3.3 Statistical acoustics



Introduction

e 1885: Sabine observations:
— in closed space, sound is sustained after source stops
— |If the prolongation is too long, intelligibility is deteriorated

— There exist limit values of duration with respect to the
intelligibility deterioration

— This phenomenon depends on walls nature and their
covering area
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Introduction

e Statistical acoustics: considering statistical variations of acoustic

guantities rather than an accurate description of sound fields (wave
acoustics)

=>»assume theoretical diffuse fields: it is composed of many rays with the
average properties of equal intensity and equal spatial distribution
— Constant sound energy density over the room

— No dominant sound incident direction: [ =0 over all directions

=>» All rays, on average, have been reflected the same number of times and
traveled the same distance

=>» Same mean free-path length d_ between 2 reflections for all rays
In practice:

— Only little overall absorption

— Homogenous distribution of absorption
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Reverberation

It is the prolongation of sound in a closed space
explanation:
— extinction of free state (cf. wave acoustics)

— late reflections constitute a continuum in geometrical
acoustics

guantification: reverberation time,
corresponding to a decrease of 60 dB of sound level
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Sabine absorption factor

quantification of the absorbing nature of walls: absorption coefficient
Energy absorbed by a wall:

a(0) =1-p(0)

or in terms of volumic energy

w.=(l-a)w

ﬂui d § material

interface
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Sabine absorption factor

Absorption factor  depends on incidence angle

In diffuse fields, it is possible to define a mean absorption factor
o, for equiprobable incidences

material
interface

fluid
(air)

7777
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Sabine’s law

see Kutruff, pp 127-160

Relationship between:
— Reverberation time 7, of a room
— absorption factors of walls ¢;

Hypothesis:
e geometrical acoustics description
e ideally diffuse field, and remaining diffuse after the source stops
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Sabine’s law

see Kutruff, pp 127-160

At each reflection, sound rays lose the ratio ¢, of their energy:
ow=-aw,

Mean free path d,, between 2 reflections induces mean free time
t =d /c

=> statistically the energy lossow occurs every ¢,

Wt

m

Diffuse field > 2" __% 4
Then: w(t) =w, exp(—a.t/t,)

MA1 - H. Lissek - Audio Engineering 8/45 EPFL



Sabine’s law

see Kutruff, pp 127-160

Reverberation time T, is defined as the time for the energy to
decrease of 60 dB (corresponding to a factor 1/1000000)

4V

In diffuse field, estimated mean free time can be derived as t,,, = p

Then the Sabine’s law becomes:

d ~ 0,16L
ca S .S

T =554
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equivalent sound absorption area —
Sabine formula

Sound absorption area A (m?) =denominator of Sabine’s law
Generalization to heterogeneous walls:

A=Y 4= a,s,

Sabine’s law =» Sabine’s formula

T 50,16K
A
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Sabine’s law

alternative derivation

We want to estimate the sound intensity / hiting a surface dS of
walls inside the room. !

dv

We consider a diffuse field (ie random incidence plane waves,

uniform energy density w)
Let’s consider a volume dV with energy wdV'.
The portion of energy stemming from dV and hiting dS is: 5

dS cos 6
W = WWdV

The power that hits dS in 1 second =energy within a half-sphere of

radius R = ¢ X 1s

_ wdS / / " / 30 . rdb.rsin 6d = “CdS = 1.dS
r=0Jo=0 Jp=0 T 4

Since the total intensity impinging the wall is I = %, the whole

absorbed intensity is I, = A% 145 EpE|
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Sabine’s law

alternative derivation

Since all the power delivered by a source is absorbed,

wc 4P
Psource = Pabsorbed = ATthen W = Szlérce
A diffuse field = superposition of plane waves with arbitrary
2
directions=2»[ = wc = %

Reverberation time:

dv

The total power in the room, at any time, is the difference

between the power of the source and the absorbed power
dw dw
= E = Psource — Pabsorbed

dt
When the source stops:
r - % o o _Zgy
dt 4 w 4V
Leads to the Sabine ‘s law
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Properties

