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CONTEXT

* Music rendering
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SOUND FIELD CHARACTERISATION

* Wave-based methods: boundary element method, finite element
method, finite-difference time domain

* Modal methods: expression of the sound field as a linear
combination of the modes

* Geometric methods: ray tracing method, image source method

* Statistical methods: hypothesis of a diffuse sound field, uniform
acoustic energy traveling in all the directions with the same
probability

* Diffusion-equation models (extension of the statistical theory to
spatially varying reverberation times): mainly used for coupled rooms

© Comsol Multiphysics
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SOUND WAVES IN AIR

* Air particles oscillate back and forth about their equilibrium positions, while the wave
disturbance propagates through the medium

20072, Dan Bussell
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WHAT IS A WAVE?

* Longitudinal waves

@2015, Dan Russell
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SUPERPOSITION OF WAVES

* Waves travelling in opposite directions

E2011, Dan Russell
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STANDING WAVES
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PLANE WAVES IN WAVEGUIDES

- Steady-state solution of the wave equation p(z,t) = V2 Re (p,e’*")
d’py

dx?

+ p, = Ae k% 4 Belk®

* Dynamic law

dpy, .
dp — dPes
1 : 1 :
> v, = —Ae I — — BeIkT
pc pc

p : mass density of the medium
c : speed of sound in the medium
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REFLECTION COEFFICIENT AND WALL IMPEDANCE

* Wall impedance Z,
7, = Pk »,
vrL -
» Reflection coefficient »
r 4L — —
pi 4+ pc
1 R f f >
- ZL = pcC + L 0 L X
1— Ry,
—jkx k(x—2L) dpi + kﬁ — 0
- pr=A (6 "+ Rre’ ) Iy | JRPLPL =
: _pc :
* Absorption coefficient with g = 7 (reduced admittance)
a=1-— |RL|2
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SOLUTION OF THE WAVE EQUATION IN WAVEGUIDES

MI—2) | R o—ik(L—2)

= pC . .

* Input impedance

Z1, + jpctan(kL)
pCpc—I—jZL tan(kL)
* For arigid wall

Ly, =

Zo = —jpccot(kL)
sin(k(L — x))

e = sin(kL) v

ZL
Vo P,
Vo
— P;
; P
o cos(k(L —x
Pz = —JpPC (M ))Uo

sin(kL)

e Resonances for sin(kL) =0, i.e. f = nc/(2L)

(be careful: in books Zy = pc)
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SOLUTION OF THE WAVE EQUATION IN WAVEGUIDES

MA1 — Audio Engineering

long itu:dinal (left—right) particle displav:cemem

10/2)

P

12 EPFL



STANDING WAVES

Particle displacement

L
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SOUND SOURCE IN DUCT WITH RIGID TERMINATION
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MODAL REPRESENTATION OF THE SOUND PRESSURE IN ROOMS

* Helmholtz equation associated to a source function

Ap(r) + k*p(r) = —jwpq(r)
* Boundary condition assuming locally reacting boundaries
A .
Evp(r) -n = —jkp(r)
where n is a unit vector normal to the boundary surface area (outward direction)

* Source function expanded in a series of eigenfunctions

Q(r) — z an)n(r)

Qn[g /] /V &, (r)g(r)dv

with K, is a constant expressed in Pa’m?

where
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MODAL REPRESENTATION OF THE SOUND PRESSURE IN ROOMS

Eigenfunctions satlsfy the orthornormal property

J oo s

Solution of the wave equation

=) Py®n(r)

Every term is related to the corresponding eigenvalue \,, = —k,,° through A®, = \,®,,

Assuming a point source located atr, ¢(r) = god(r — rp)

= jwpqo Z ))

w 1 _
Eigenvalues in complex quantltles .e. kn = Tn = E(wn +jon)

= PC wWqo Z ) ®n xo)

25nwn + j (w? — wy,?)]

