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CONTEXT

• Music rendering
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SOUND FIELD CHARACTERISATION
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• Wave-based methods: boundary element method, finite element
method, finite-difference time domain

• Modal methods: expression of the sound field as a linear 
combination of the modes

• Geometric methods: ray tracing method, image source method

• Statistical methods: hypothesis of a diffuse sound field, uniform
acoustic energy traveling in all the directions with the same 
probability

• Diffusion-equation models (extension of the statistical theory to 
spatially varying reverberation times): mainly used for coupled rooms

© Comsol Multiphysics



III.1 WAVE THEORY 
OF ROOM ACOUSTICS
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SOUND WAVES IN AIR

• Air particles oscillate back and forth about their equilibrium positions, while the wave 
disturbance propagates through the medium
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WHAT IS A WAVE?

• Longitudinal waves
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SUPERPOSITION OF WAVES

• Waves travelling in opposite directions
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STANDING WAVES
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node anti-node



PLANE WAVES IN WAVEGUIDES

• Steady-state solution of the wave equation

• Dynamic law

: mass density of the medium
: speed of sound in the medium
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REFLECTION COEFFICIENT AND WALL IMPEDANCE

• Wall impedance

• Reflection coefficient

• Absorption coefficient
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(reduced admittance)with



SOLUTION OF THE WAVE EQUATION IN WAVEGUIDES

• Input impedance

• For a rigid wall

• Resonances for sin(kL) = 0, i.e. f = nc/(2L)
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(be careful: in books               )



SOLUTION OF THE WAVE EQUATION IN WAVEGUIDES
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STANDING WAVES

MA1 – Audio Engineering 13

Sound pressureParticle displacement

L

Mode 1

Mode 2

Mode 3

Mode n



SOUND SOURCE IN DUCT WITH RIGID TERMINATION
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ROOM MODES
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Mode (2,2,0) Mode (5,2,0)



MODAL REPRESENTATION OF THE SOUND PRESSURE IN ROOMS

• Helmholtz equation associated to a source function

• Boundary condition assuming locally reacting boundaries

where n is a unit vector normal to the boundary surface area (outward direction)

• Source function expanded in a series of eigenfunctions

where

with 𝐾𝐾𝑛𝑛 is a constant expressed in Pa²m³
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MODAL REPRESENTATION OF THE SOUND PRESSURE IN ROOMS

• Eigenfunctions satisfy the orthornormal property

• Solution of the wave equation

• Every term is related to the corresponding eigenvalue through

• Assuming a point source located at 𝑟𝑟0
• Finally

• Eigenvalues in complex quantities, i.e. 
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• 𝛿𝛿𝑛𝑛 is the exponential decay of mode 𝑛𝑛
• 𝜏𝜏𝑛𝑛 is the relaxation time of mode 𝑛𝑛

MODAL DECAY
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 exponential decay of mode 𝑛𝑛 with the rate depends on 𝛿𝛿𝑛𝑛



SOLUTION OF THE WAVE EQUATION IN RECTANGULAR ROOMS

• In the steady-state, for Cartesian cordinates, and assuming rigid walls

• Solution expressed as

• For instance, Φ𝑥𝑥must satisfy

• Boundary condition                          and

•
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NORMAL MODES IN RECTANGULAR ROOMS WITH RIGID BOUNDARIES

• Eigenfunctions approximated by the mode shape functions

where                                 are non-simultaneously equal to zero

• Eigenfrequencies

•

• Only for LIGHTLY DAMPED enclosures
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(2,2,0)

(5,2,0)



DISTRIBUTIONS IN SPACE AND FREQUENCY OF SOUND PRESSURE
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Axial (1D) mode Tangential (2D) mode Oblique (3D) mode



ROOM MODES CALCULATION: EXAMPLE
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𝑓𝑓 𝑛𝑛𝑥𝑥,𝑛𝑛𝑦𝑦,𝑛𝑛𝑧𝑧 =
𝑐𝑐
2

𝑛𝑛𝑥𝑥
𝐿𝐿𝑥𝑥

2

+
𝑛𝑛𝑦𝑦
𝐿𝐿𝑦𝑦

2

+
𝑛𝑛𝑧𝑧
𝐿𝐿𝑧𝑧

2

𝐿𝐿𝑥𝑥 = 8 𝑚𝑚 ; 𝐿𝐿𝑦𝑦 = 6 𝑚𝑚 ; 𝐿𝐿𝑧𝑧 = 4.5 𝑚𝑚

Room modes calculation for a shoe-box 
room with:

Length = 8m , Width = 6m , Height = 4.5m



DISTRIBUTIONS IN SPACE OF SOUND FIELD: EXAMPLE
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• Reverberation chamber (non shoe-box)

• Frequency increasing from 18Hz-60Hz

• Excitation from one corner of the room






TEMPORAL BEHAVIOUR

• Too long sustain, lack of precision, masking effect at higher frequencies
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MODAL DECAY TIME

• Time interval corresponding to a decrease of 60 dB 
of the sound pressure level during the free response
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Conclusions

• Room modes occur due to the occurrence of standing waves between rigid boundaries

• They room mode density increases with frequency, up to a limit where it could be
considered a «continuum» (see «Schroeder frequency»)
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Conclusions

• Room modes occur due to the occurrence of standing waves between rigid boundaries

• They room mode density increases with frequency, up to a limit where it could be
considered a «continuum» (see «Schroeder frequency»)

• The room modes have detrimental effects to music/sound reproduction
• Affect the spatial rendering of sound
• Affect the frequency linearity of sound diffusion
• Affect the time response («sustain» «ringing», etc.)

• Unfortunately not much hardware available to solve this issue :
• bass traps with bulk embodiment and narrow frequency performance, 
• signal processing affecting the phase response of the rendering)

 Electroacoustic absorbers developed in the lab are a recent breakthrough in the field (see
last lecture of the semester)
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