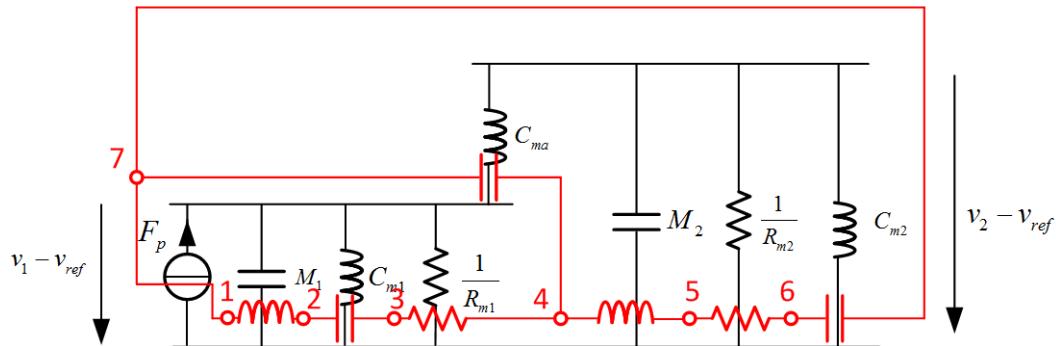
Fall semester 2017

Exercise 1. Double panel partition

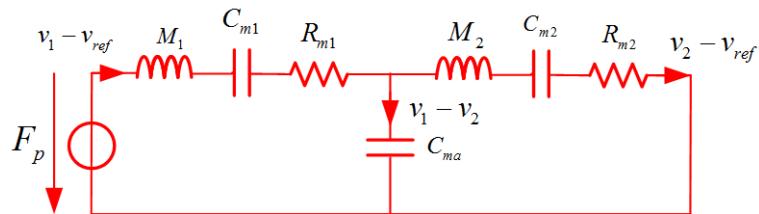
1. We see two velocities v_1 and v_2 corresponding to the two individual panels (masses M_1 and M_2), and we also add a line for the reference velocity $v_{ref} = 0$. We obtain the following symbolic scheme (velocities v_i corresponding to "potentials") :



2. We deduce the inverse scheme (in black) :



And finally the direct scheme (see the red scheme overlaying the black inverse scheme) :



3. $H = \frac{v_2}{F_p}$, since $Z_{meq} = C_{ma} \parallel (R_{m2}, C_{m2}, M_2) = \frac{j\omega M_2 + R_{m2} + \frac{1}{j\omega C_{m2}}}{1 + j\omega C_{ma}(j\omega M_2 + R_{m2} + \frac{1}{j\omega C_{m2}})}$, we get : $\frac{Z_{meq}}{Z_{meq} + (j\omega M_1 + R_{m1} + \frac{1}{j\omega C_{m1}})} F_p = (j\omega M_2 + R_{m2} + \frac{1}{j\omega C_{m2}}) v_2$.

$$\text{Then, } H = \frac{1}{j\omega M_2 + R_{m2} + \frac{1}{j\omega C_{m2}}} \frac{Z_{meq}}{Z_{meq} + (j\omega M_1 + R_{m1} + \frac{1}{j\omega C_{m1}})}$$

$$\text{Finally : } H = \frac{1}{j\omega M_2 + R_{m2} + \frac{1}{j\omega C_{m2}} (1 + j\omega C_a (j\omega M_1 + R_{m1} + \frac{1}{j\omega C_{m1}})) + j\omega M_1 + R_{m1} + \frac{1}{j\omega C_{m1}}}.$$

Exercise 2. Helmholtz resonators

$f_s = \frac{1}{2\pi\sqrt{m_a C_a}} = \frac{c}{2\pi} \sqrt{\frac{S}{VL}}$ The resonance frequencies can be arranged in the following order :
 $f_b < f_d < f_a < f_c$