Flnally
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MODAL DECAY

Wy = Ckn = Wy +j6n = Wy +j’l'£1

Relexp(jw,t)] = cos(w,t) exp (—t/7y,)

* 0, is the exponential decay of mode n

* T, is the relaxation time of mode n

—> exponential decay of mode n with the rate depends on §,

—

amplitude (V)
o

amplitude (V)

amplitude (V)
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SOLUTION OF THE WAVE EQUATION IN RECTANGULAR ROOMS

In the steady-state, for Cartesian cordinates, and assuming rigid walls

(VZ + k)p( )=0 V2—8—2+82+82 k=uw/c
P& Y, =) = 02 Oy? 022

Solution expressed as p(z,y, 2) = po®x ()P, (y)P.(2)

2

For instance, ®, must satisfy ddq;‘” + k2D,
xr

Boundary condition d®.(0) — (0 and A%, (ls) — 0

dx dx

> ky =ngm/l,

ka _|_ kyQ _|_ kz2 — kQ
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NORMAL MODES IN RECTANGULAR ROOMS WITH RIGID BOUNDARIES

* Eigenfunctions approximated by the mode shape functions

o B Ny TT Ny TY N2 —_—
NgMNyTz (ZC, Y, Z) — CO8 la: cOs Cos lz - (2,2,0)

Ly
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where (ng, n,, n,) € N° are non-simultaneously equal to zero
(5,2,0)
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* Eigenfrequencies

2 2 2
w = TC la + e ] =+ =
NNy, lg; ly lz

* K,, = V/(€n,€n,€n.) where ¢,, =1if ny, =0 and ¢,, =2if n, >0

* Only for LIGHTLY DAMPED enclosures
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DISTRIBUTIONS IN SPACE AND FREQUENCY OF SOUND PRESSURE
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ROOM MODES CALCULATION: EXAMPLE

Room modes calculation for a shoe-box
room with:

Length = 8m , Width = 6m , Height = 4.5m

MA1 — Audio Engineering

Frequency (Hz) Nx Ny Nz Type
21.44 1 0 0 Axial
28.58 0 1 0 Axial
35.73 1 1 0 Tangential
38.11 0 0 1 Axial
42.88 2 0 0 Axial
43.73 1 0 1 Tangential
47.64 0 1 1 Tangential
51.53 2 1 0 Tangential
52.24 1 1 1 Oblique
57.17 0 2 0 Axial
57.36 2 0 1 Tangential
61.05 1 2 0 Tangential
64.09 2 1 1 Oblique
64.31 3 0 0 Axial
68.71 0 2 1 Tangential
70.38 3 1 0 Tangential
71.46 2 2 0 Tangential
71.97 1 2 1 Oblique
74.76 3 0 1 Tangential
76.22 0 0 2 Axial
79.18 1 0 2 Tangential
80.03 3 1 1 Oblique
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DISTRIBUTIONS IN SPACE OF SOUND FIELD: EXAMPLE

* Reverberation chamber (non shoe-box)
* Frequency increasing from 18Hz-60Hz

* Excitation from one corner of the room
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TEMPORAL BEHAVIOUR

* Too long sustain, lack of precision, masking effect at higher frequencies
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MODAL DECAY TIME

* Time interval corresponding to a decrease of 60 dB
of the sound pressure level during the free response
3In(10)  3In(10) Q.
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Conclusions

 Room modes occur due to the occurrence of standing waves between rigid boundaries

* They room mode density increases with frequency, up to a limit where it could be
considered a «continuum» (see «Schroeder frequency»)
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Conclusions

Room modes occur due to the occurrence of standing waves between rigid boundaries

They room mode density increases with frequency, up to a limit where it could be
considered a «continuum» (see «Schroeder frequency»)

The room modes have detrimental effects to music/sound reproduction
» Affect the spatial rendering of sound
» Affect the frequency linearity of sound diffusion
» Affect the time response («sustain» «ringing», etc.)

Unfortunately not much hardware available to solve this issue :
* bass traps with bulk embodiment and narrow frequency performance,
* signal processing affecting the phase response of the rendering)

=» Electroacoustic absorbers developed in the lab are a recent breakthrough in the field (see
last lecture of the semester)
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