

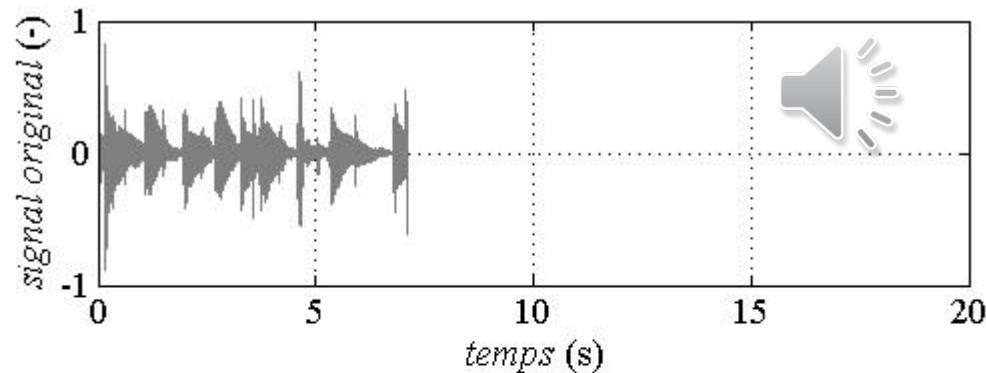
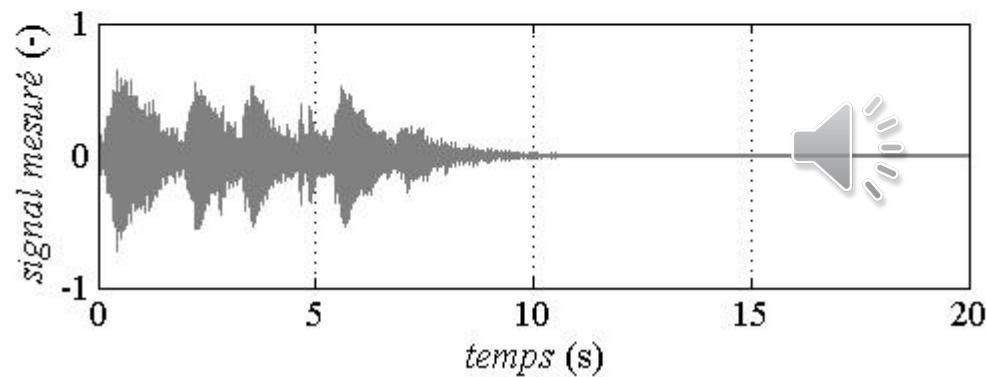
III. ROOM ACOUSTICS

MA1 – Audio

Hervé Lissek, Etienne Rivet, Vu Thach Pham

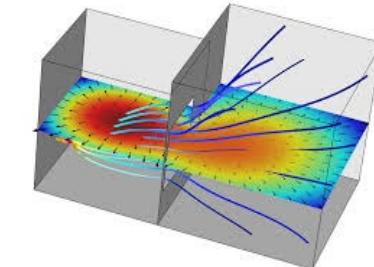
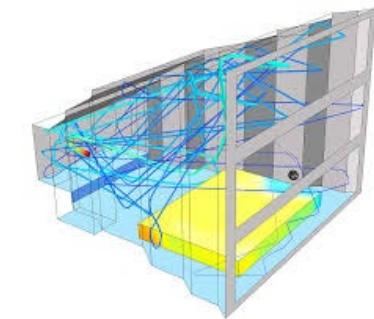
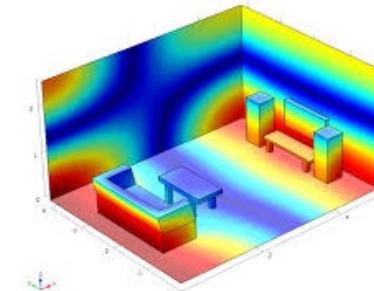
CONTEXT

- Music rendering



SOUND FIELD CHARACTERISATION

- **Wave-based methods**: boundary element method, finite element method, finite-difference time domain
- **Modal methods**: expression of the sound field as a linear combination of the modes
- **Geometric methods**: ray tracing method, image source method
- **Statistical methods**: hypothesis of a diffuse sound field, uniform acoustic energy traveling in all the directions with the same probability
- **Diffusion-equation models** (extension of the statistical theory to spatially varying reverberation times): mainly used for coupled rooms