Exercise 3. Silencer

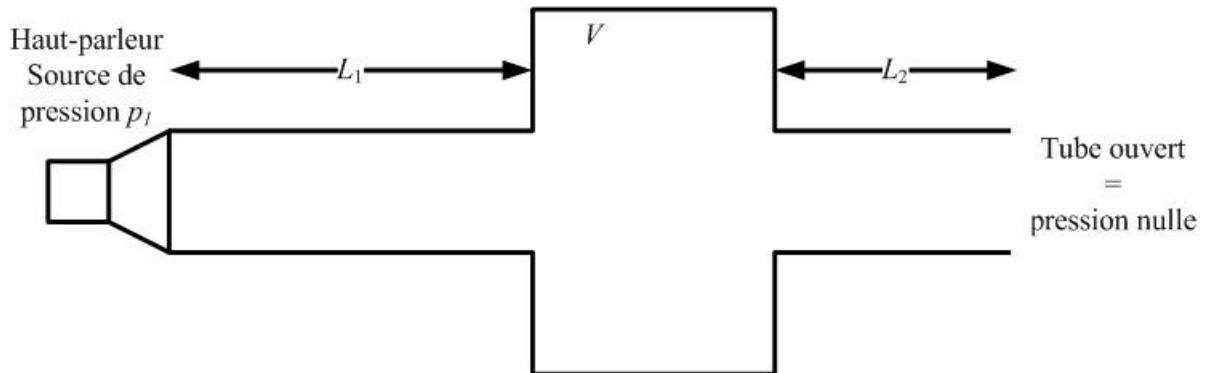


Figure 1 – Schematic representation of a silencer.

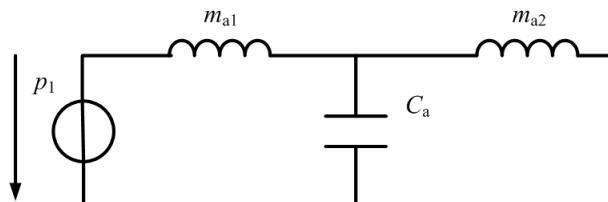


Figure 2 – Equivalent circuit of the silencer.

The acoustic mass in the duct of length L_1 is given by $m_{a1} = \rho L_1 / (\pi r_d^2)$, and that the duct of length L_2 by $m_{a2} = \rho L_2 / (\pi r_d^2)$. The effective acoustic compliance in the coupling cavity is given by $C_a = V / (\rho c^2)$. The analog acoustic scheme is illustrated in Fig. 7.

The input impedance of the silencer can be derived as

$$Z_a = \frac{p_1}{q_1} = \frac{(j\omega^2)m_{a1}C_a + \frac{m_{a1}}{m_{a2}} + 1}{j\omega C_a + \frac{1}{j\omega m_{a2}}}$$

Exercise 4. Boomwhacker

$$1. \begin{cases} \frac{\partial p}{\partial x} = -\frac{\rho_0}{S} \frac{\partial q}{\partial t} \\ \frac{\partial q}{\partial x} = -\chi_s S \frac{\partial p}{\partial t} \end{cases}$$

$$\text{Then } \frac{\partial^2 p}{\partial x^2} - \frac{1}{c_0^2} \frac{\partial^2 p}{\partial t^2} = 0, \text{ where } c_0 = \frac{1}{\sqrt{\rho_0 \chi_s}}$$

2. If we derive $p(x, t) = P(x)e^{j\omega t}$ in the wave equation, we obtain the Helmholtz equation $\frac{d^2 P}{dx^2} + k^2 P = 0$, where $k = \frac{\omega}{c_0}$

The solution of the wave equations are then of the form :

$$P(x) = P_{0+}e^{-jkx} + P_{0-}e^{+jkx}.$$

Taking the first equation (Euler's generalized equation), and since $\frac{\partial q}{\partial t} = j\omega Q(x)e^{j\omega t}$, we deduce :

$$Q(x) = \frac{1}{Z_{ac}} (P_{0+}e^{-jkx} - P_{0-}e^{+jkx}).$$

3.

$$\forall x, \begin{cases} P(x) = P_{0+}e^{-jkx} + P_{0-}e^{jkx} \\ Q(x) = \frac{S}{\rho_0 c_0} (e^{-jkx} - P_{-}e^{jkx}) \end{cases}$$

If we denote $P_+(x) = P_{0+}e^{-jkx}$ and $P_-(x) = P_{0-}e^{jkx}$, we can write the diffusion relationship :

$$\begin{pmatrix} P(x) \\ Q(x) \end{pmatrix} = \begin{bmatrix} 1 & 1 \\ \frac{1}{Z_{ac}} & -\frac{1}{Z_{ac}} \end{bmatrix} \begin{pmatrix} P_+(x) \\ P_-(x) \end{pmatrix}$$

$$\text{Then : } \begin{pmatrix} P(x-L) \\ Q(x-L) \end{pmatrix} = \begin{bmatrix} e^{jkL} & e^{-jkL} \\ \frac{e^{jkL}}{Z_{ac}} & -\frac{e^{-jkL}}{Z_{ac}} \end{bmatrix} \begin{pmatrix} P_+(x) \\ P_-(x) \end{pmatrix}$$

