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Chapter 1 - Generalities on acoustics

Herv Lissek

Audio Engineering (MA1)

1 Acoustic propagation in an (infinite) waveguide

— m = ρ0Sdx

— Newton’s law : m∂v
∂t = Ftot = p(x)S − p(x + dx)S

Denoting v = ∂ξ
∂t and p(x) − p(x + dx) = − ∂p

∂xdx, the local law can be formulated as :
∂p
∂x = −ρ0

∂2ξ
∂t2

— the equation of compression leads to the differential equation : δPtot
Ptot

+ Γ0
δV
V where δa

a

denotes the relative variation of a quantity a.
Here, the reference pressure is ps and the reference volume is V0 = Sdx.
Moreover, the pressure variation is equal to the acoustic pressure variation δPtot = p, and
δV = S(ξ(x + dx) − ξ(x)) = S ∂ξ

∂xdx.
This leads to : p = −psΓ0

∂ξ
∂x

— by derivating the local Newton’s law with respect to x and derivating the differential
equation of compression twice with respect to t, one gets :
∂2p
∂x2 − ρ0

Γ0ps

∂2p
∂t2 = 0.

Leading to c0 =
√

Γ0ps

ρ0

2 λ/4 resonator

— The sound wave propagation is given by

∂2p(x, t)
∂x2 − 1

c2
∂2p(x, t)

∂t2 = 0 (1)

General solutions to this equation have the form

p(x, t) = Ae−j(kx+ωt) + Bej(kx−ωt) (2)

— Newton’s law :
∂p(x, t)

∂x
= −ρ0

∂v(x, t)
∂t

(3)

If p and v harmonic disturbances,

∂p(x, t)
∂x

= −ρ0jωv(x, t) (4)

— At x = 0, v(0, t) = 0 since the duct is closed and therefore, ∂p(0,t)
∂x = 0.

— Using separation of variables, only the spatial part of the equations can be kept for the
harmonic case. The general solution to the problem therefore has the form

p(x) = ae−jkx + bejkx (5)
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Introducing the boundary condition at x = L, one gets b as a function of a :

p(L) = ae−jkL + bejkL ⇒ b = −ae−2jkL (6)

Therefore

p(x) = ae−jkL(ejk(L−x) − e−jk(L−x)) = 2jae−jkL sin(k(L − x)). (7)

Taking the partial derivative with respect to x yields

∂p(x)
∂x

= −2jake−jkL cos(k(L − x)). (8)

Introducing the boundary condition at x = 0 :

∂p(0)
∂x

= −2jake−jkL cos(kL) = 0. (9)

This equation has non trivial solutions only for cos(kL) = 0 and therefore :
knL = (2n + 1)π

2 , n ∈ N∗.
Since k = ω/c = 2πf/c, the eigenfrequencies are given by

2πfnL

c
= (2n + 1)π

2
⇒ fn = (2n + 1) c

4L
. (10)

This is equivalent to L = (2n + 1)λ/4, hence the name.
— f1 = 340 · 1/(4 · 0.025) = 3400 Hz
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Figure 1 – Pressure field along the duct for the first 4 resonance frequencies.

Matlab script
% Audio Engineering (MA1) Generalities on acoustics, Chap I, exercise 2
% Quarter wavelength mode shapes for a straight duct filled with air
%

% Duct parameters
L = 0.025; % duct length
S = 0.0038; % duct cross-section

% Parameters pf the acoustic domain
rho = 1.2; % density of air
c = 340; % sound wave celerity

a = 1; % arbitrary amplitude

x = 0.0001:0.0001:L; % 1D vector along x axis
N = 4; % N first modes order
p = zeros(N,length(x)); % initialization p(x)
for n = 1:N

for m = 1:length(x)
p(n,m) = 2*a*cos((2*n-1)*pi/2/L*x(m)); % pressure field along x axis

end
end
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3 Sound absorption in a duct

1. General expression for the specific acoustic impedance
The general solution for the 1D wave equation can be written as :

p(x) = p+ e−jkx︸ ︷︷ ︸
forward travelling wave

+ p− e jkx︸ ︷︷ ︸
backward travelling wave

Using the 1D Euler equation : ∂p

∂x
= −jωρv, the particle velocity can be expressed as :

v(x) = − 1
jωρ

∂p

∂x
= − 1

jωρ
(−jk)

(
p+ e−jkx − p− e jkx

)
= 1

ρc

(
p+ e−jkx − p− e jkx

)
The specific acoustic impedance can therefore be written as :

Zs(x) = p(x)
v(x)

= ρc︸︷︷︸
Zc

p+ e−jkx + p− e jkx

p+ e−jkx − p− e jkx

where Zc is the characteristic impedance of the fluid medium.