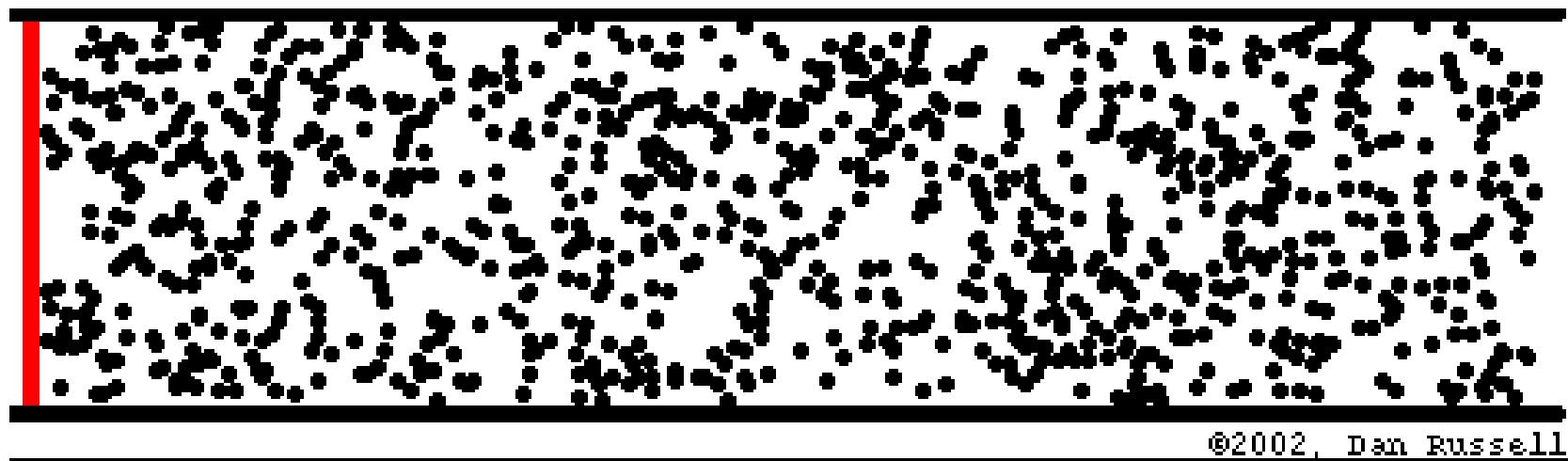
© Comsol Multiphysics

III.1 WAVE THEORY OF ROOM ACOUSTICS

MA1 – Audio

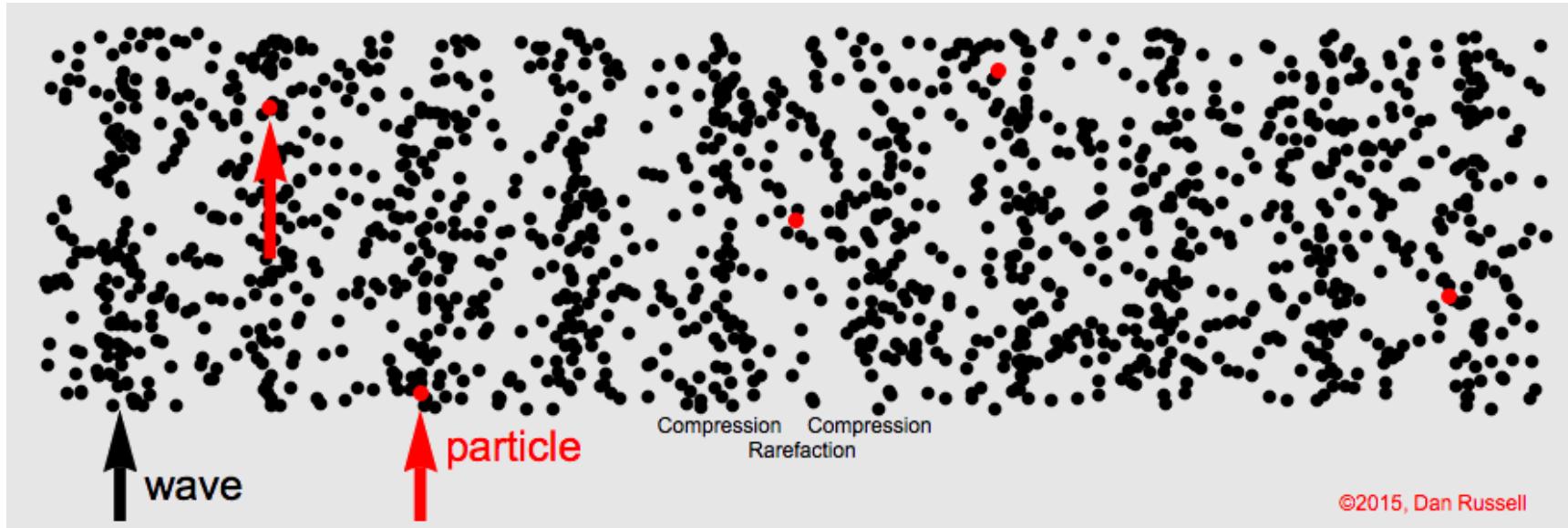
SOUND WAVES IN AIR

- Air particles oscillate back and forth about their equilibrium positions, while the wave disturbance propagates through the medium



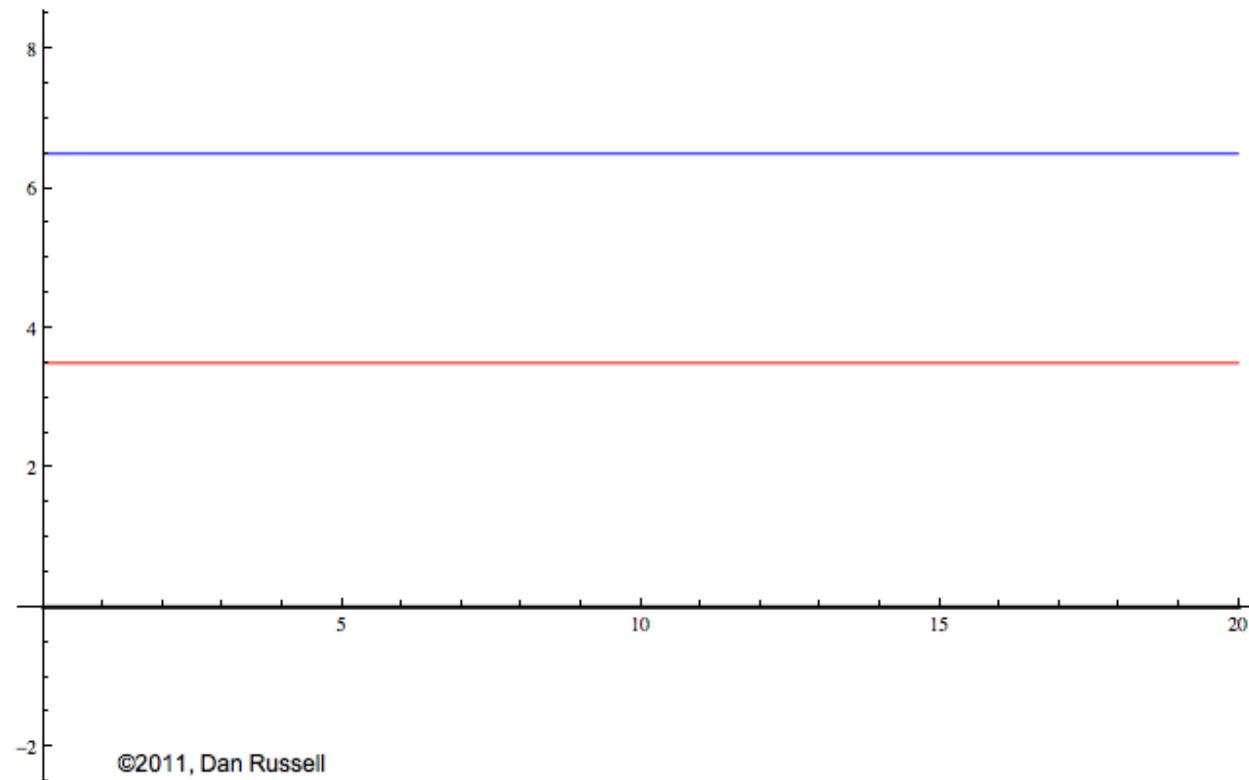
WHAT IS A WAVE?

- Longitudinal waves

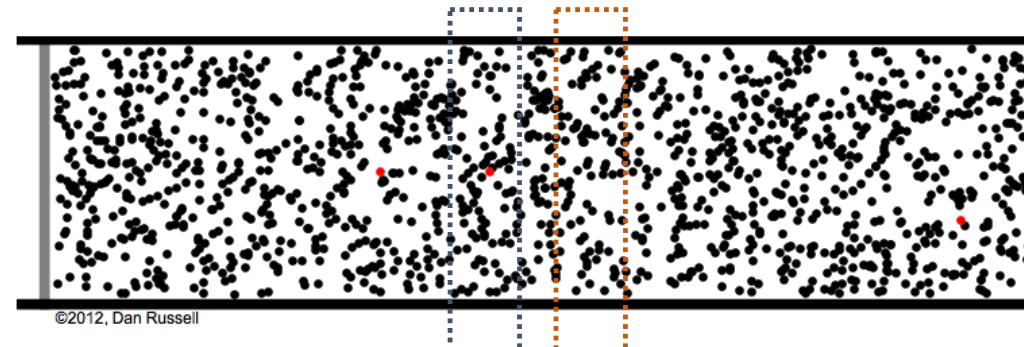


SUPERPOSITION OF WAVES

- Waves travelling in opposite directions



STANDING WAVES



PLANE WAVES IN WAVEGUIDES

- Steady-state solution of the wave equation $p(x, t) = \sqrt{2} \operatorname{Re} (p_x e^{j\omega t})$