We can also invert the diffusion matrix and it yields :

$$\begin{pmatrix} P_+(x) \\ P_-(x) \end{pmatrix} = \frac{Z_{ac}}{2} \begin{bmatrix} -\frac{1}{Z_{ac}} & -1 \\ -\frac{1}{Z_{ac}} & 1 \end{bmatrix} \begin{pmatrix} P(x) \\ Q(x) \end{pmatrix}$$

And finally :

$$\begin{pmatrix} P(x-L) \\ Q(x-L) \end{pmatrix} = \begin{bmatrix} e^{jkL} & e^{-jkL} \\ \frac{e^{jkL}}{Z_{ac}} & -\frac{e^{-jkL}}{Z_{ac}} \end{bmatrix} \cdot \frac{Z_{ac}}{2} \begin{bmatrix} -\frac{1}{Z_{ac}} & -1 \\ -\frac{1}{Z_{ac}} & 1 \end{bmatrix} \begin{pmatrix} P(x) \\ Q(x) \end{pmatrix} = \begin{bmatrix} \cos kL & jZ_{ac} \sin kL \\ \frac{j}{Z_{ac}} \sin kL & \cos kL \end{bmatrix} \begin{pmatrix} P(x) \\ Q(x) \end{pmatrix}$$

which also holds for $x = L$.

4. The duct is closed at the right termination, then $Q(L) = 0$.

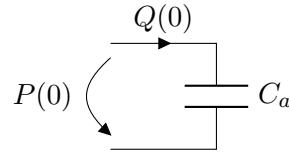
$$\text{Then } Z_a(0) = \frac{P(0)}{Q(0)} = -jZ_{ac} \cot kL$$

5. If the left termination is open ($P(0) = 0$), then we should have $Z_a(0) = 0$. The resonance frequencies correspond then to $\cot kL = 0$, then $f_n = \frac{(2n+1)c_0}{4L}$

For a length of 19 cm, the first resonance frequency occurs at $f_1 = 447$ Hz (almost A_{440}).

6. at low frequencies ($kL \ll 1$), $Z_a(0) \approx -j \frac{Z_{ac}}{kL} = \frac{1}{j\omega \frac{V}{\rho_0 c_0^2}}$. The low-frequency behavior is

an acoustic compliance $C_a = \frac{V}{\rho_0 c_0^2}$, and the acoustical scheme is the following :



Exercise 5. Bi-directional and cardioid sources

The directivity factor is computed as : $\Delta = \frac{4\pi}{\int_{\phi=0}^{2\pi} \int_{\theta=0}^{\pi} D^2(\theta, \phi) \sin \theta d\theta d\phi}$ (referred to an omnidirectional source with solid angle 4π).

1. Here $D(\theta, \phi) = \cos \theta$, then $\Delta = \frac{4\pi}{2\pi \int_{\theta=0}^{\pi} \cos^2(\theta) \sin \theta d\theta}$.

Integrating by parts, $u = \cos(\theta)$ and $du = -\sin(\theta)d\theta$, one gets : $\Delta = 3$ or $L_\Delta = 4.8$ dB. Half-power beamwidth : $D^2(\theta) = \frac{1}{2} \rightarrow \theta_{-3dB} = 45^\circ$, the total aperture (beamwidth) is then 90° (symmetry over the axis)

2. Same as before : $\Delta = 3$ or $L_\Delta = 4.8$ dB, and $\theta_{-3dB} = 45^\circ$.

Exercise 6. Directivity of a loudspeaker



Figure 3 – Directivity function of a piston on screen

We assume that a source remains "omnidirectional" (with a tolerance of 3 dB) if its directivity function remains higher than $D_0(\theta) \geq \frac{1}{\sqrt{2}}$, $\forall \theta \in [-\frac{\pi}{2}, \frac{\pi}{2}]$ (since $20 \cdot \log_{10} \frac{1}{\sqrt{2}} = -3$ dB(re. $D_0(0) = 1$)). According to the figure above, that means that $ka \sin \theta_{min} = 1.6$ (where θ_{min} designates the angle at which the directivity reaches $\frac{1}{\sqrt{2}}$).

