5.2 Electrodynamic loudspeaker
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Definitions

.

Electrodynamic loudspeaker, with moving coil + radiating cone:

— elastically suspended diaphragm with spider and external
suspension

— moving coil, attached to the diaphragm
— magnetic circuit of the driver
— basket= open frame (made of metal)
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Radiation

\. J

If radiation through a horn: indirect radiation
Else: direct radiation

In a general sense, loudspeaker on infinite baffle
(piston behavior):

— after f and dimensions (w. resp. /1),
loudspeaker= small pulsating source in 27 sr

— identical velocity at each point of diaphragm:
RSN
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Bandwidth
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zone of f where the sound pressure generated by the
loudspeaker is constant

LF limit:
— omnidirectional radiation =2 constant P,
since P,=R_q /= g, shallvaryin 1/f
— mobile system=resonator, force independant of f
=>»flow velocity varies in 1/fif controlled by mass

=>»low limit of B = resonance frequency of the
mobile system
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Bandwidth

.
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Scheme of a loudspeaker in infinite baffle
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Equivalent acoustic scheme
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suppression of 2-ports by denoting:
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Equivalent electric scheme
\_ _J
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Low frequency approximation

below resonance frequency f.:

— (oL ,)<<R,
- 2R <R .
— X ,=mass m,, added to the acoustic masses:
om +2m,
m as — 2 — mas +2mar
Sd
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Small signals parameters

In the LF range,

small signals (or Thiele/Small) parameters :

1 1 1

resonance frequenc fs: N -
quency f, 2mfm' C,. 2z m' . C, 27 JC' L,

. . — 2
air volume equivalent to C V,=pcC,

, 1
electrical quality factor Q,, at f, O =0,C R, = wC R
N as $
Reelpgmo
mechanical quality factor Q, . at f O =wC' R = R _ l
. ) ) ) a)S LS a)S CCZS Ras
total quality factor Q,, at f, O, = Gl
Qes +Qms



Diaphragm volume flow ]
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Acoustic power and pressure

g J
Radiated power is P = Rarqd
then

2@0

fZ ~2

P,

-

Sound pressure (omnidirectional radiation in 2 sr)

~ P
p(r)=|Z,
27zr2
(WRE—
V I(r)
where p_is independant of f
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Diaphragm elongation
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can be computed by integrating g,
(multiply with 1/j® in harmonic state)
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Input impedance
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Zup=Upp ! Iyp

At LF _ ZHP —1 Qms (]a)/a)s)Qn_ul*
Zyp = =1+| (=) — . 5
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Behavior at high frequencies
\_ J
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Behavior at high frequencies

~ J
below /7,
gd = . _g| — . . ' ‘(_]g E‘l() Rae 94
jom' joL,.jom' .S,
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Input impedance in HF

L, not negligible anymore
>4.1, 2, is negligible

Zip

- f

17/23

EPFL



Efficiency

radiated acoustic power

efficiency= . .
provided electrical power
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Large signal parameters

\. J

Usage limitations:

— P, nominal thermal power handling capacity of the
driver : dissipation by heat in the driver

— £ rmaximum linear peak excursion of the cone.

— gh maximum excursion of the drlver before
distorsion, defining a volume =S .fh

T U, < VQW(BZ) voltagelimited bydlstorsion

\/—S xmax

max(|x )
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Specifications of a loudspeaker

Physical characteristics
Polarities of electrical terminals
Small and large signals parameters

Performances of the loudspeaker, nominal and limit

conditions of use
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Nominal quantities
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 Nominal power P,
 Nominal bandwidth B,

* Nominal impedance Z,

MA1 - H. Lissek - Audio Engineerin 21/23 -
gineering EPFL



Response curve

Y,
e Free field

e Mounted on a normalized screen (IEC or AES)

e Distance of measurement

e Input power = 1/10 of nominal power
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Equivalent Thévenin source

Loudspeaker = equivalent Thévenin source
Force source F,=5p,

Source impedance Z,,, (mechanical + mechanical
equivalent of R, and L))

Load impedance Z, = front and rear radiation
impedances
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