$$\frac{d^2 p_x}{dx^2} + k^2 p_x = 0$$

$$\rightarrow p_x = A e^{-jkx} + B e^{jkx}$$

- Dynamic law

$$\frac{dp_x}{dx} = -j\rho\omega v_x$$

$$\rightarrow v_x = \frac{1}{\rho c} A e^{-jkx} - \frac{1}{\rho c} B e^{jkx}$$

ρ : mass density of the medium

c : speed of sound in the medium

REFLECTION COEFFICIENT AND WALL IMPEDANCE

- Wall impedance

$$Z_L = \frac{p_L}{v_L}$$

- Reflection coefficient

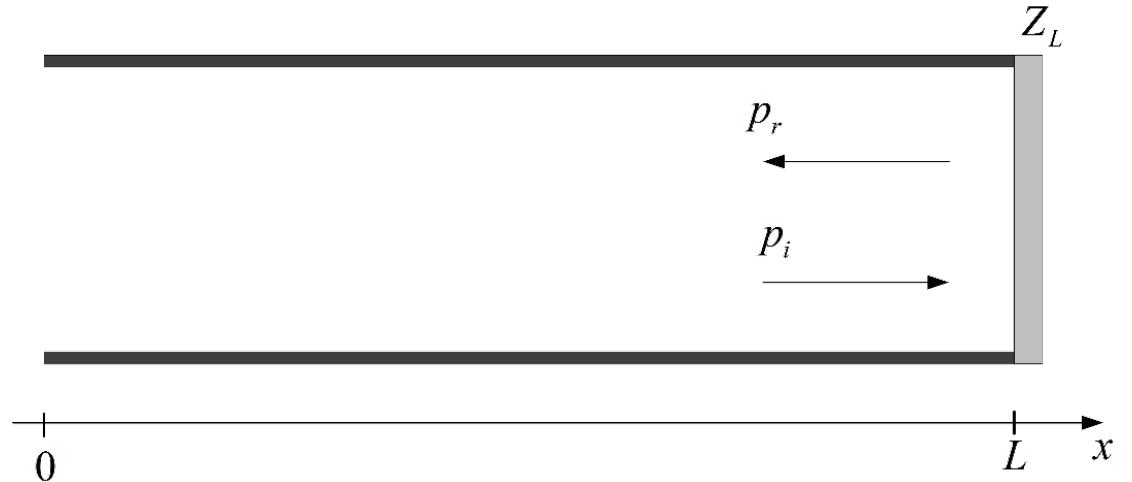
$$R_L = \frac{p_r}{p_i} = \frac{Z_L - \rho c}{Z_L + \rho c}$$

$$\rightarrow Z_L = \rho c \frac{1 + R_L}{1 - R_L}$$

$$\rightarrow p_x = A \left(e^{-j k x} + R_L e^{j k (x - 2L)} \right)$$

- Absorption coefficient

$$\alpha = 1 - |R_L|^2$$



$$\frac{dp_L}{dx} + jk\beta_L p_L = 0$$

$$\text{with } \beta_L = \frac{\rho c}{Z_L} \text{ (reduced admittance)}$$

SOLUTION OF THE WAVE EQUATION IN WAVEGUIDES

$$p_x = \rho c \frac{e^{jk(L-x)} + R_L e^{-jk(L-x)}}{e^{jkL} - R_L e^{-jkL}} v_0$$

- Input impedance

$$Z_{x_0} = \rho c \frac{Z_L + j \rho c \tan(kL)}{\rho c + j Z_L \tan(kL)}$$

- For a rigid wall

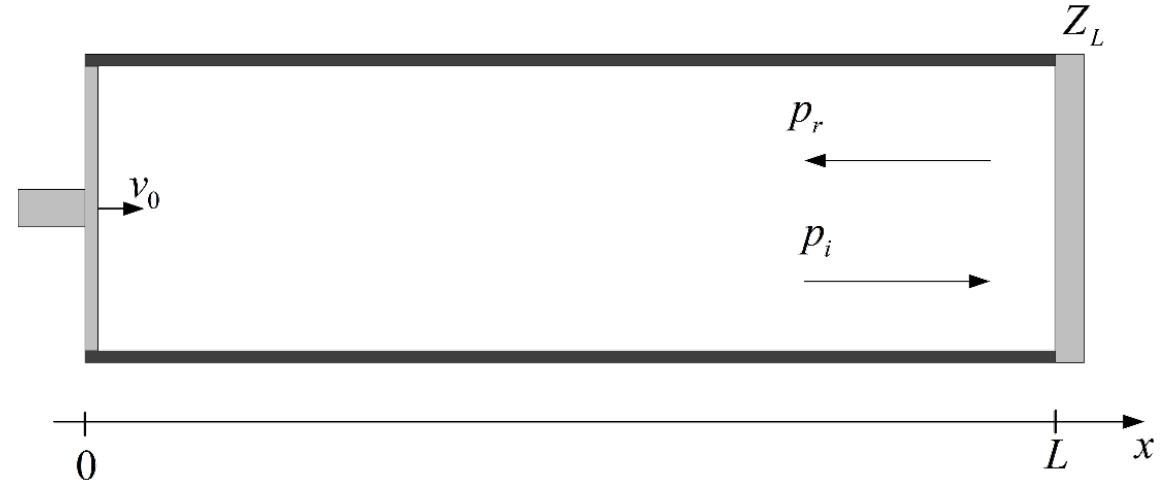
$$Z_0 = -j \rho c \cot(kL)$$

$$v_x = \frac{\sin(k(L-x))}{\sin(kL)} v_0$$

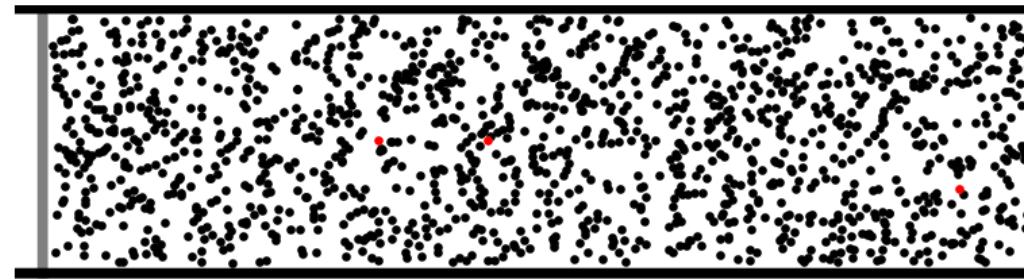
$$p_x = -j \rho c \frac{\cos(k(L-x))}{\sin(kL)} v_0$$

- Resonances for $\sin(kL) = 0$, i.e. $f = nc/(2L)$

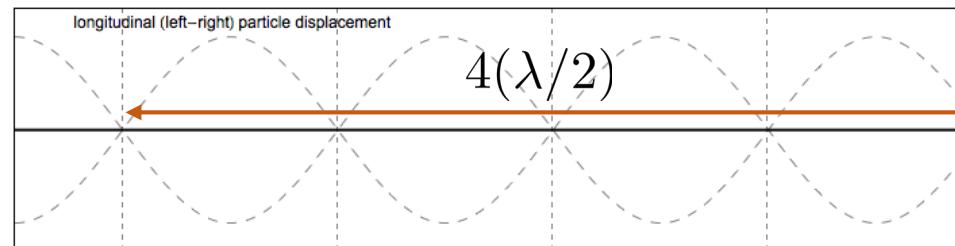
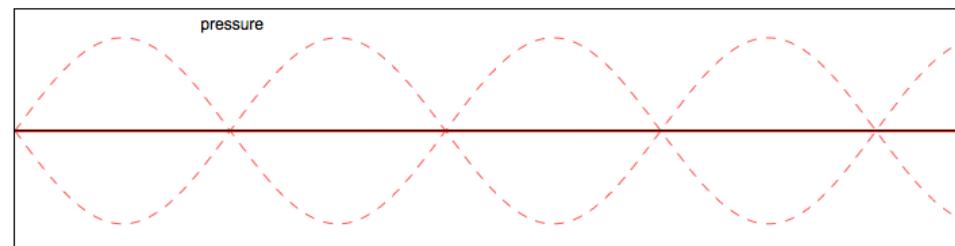
(be careful: in books $Z_0 = \rho c$)