2. General expression for the sound reflection coefficient

r(x) = p− e jkx

p+ e−jkx
= p−

p+
e 2jkx

3. Express Zs(x) as a function of r(x)

Zs(x) = Zc
p+ e−jkx + p− e jkx

p+ e−jkx − p− e jkx
= Zc

1 + p− e jkx

p+ e−jkx

1 − p− e jkx

p+ e−jkx

= Zc
1 + r(x)
1 − r(x)

4. Derive the expression of Zs at x = L when r(x = L) = 0

Zs(x = L) = Zc
1 + r(x = L)
1 − r(x = L)

= Zc

5. if r(x = L) = 0, then α = 1 − |r(x = L)|2 = 1.
A material with a specific acoustic impedance equal to Zc can be qualified as perfectly absorbent.

6. In the cas where Zs(x = L) = Zc, then the general expression of the sound pressure inside
the duct simplifies to give :

p(x, t) = p+ e−jkx ejωt

4 Sound levels

1. The sound power level is given by :
Lw = 10 log P

P0
= 10 log 3

10−12 = 125 dB
2. I = Pa/S with S = 4πr2. The sound intensity for the source d1 = 5 m :

I1(5 m) = (4π52)−1 · 3 = 9.55 · 10−3 W·m−2

For d2 = 10 m :
I2(10 m) = (4π102)−1 · 3 = 2.39 · 10−3 W·m−2

3. The sound intensity for d1 = 5 m and d2 = 10 m : LI1(5 m) = 10 log I1
I0

= 100 dB
LI2(10 m) = 94 dB
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5 Sound levels and acoustic quantities

1. The sound pressure level is given by Lp = 20 log10(p/p0). The sound pressure level of
another source with a given relative sound pressure p′ = C · p can be computed as Lp′ =
20 log10(p′/p0) = 20 log10(C · p/p0) = 20 log10(C) + 20 log10(p/p0) = 20 log10(C) + Lp.
For a source with p′ = 2 Pa, Lp′ = 94 + 6 = 100 dB.
For p′ = 0.1 Pa, Lp′ = 74 dB.
For p′ = 10 Pa, Lp′ = 114 dB.

2. I = p̃2/Zc = p̃2/(ρ0c) → 2.5 · 10−3 W/m2.
3. LI = 10 log10(I/I0) → 94 dB. The same calculations can be made as for sound pressure

level, so if I ′ = 2I, LI′ = LI + 3 dB.

6 Addition and substraction of decibels

Lp(car1 + car2) = 10 log10

(
I(car1) + I(car2)

I0

)
= 10 log10

(
10

Lp(car1)
10 + 10

Lp(car2)
10

)
(11)

The combined sound pressure level is therefore Lp = 81.8 dB since the two sources are considered
to be uncorrelated and intensities must therefore be summed.
The sound pressure level of the motorcycle can be computed as

Lp(motorcycle) = 10 log10

(
10

Lp(car1+car2+motorcycle)
10 − 10

Lp(car1)
10 − 10

Lp(car2)
10

)
→ 80.0 dB (12)

7 Beats

The total sound pressure reads : p(t) = sin(2πf1t) + sin(2π(f1 + ∆f)t)
Since sina + sinb = sina+b

2 .cosa−b
2 , then p(t) = 2sin(2π(f + ∆f

2 )t).cosπ∆ft

For f1 = 440 Hz and f2 = 445 Hz, we have “beats’’ : amplitude modulation of a pure tone at
f1+f2

2 , with modulation frequency of ∆f
2 :

If the two frequencies are far enough, we have two behaviors :
— if f2 is close to a multiple of f1, we still have beats
— in other cases, we do not have beats
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8 Pythagore’s scale

— The Do one octave higher (f12) corresponds to a doubling of frequency f0 : f12 = 2f0.

If all intervals fi+1
fi

are equal, it yields : f12
f0

= (fi+1
fi

)12 = 2, then :
fi+1
fi

= 21/12

— f7
f0

= 27/12 = 1.4983

— see table below
— see table below

Note Equa-temperament scale Pythagore’s scale
interval frequency interval frequency

Do 1 262 Hz 1 262 Hz
Do# 1.0595 277.6 Hz 1.0679 279.8 Hz
R 1.1225 294.1 Hz 1.1250 294.7 Hz
R# 1.1892 311.6 Hz 1.2014 314.7 Hz
Mi 1.2599 330.1 Hz 1.2656 331.6 Hz
Fa 1.3348 349.7 Hz 1.3515 354.1 Hz
Fa# 1.4142 370.5 Hz 1.4238 373.0 Hz
Sol 1.4983 392.6 Hz 1.5000 393.0 Hz
Sol# 1.5874 415.9 Hz 1.6018 419.7 Hz
La 1.6818 440.6 Hz 1.6875 442.1 Hz
La# 1.7818 466.8 Hz 1.8020 472.1 Hz
Si 1.8877 494.6 Hz 1.8984 497.4 Hz
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