Diffuse field
=>» at cut-off, sound levels (L, and L,) linearly decrease
=>» do not depend on repartition of absorbent

=>» T, can be modified by changing the surface and nature of
materials

=» inversely, measuring T, leads to the assessment of materials’
absorption factors
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Comments

Sabine valid only in diffuse field

=>» still valid with diffuse reflections (Lambert’s law, see Kutruff
book)

This condition is often verified in reality

Estimation of ¢, with rigorous methods lead to the same result
Sabine is generally verified (~orders of magnitudes)

Particular case : Sabine applied on ideally absorbing walls (a=1)
=> T finite (not null)!

: A .. :
Important caution: for S > (. 3, Sabine is overestimated!
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Eyring and Millington laws

see Kutruff, pp 127-160

Absorbing walls=2 Sabine is insufficient

Eyring’s law: same concept than Sabine, but with a different law
for energy decrease:
— At each reflection, energy drop by (1-a.): W, =W, (1-«)
— After N reflections, energy w,=Ww,1-a)"
— For a decrease of 10° (as for Sabine), it yields: W,

Y100 =(1—)"
T (1-a)

B 1n(10‘6) _—13.8
|- | N/

— Then: N

— Considering mean free time t_, the total time for the N reflections is:
4V V

I, =Nt =N—=0.16

cS —In(1-)S

A
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Eyring and Millington laws

see Kutruff, pp 127-160

Absorbing walls=2 Sabine is insufficient

Eyring’s law: same concept than Sabine, but with a different law
for energy decrease T 20,16 14
—SIn(l-«,)

Ag

Millington’s law: consider each material independently, and a
mean free path for each pair of walls (no more averaged on
the whole room):

%

T =0,16—

Si ln(l o ami)

i=1
o J/

~~
Am
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Effects of losses in air

For wide rooms, we shall consider the absorption coefficient of
the air: a in Np/m

W= W, exp {—(2616 + fs )t}

Increase of the equivalent absorption area of about 0,9a V"

MA1 - H. Lissek - Audio Engineering 17/45 EPFL



Schroeder frequency

Characteristic frequency above which the field is diffuse enough:
£.=2000(7./V)Y/?

Determines the limit between modal and diffuse sound fields

Useful relationship for determining the minimum volume of a
room with respect to the diffuse field conditions

V. . =(2000/f.)*T,

For example: for a opera house requiring T,=2 s, and instruments

down to 60 Hz =@ it yields a minimum volume of 2’222 m3 |
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I’ measurement

A pink noise is emitted in a room, with a loudspeaker, so that a
high number of modes are excited

At source cut-off, the decrease of sound pressure level is sensed
with a microphone
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I’ measurement

In practice, background noise may disturb the measurements

Decrease of 60 dB not always possible
=>» Measurement of 7,, or T},

Other measurable metrics: initial reverberation time (10 first ms
of decrease)
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Schroeder method

Schroeder demonstrate that the mean decrease can be deduced
from the impulse response p(7)

pP0=["p@dr=| p'@dr-[ p’()dz

Pseudo-random excitation: multi-length sequences(MLS) =
impulse response p(7)
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State of the room

T &0 = 1 4 T T T T e e s e 2 ——— E— U —

1.2

125 250 500 1000 2000 4000
f Hzx

Reverberation times in the ELA2 auditorium without and with audience
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Absorption factors measurements

By comparing T, in a reverberant room without and with
absorbing material, one can compute absorption factor

Sabine’s formula allows to find the desired o,

-

V
oy = 0,16 ——
) asO *~room
V
material — 09 1 6
S )+ .S
aSO ( room materzal material

\§

We can then derive the values of ¢,
Note: it is possible that o, >1
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Absorption factors measurements

Reverberation time of the

empty room
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Absorption principles

3 fundamental principles, corresponding to different frequency
bands:

- porous materials (mineral fibers)
- panel absorbers (wooden panels)
- acoustic resonators (see perforated ceilings)

f“ .
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Porous materials

processed polymeric fibers (nylon, fabrics, etc.)
inorganic fibers (glasswool, carbon, metal, etc.)
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Porous layers

Mechanisms Absorption factors

e Viscous damping e high values above 500 Hz,

e Thermal dissipation e quite null below 500 Hz

e Mechanical vibrations of skeleton e increase with thickness and density,

e optimal value of density,

e higher thickness increase absorption at
low frequencies

e mounting conditions (plenum) modify
the absorption at low frequencies

*%e%e% "% e 9 e %!

e e e 0 e 0 e 0"
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. so o
s 203225 MAT - H. Lissek
Figure 1.—Decrease in energy transfer potential as pore size decreases from large (left) to small (right). Com posite Hyb ri d Laye red



Panel absorbers
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Panel absorbers

Absorption at low frequencies

Thin wooden panels (4 to 20 mm) with smooth surface,
mounted on beams

Possible adjunction of porous materials

Mass-spring-losses system

Resonance frequency determined by: fr —
'
surfacic mass m' m d

’ ry
f / mass of the

= ’ / spring panel

Ej N “H{{' / of air

’ % —\WWM—]
/ / «spring» of ;
i / the panel
J
(o gap) é
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vefficient

——> Absorption co

> Frequency (kHz)

(a) wooden panel, 8 mm thick, m' =5 kg/m2, 30
mm away from rigid wall, with d=20 mm
Rockwool in the air gap; (b) panels, 9.5 mm
thick, perforated at 1.6% (diameter of holes 6
mm), 50 mm distant from rigid wall, air space
filled with glass wool.
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Panel absorbers

Acoustic panels: ! ﬂ
— with holes, = | |
— with gaps, J oy
— plaster or wood derivates, -
— combined or not with porous layers 5 T |

Absorption at low and medium frequencies, depending on the
type and density of surface irregularities
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Acoustic resonators
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Acoustic resonators ' .~

Their use relates back to Antiquity.

Principle: hollow body, communicating with outside by
way of a neck or a hole

Absorption in the medium frequencies range

With quite small dimensions with respect to wavelength s
at the resonance, the resonator can be computed with e

an equivalent Kirchhoff model: acoustical mass-spring-
losses system  oscillating

sound pressure
force /

«rigidy»
mass of air

PLAN

oscillating
movement

SECTION
THE ROMAN THEATRE ACCORDING TO VITRUVIUS, 1914

spring
of air

Co |S

fu = 5m (W
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Examples

Facteur d’absorption @,
a la fréquence indiquée en Hz

"Matériau et mise en oeuvre 125 [250 [500 |1000 |2000 |4000
Crépi lisse sur murs de briques ou de béton [0,01 (0,01 |0,02 (0,02 [0,03 |0,04
Plafond plétre lisse 2 cm avec plénum 20 em [0,25 |0,20 |0,10 |0,05 |0,05 (0,10
Parois revétues de bois ou panneaux de fibreg 0,40 |0,30 (0,20 |0,10 [0,10 |0,20
de bois sur lambourdes
Revétement de sol collé (bois, linoléum, etc.) | 0,02 [0,03 (0,04 |0,05 |0,05 |0,10
Parquets, etc., sur lattes 0,20 10,15 |0,10 |0,10 ]0,05 |0,10
Tapis, épaisseur moyenne 005 (0,08 0,20 (0,30 (0,35 |0,40
Rideaux, épaisseur moyenne 0,10 {0,015 |0,30 [0,40 |0,50 [0,60
Panneaux acoustiques sans plénum 0,10 10,15 (040 [0,60 (0,70 [0,70
Panneaux acoustiques avec plénum de 15 c¢m |0,20 |0,30 (0,60 |0,70 (0,70 (0,70
Fenétre fermée 0,10 10,04 10,03 (10,02 (0,02 0,02
1 m2 de public assis et dense 0,60 0,75 (0,90 095 |095 |0,85
1 m2 de si¢ges rembourrés épais 0,45 10,55 |0,60 |0,60 [0,60 |0,50
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Audience, furniture