SOLUTION OF THE WAVE EQUATION IN WAVEGUIDES

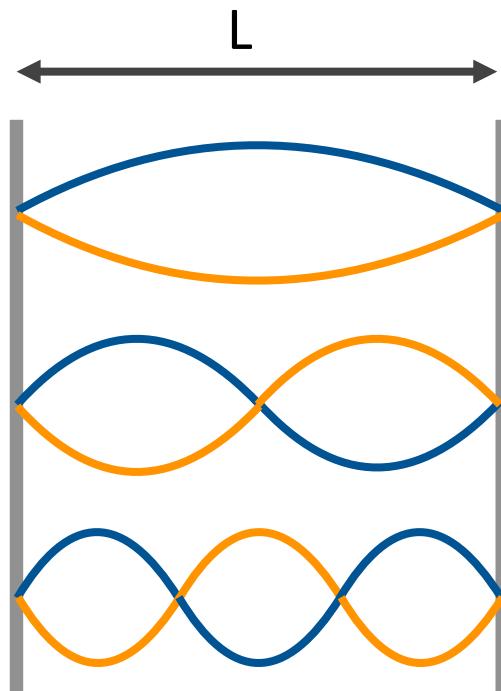


©2012, Dan Russell



STANDING WAVES

Particle displacement



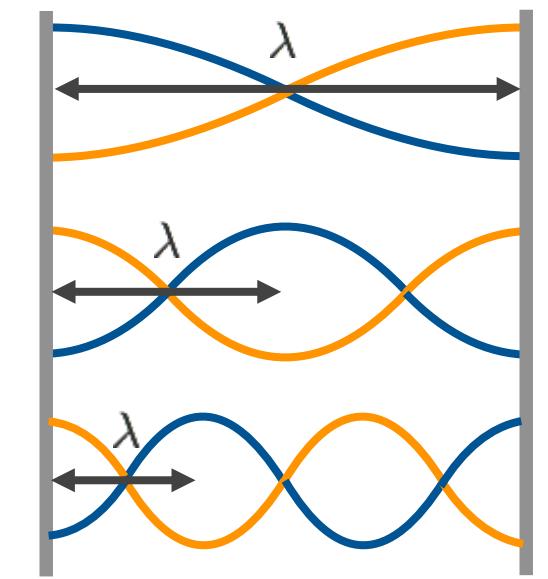
$$\lambda = 2L, f = \frac{c}{2L}$$

$$\lambda = L, f = \frac{c}{L}$$

$$\lambda = \frac{2L}{3}, f = \frac{3c}{2L}$$

$$\lambda = \frac{2L}{n}, f = \frac{nc}{2L}$$

Sound pressure



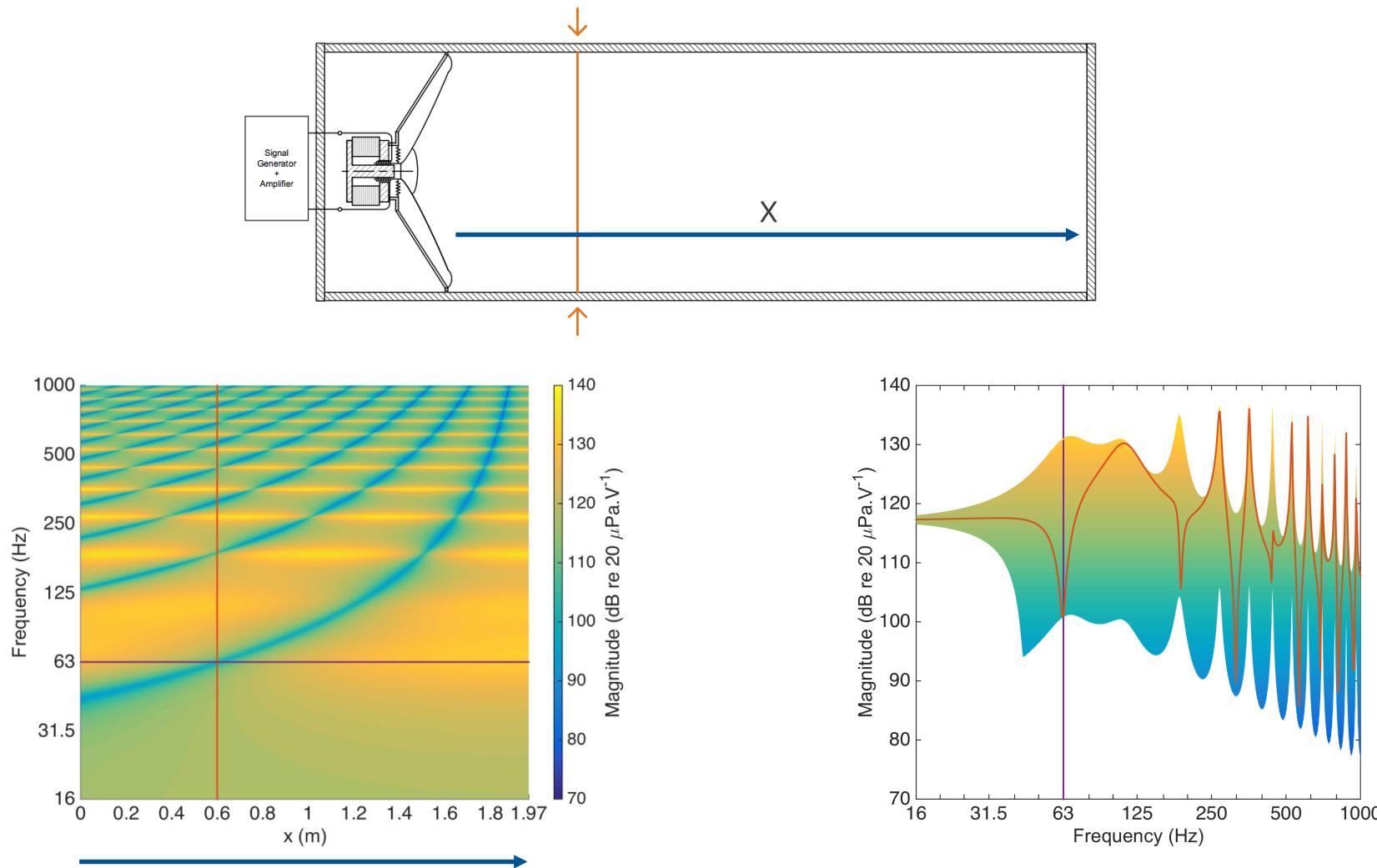
Mode 1

Mode 2

Mode 3

Mode n

SOUND SOURCE IN DUCT WITH RIGID TERMINATION

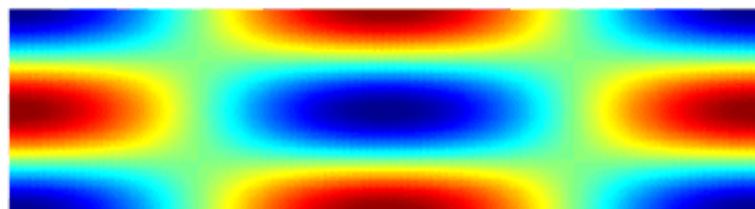
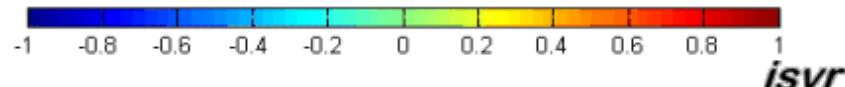