1. For $f = 500$ Hz and $\theta_{min} = 90^\circ$, $a \leq \frac{c}{f \sin \theta_{min}} = 21,8$ cm (here we consider $\theta_{min} = \pi/2$ so that the half-bandwidth angle is $\pm 90^\circ$, ie. omnidirectional)
2. For $f = 2000$ Hz and $\theta_{min} = 90^\circ$, $a \leq 5,46$ cm (same assumption)
3. For $f = 1000$ Hz and $\theta_{min} = 30^\circ$, $a \leq 21,8$ cm (here the half-bandwidth should be $\pm 30^\circ$).

Exercise 7. Radiation of a 2-way loudspeaker - monopole hypothesis

Reminder :

Field radiated by a monopole :

$$\underline{p}_M(r) = j \frac{\rho c}{4\pi r} k \underline{q} e^{-jkr}$$

Field radiated by a monopole on a closed box (semi-monopole) :

$$\underline{p}_E(r) = j \frac{\rho c}{2\pi r} k \underline{q} e^{-jkr}$$

1. Monopole on a closed box with flow velocity q_1 or q_2 :

$$q_1 = \frac{2\pi r_1}{\rho c k} p_{M1}(r_1) = \frac{2\pi r_1}{\rho c 2\pi f / c} \cdot (20 \cdot 10^{-6} \cdot 10^{\frac{L_{p1}}{20}}) = 4,9 \cdot 10^{-3} \text{ m.s}^{-3}$$

$$q_2 = 3,9 \text{ m.s}^{-3}$$

If synchronous source, microphone \sim in the loudspeaker's main axis, with wavelength $\lambda \sim 1\text{m}$

\Rightarrow the pressure waves are in phase and therefore :

$$p_{1+2} = p_1 + p_2 \Rightarrow L_{p_{1+2}} = 20 \cdot \log \left[10^{\frac{L_{p1}}{20}} + 10^{\frac{L_{p2}}{20}} \right] = 93 \text{ dB}$$

2. At 350 Hz, the boomer becomes slightly directive \Rightarrow attenuation of the off-axis measurements. For the medium however, no changes.

If measurement points are off-axis, the phase difference varies between the two signals \Rightarrow a quadratic summation must be done (of the energy) and the expression before changes to be :

$$L_{p_{1+2}} = 10 \cdot \log \left[10^{\frac{L_{p1}}{10}} + 10^{\frac{L_{p2}}{10}} \right] = 89,6 \text{ dB}$$

Exercise 8. Radiation of a small speaker

1. At low-frequencies, $R_{ar} \approx \frac{\rho c}{\pi a^2} \frac{(ka)^2}{2}$. It is valid until $ka \approx 1$ then for $f < \frac{c}{2\pi a} = 909$ Hz.
2. On axis, the sound pressure reads $p(r, \theta = 0) = j \frac{\rho c}{2\pi r} k \underline{q} e^{-jkr}$, where q is the volume velocity, linked to the excursion ξ as $q = j\omega(\pi a^2)\xi$.

Then (if we denote $\tilde{\nu}$ the rms value of quantity ν) : $\tilde{p}(r, 0) = \frac{\rho \omega^2(\pi a^2)}{2\pi r} \tilde{\xi} = \frac{\sqrt{2}\rho\omega^2 a^2}{4r} \xi_{\max}$ (here the peak-to-peak elongation is given).

- at 250 Hz, $\tilde{p}(r = 10\text{m}) = 0.158$ Pa or $L_p \approx 78$ dB (re. 20 μPa)
- at 500 Hz, $\tilde{p}(r = 10\text{m}) = 0.633$ Pa or $L_p \approx 90$ dB (re. 20 μPa)
- at 1000 Hz, we should (theoretically) not consider the low-frequency approximation. However, the actual limitation corresponds to $ka = \sqrt{2}$ (instead of $ka = 1$), then the frequency bound is $f_{\max} \approx 1287\text{Hz}$. In this case we can still consider the low-frequency approximation.

$$\tilde{p}(r = 10\text{m}) = 2.5 \text{ Pa or } L_p \approx 102 \text{ dB (re. 20 } \mu\text{Pa)}$$