The audience modifies the absorption in the room at medium
frequencies — idem for furnitures
2 possibilities for computing:
— equivalent sound absorption area per person

— absorption factor ¢, per square meter

Fundamental issue: realize a T, that is the less sensitive to the
presence of audience

=>» “absorbing disposals” in the furniture to compensate the
absence of audience
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Audience, furnitures

Aire d’absorption A| en m? / unité
a la fréquence indiquée en Hz

Désignation 125 1250 {500 | 1000 |2000 |4000
Public debout ou sur siéges en bois 0,15 (0,30 |0,50 (0,55 |0,60 |0,50
Idem, sur siéges rembourrés 0,20 040 |0,55 |0,60 |0,60 |0,50
Musiciens avec instruments sur podium 040 (0,80 |1,0 1.4 1.3 1,2

Mobilier en bois 0,01 10,01 (0,02 [0,03 |0,05 |0,05
Mobilier rembourré en tissu 0,10 {030 [0,35 |[0°8%°]0,50 [0,40
Mobilier en cuir 0,10 (0,25 |0,35 10,35 |0,20 |0,10




Energy conservation

see Kutruff, pp 127-160
Energy variation = source power — absorbed power

If the source power variates slowly:
=>» we consider w and p (averages rather than instantaneous values)
Diffuse field=sum of plane waves with equal-probability directions

~2 —

Sound intensity within an unitary face (of awall) is: 7= fZ =

c

> Absorbed power: P (1)=1.4= WAC

=» Energy conservation equation: )2 (t) VW + wﬁ
4
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Steady state and reverberated level

In case of a constant source (ie. mean variation of energy per
unit volume is null):

P =14 =wAC
4

The reverberated level is defined as sound pressure level in
diffuse field L =L, —10logA+6

=» Sound pressure level computation takes into account the

contribution of reflections in the room, assuming the field is
diffuse
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Steady state and reverberated level

Beranek observed that the reverberated energy is the one of the
first reflection, then 4 is replaced by R=4/(1-¢,,,,,)

The reverberated level L, is the same in the whole room, whatever
- the distribution of absorbant,
- position of the source
- position of the listener
- their relative distances
Direct sound level, for a known source (directivity o, power P,) is:
L,=L, +L;-20logd —11

where
L;=10log,, o
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Critical distance, critical radius

L, decreases with d whereas L. remains constant
=> Critical distance for which L =L,

d =0,14+0.4

If omnidirectional source (0=1), critical radius

r, = 0,144

o o . \

> logr

‘r-‘.
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Properties
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Applications

e Noise reduction

Possibility to reduce the reverberated level (noise) by enhancing
(increasing) A

=>» relative increase of absorption leads to a decrease of R dB of
the reverberated level Lr:

A/A4,=10R/10)

e Acoustic power measurement

In a reverberant room, the measure of the sound pressure level
Lp=Lr (dominating reveberant field) gives L,
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Unsteady state

When a source power varies with time (see speech or music):
=» evolution/modulation of the acoustic fields in a room
Conservation equation =»solutions after
Vin(t) = B,(t) * exp(~t / 7)
where 7=4V/cA or T /13,8

Anechoic recording Semi-reverberant recording Reverberant recording
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Modulation transfer function

For a harmonic acoustic power of a source, modulated at 100 %:

P(t)=P,[1+cos)|

we obtain:  W(t) =W, [+ mcosQ(t —7,)]
where w, =7P,

and delay 7,

|
Modulation transfer function m(€2) =
J1+0%7
|
. m(Q) =
In complex form: m(€2) Lt 0r

MA1 - H. Lissek - Audio Engineering 45/45 EPFL



Modulation transfer function

Schroeder showed that m is the Fourier transform of the square
of the impulse response of the room h(t)

o j:hz(t) exp(— jQt)dt
m =
B j:hz(t)dt
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