ROOM MODES

Mode (2,2,0)

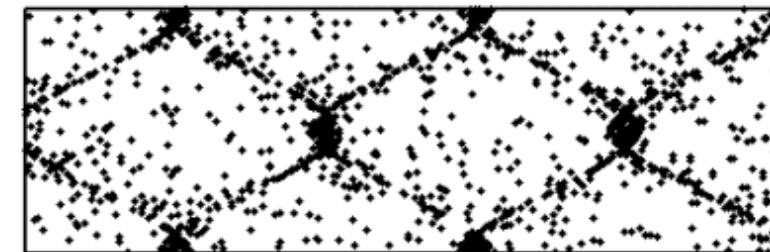
Particle Displacement ($N_x = 2, N_y = 2, N_z = 0$)

Pressure Mode

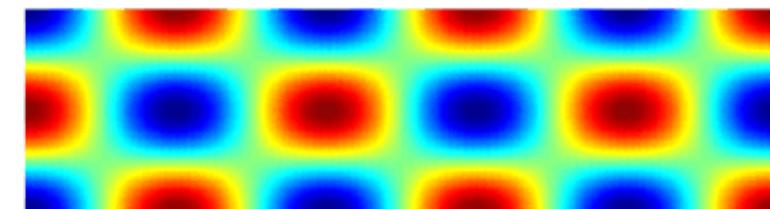
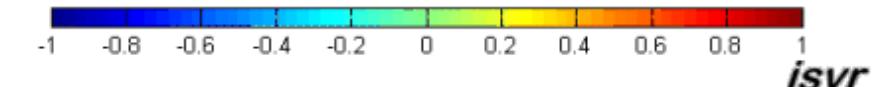


Mode (5,2,0)

Particle Displacement ($N_x = 5, N_y = 2, N_z = 0$)



Pressure Mode



MODAL REPRESENTATION OF THE SOUND PRESSURE IN ROOMS

- Helmholtz equation associated to a source function

$$\Delta p(\mathbf{r}) + k^2 p(\mathbf{r}) = -j\omega \rho q(\mathbf{r})$$

- Boundary condition assuming locally reacting boundaries

$$\frac{Z}{\rho c} \nabla p(\mathbf{r}) \cdot \mathbf{n} = -jk p(\mathbf{r})$$

where \mathbf{n} is a unit vector normal to the boundary surface area (outward direction)

- Source function expanded in a series of eigenfunctions

$$q(\mathbf{r}) = \sum_n Q_n \Phi_n(\mathbf{r})$$

where

$$Q_n = \frac{1}{K_n} \int \int \int_V \Phi_n(\mathbf{r}) q(\mathbf{r}) dv$$

with K_n is a constant expressed in Pa^2m^3

MODAL REPRESENTATION OF THE SOUND PRESSURE IN ROOMS

- Eigenfunctions satisfy the orthonormal property

$$\int \int \int_V \Phi_m(\mathbf{r}) \Phi_n(\mathbf{r}) dv = K_n \delta_{mn}$$

- Solution of the wave equation

$$p_\omega(\mathbf{r}) = \sum P_n \Phi_n(\mathbf{r})$$

- Every term is related to the corresponding eigenvalue $\lambda_n = -k_n^2$ through $\Delta \Phi_n = \lambda_n \Phi_n$
- Assuming a point source located at r_0 $q(\mathbf{r}) = q_0 \delta(\mathbf{r} - \mathbf{r}_0)$

- Finally

$$p_\omega(\mathbf{r}) = j\omega \rho q_0 \sum_n \frac{\Phi_n(\mathbf{r}) \Phi_n(\mathbf{r}_0)}{K_n (k_n^2 - k^2)}$$

- Eigenvalues in complex quantities, i.e. $k_n = \frac{\omega_n}{c} = \frac{1}{c} (\omega_n + j\delta_n)$

$$p_\omega(\mathbf{r}) = \rho c^2 \omega q_0 \sum_n \frac{\Phi_n(\mathbf{r}) \Phi_n(\mathbf{r}_0)}{K_n [2\delta_n \omega_n + j(\omega^2 - \omega_n^2)]}$$

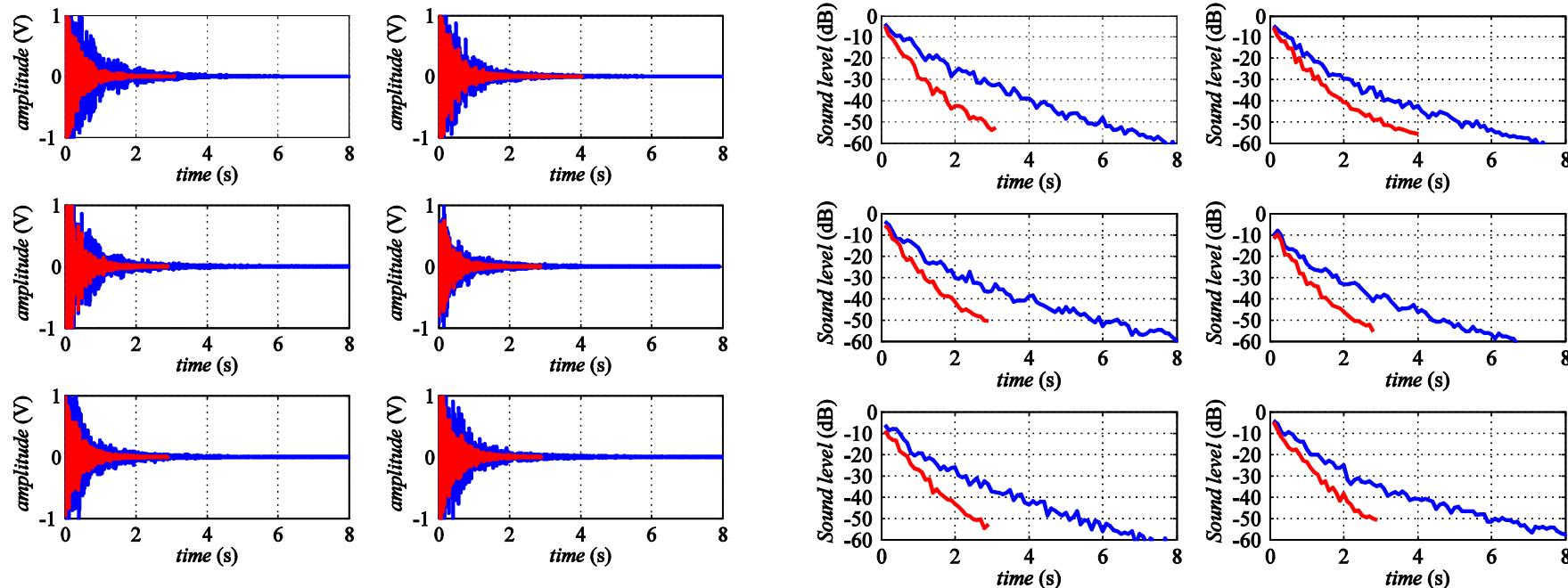
MODAL DECAY

$$\omega_n = ck_n = \omega_n + j\delta_n = \omega_n + j\tau_n^{-1}$$

$$Re[\exp(j\omega_n t)] = \cos(\omega_n t) \exp(-t/\tau_n)$$

- δ_n is the exponential decay of mode n
- τ_n is the relaxation time of mode n

→ exponential decay of mode n with the rate depends on δ_n



SOLUTION OF THE WAVE EQUATION IN RECTANGULAR ROOMS

- In the steady-state, for Cartesian coordinates, and assuming rigid walls

$$(\nabla^2 + k^2)p(x, y, z) = 0 \quad \nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \quad k = \omega/c$$

- Solution expressed as $p(x, y, z) = p_0\Phi_x(x)\Phi_y(y)\Phi_z(z)$

- For instance, Φ_x must satisfy $\frac{d^2\Phi_x}{dx^2} + k_x^2\Phi_x$

- Boundary condition $\frac{d\Phi_x(0)}{dx} = 0$ and $\frac{d\Phi_x(l_x)}{dx} = 0$

$$\rightarrow k_x = n_x\pi/l_x$$

- $k_x^2 + k_y^2 + k_z^2 = k^2$

NORMAL MODES IN RECTANGULAR ROOMS WITH RIGID BOUNDARIES

- Eigenfunctions approximated by the mode shape functions

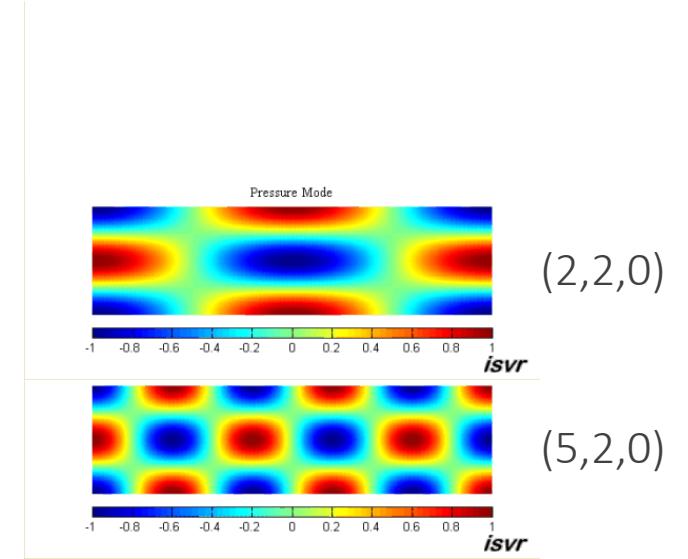
$$\Phi_{n_x n_y n_z}(x, y, z) = \cos\left(\frac{n_x \pi x}{l_x}\right) \cos\left(\frac{n_y \pi y}{l_y}\right) \cos\left(\frac{n_z \pi z}{l_z}\right)$$

where $(n_x, n_y, n_z) \in \mathbb{N}^3$ are non-simultaneously equal to zero

- Eigenfrequencies

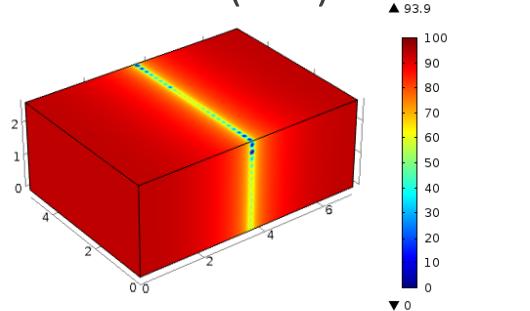
$$\omega_{n_x n_y n_z} = \pi c \sqrt{\left(\frac{n_x}{l_x}\right)^2 + \left(\frac{n_y}{l_y}\right)^2 + \left(\frac{n_z}{l_z}\right)^2}$$

- $K_n = V/(\epsilon_{n_x} \epsilon_{n_y} \epsilon_{n_z})$ where $\epsilon_{n_s} = 1$ if $n_s = 0$ and $\epsilon_{n_s} = 2$ if $n_s > 0$
- Only for **LIGHTLY DAMPED** enclosures

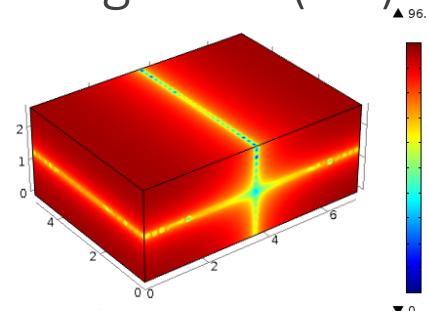


DISTRIBUTIONS IN SPACE AND FREQUENCY OF SOUND PRESSURE

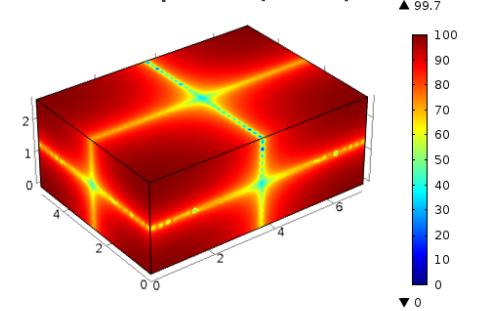
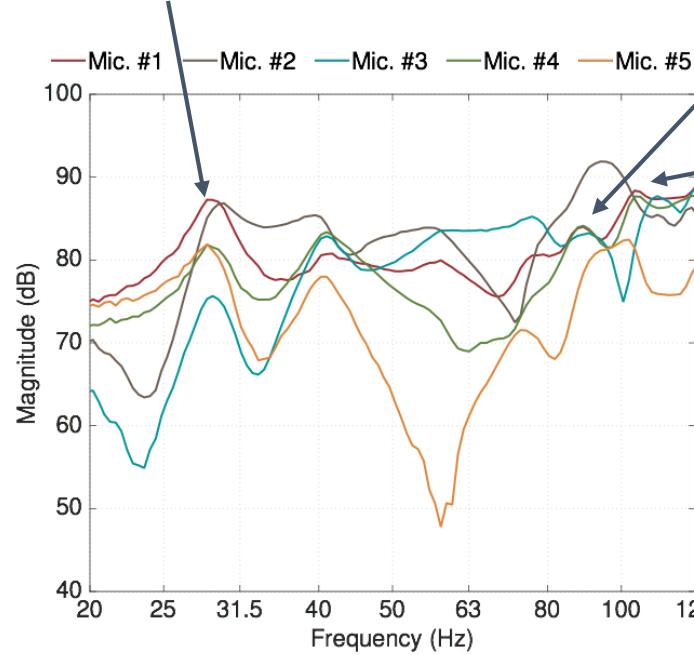
Axial (1D) mode



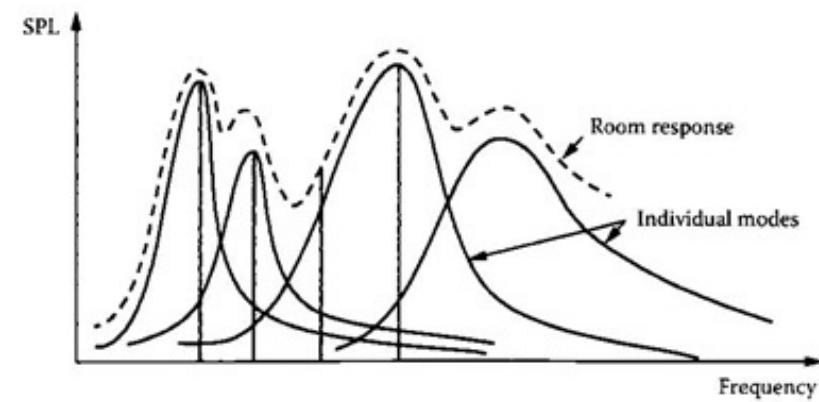
Tangential (2D) mode



Oblique (3D) mode



$$p_\omega(\mathbf{r}) = \rho c^2 \omega q_0 \sum_n \frac{\Phi_n(\mathbf{r}) \Phi_n(\mathbf{r}_0)}{K_n [2\delta_n \omega_n + j(\omega^2 - \omega_n^2)]}$$



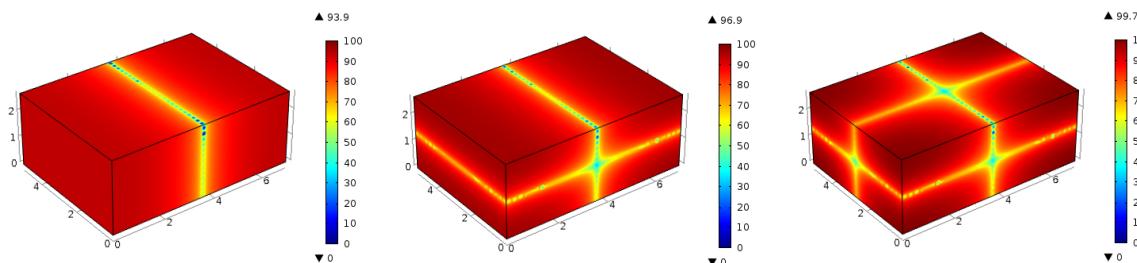
ROOM MODES CALCULATION: EXAMPLE

Room modes calculation for a shoe-box room with:

Length = 8m , Width = 6m , Height = 4.5m

$$f_{\{n_x, n_y, n_z\}} = \frac{c}{2} \sqrt{\left(\frac{n_x}{L_x}\right)^2 + \left(\frac{n_y}{L_y}\right)^2 + \left(\frac{n_z}{L_z}\right)^2}$$

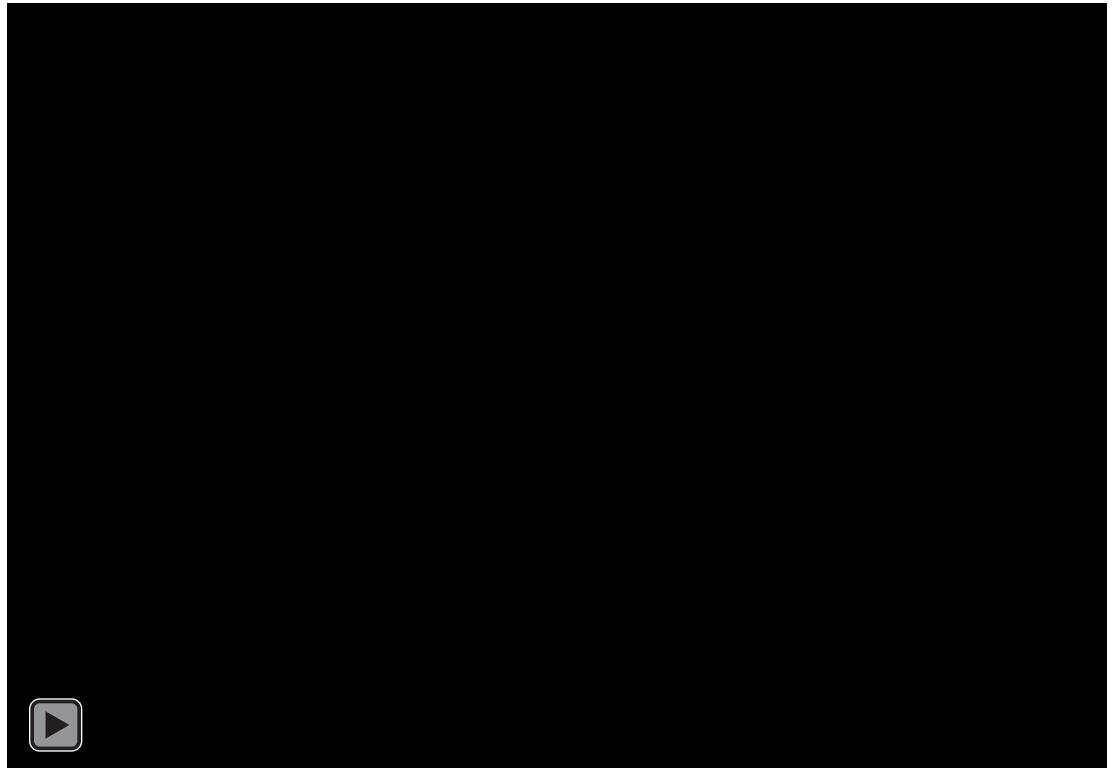
$$L_x = 8 \text{ m} ; L_y = 6 \text{ m} ; L_z = 4.5 \text{ m}$$



Frequency (Hz)	Nx	Ny	Nz	Type
21.44	1	0	0	Axial
28.58	0	1	0	Axial
35.73	1	1	0	Tangential
38.11	0	0	1	Axial
42.88	2	0	0	Axial
43.73	1	0	1	Tangential
47.64	0	1	1	Tangential
51.53	2	1	0	Tangential
52.24	1	1	1	Oblique
57.17	0	2	0	Axial
57.36	2	0	1	Tangential
61.05	1	2	0	Tangential
64.09	2	1	1	Oblique
64.31	3	0	0	Axial
68.71	0	2	1	Tangential
70.38	3	1	0	Tangential
71.46	2	2	0	Tangential
71.97	1	2	1	Oblique
74.76	3	0	1	Tangential
76.22	0	0	2	Axial
79.18	1	0	2	Tangential
80.03	3	1	1	Oblique

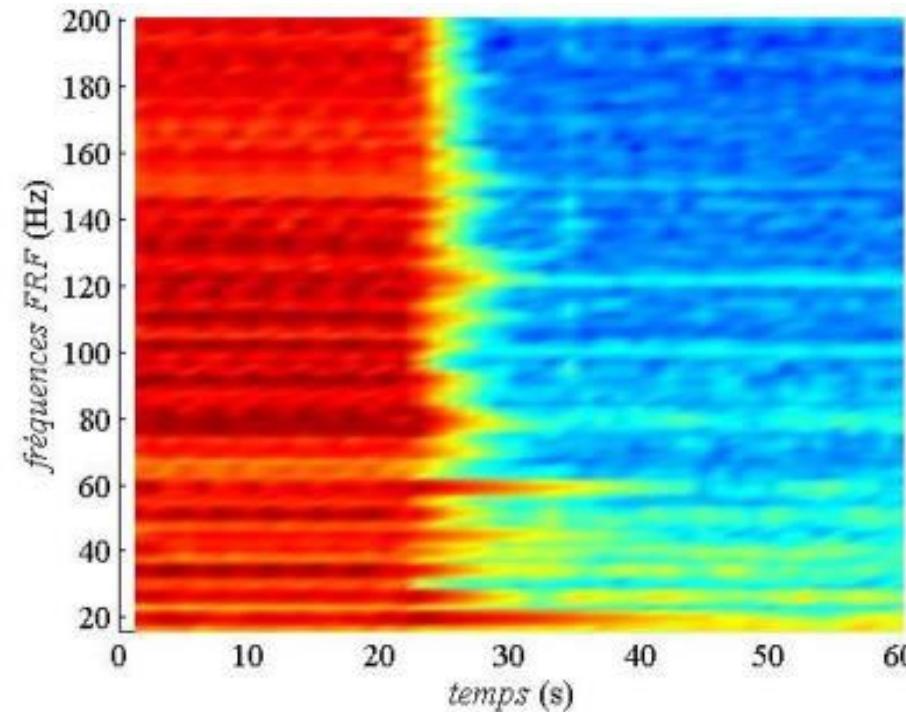
DISTRIBUTIONS IN SPACE OF SOUND FIELD: EXAMPLE

- Reverberation chamber (non shoe-box)
- Frequency increasing from 18Hz-60Hz
- Excitation from one corner of the room



TEMPORAL BEHAVIOUR

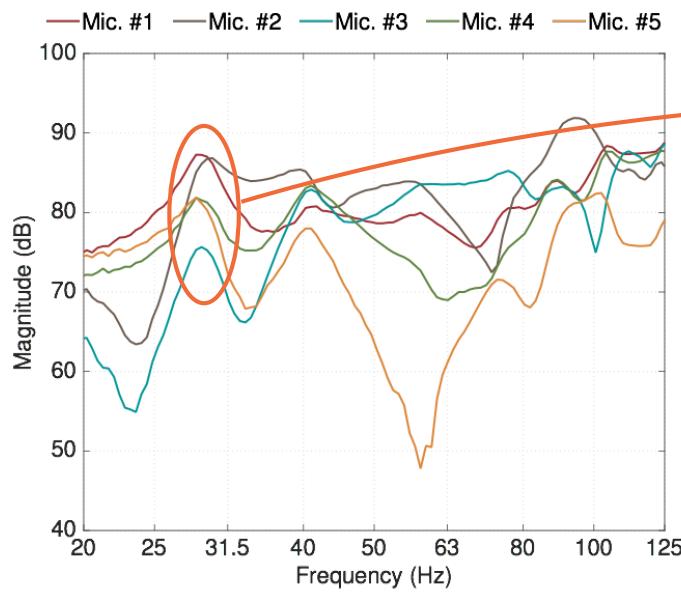
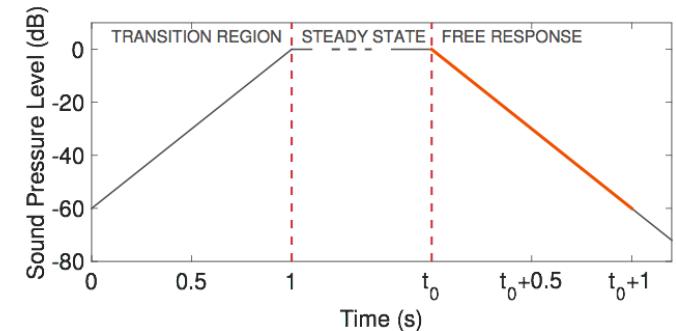
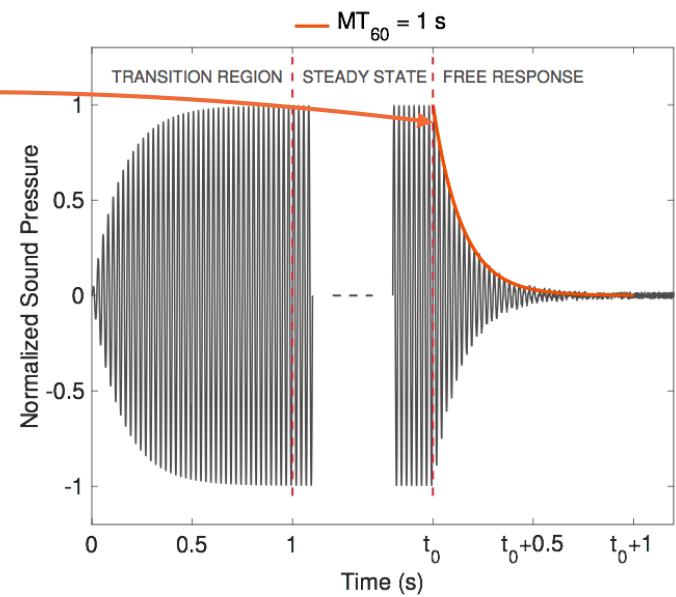
- Too long sustain, lack of precision, masking effect at higher frequencies



MODAL DECAY TIME

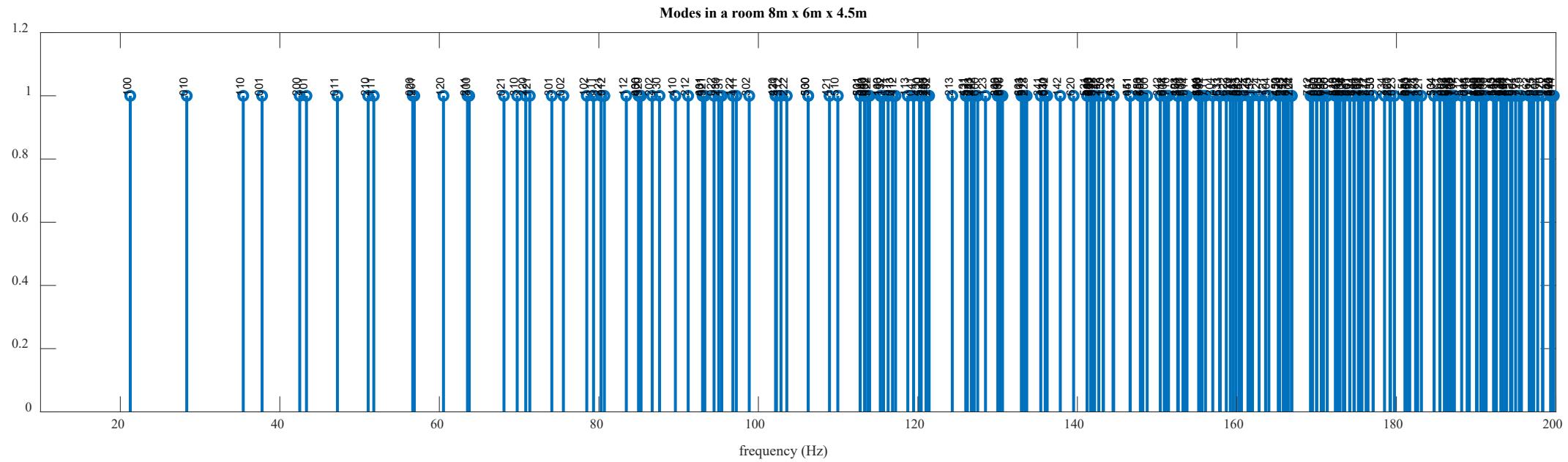
- Time interval corresponding to a decrease of **60 dB** of the sound pressure level during the free response

$$MT_{60_n} = \frac{3 \ln(10)}{\delta_n} = \frac{3 \ln(10) Q_n}{\pi f_n}$$



Conclusions

- Room modes occur due to the occurrence of standing waves between rigid boundaries
- The room mode density increases with frequency, up to a limit where it could be considered a «continuum» (see «Schroeder frequency»)



Conclusions

- Room modes occur due to the occurrence of standing waves between rigid boundaries
- The room mode density increases with frequency, up to a limit where it could be considered a «continuum» (see «Schroeder frequency»)
- The room modes have detrimental effects to music/sound reproduction
 - Affect the spatial rendering of sound
 - Affect the frequency linearity of sound diffusion
 - Affect the time response («sustain» «ringing», etc.)
- Unfortunately not much hardware available to solve this issue :
 - bass traps with bulk embodiment and narrow frequency performance,
 - signal processing affecting the phase response of the rendering)

➔ Electroacoustic absorbers developed in the lab are a recent breakthrough in the field (see last lecture of the semester)