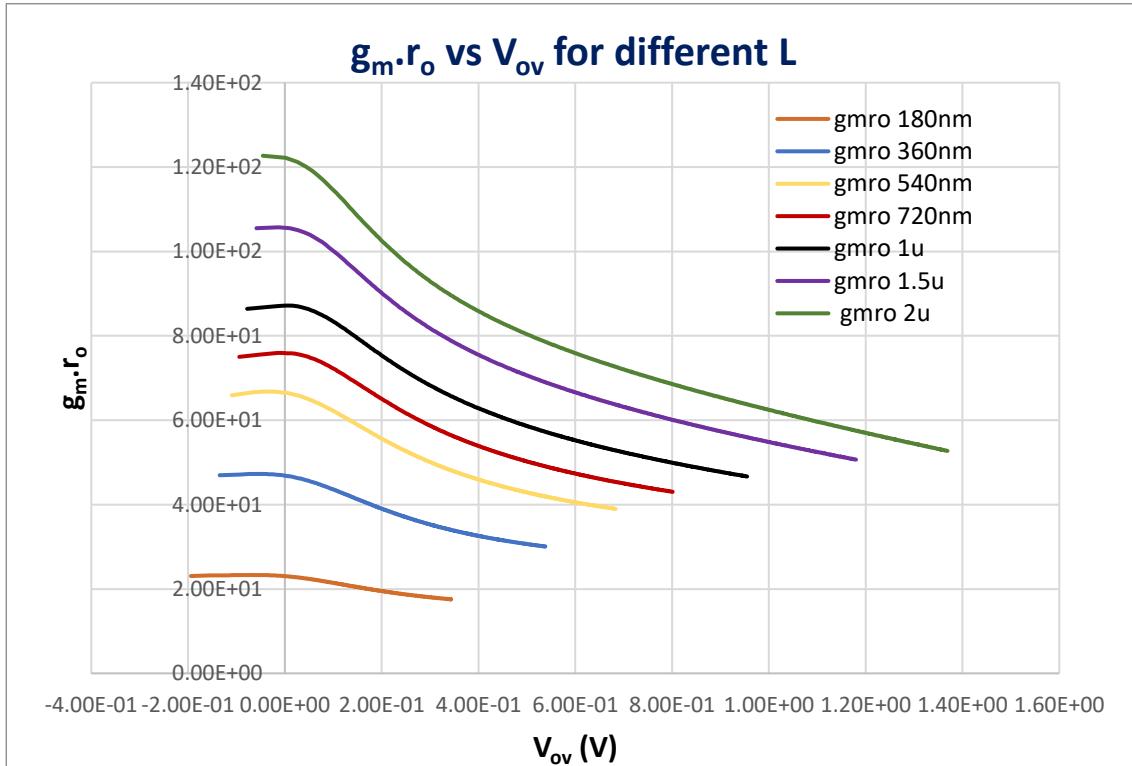


TP-1 Appendix

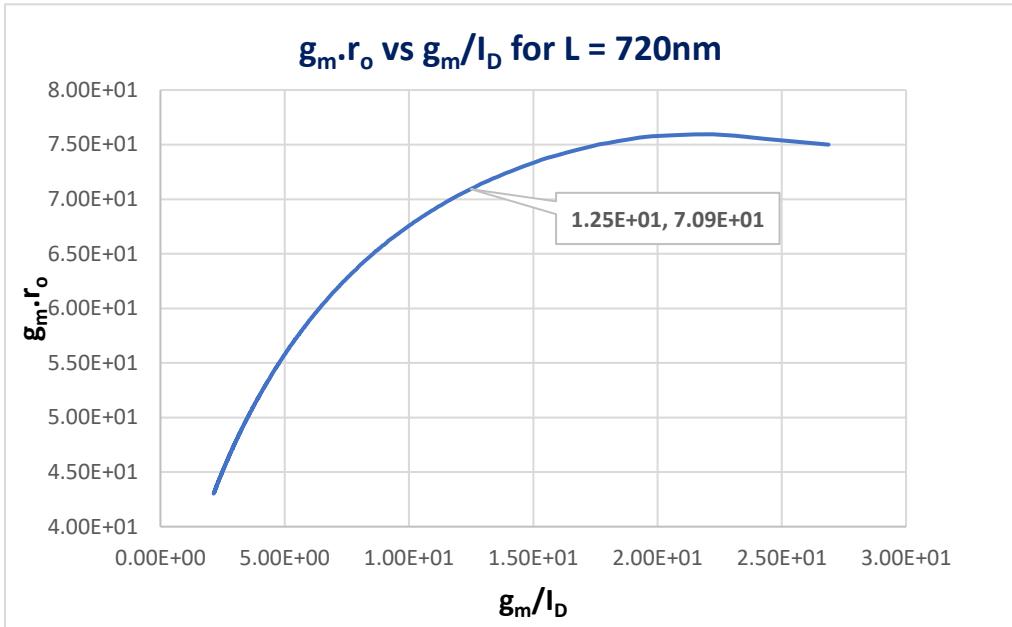
Here, we describe the g_m/I_D methodology used to size the transistors for TP1. While one can attempt to solve the square law and arrive at the transistor sizes, it would require multiple iterations to arrive at the desired specifications – as the square law is an approximation and actual transistors are often modeled by more than 100 parameters. The g_m/I_D methodology or any other methodology for that matter, tries to reduce the number of these iterations.


You can find the excel sheet (“CHAR_DATA_NMOS_ALL_L.xlsx” and “CHAR_DATA_PMOS_ALL_L.xlsx”) used to construct these plots, on Moodle.

From this sizing exercise, we want to determine the parameters in the following table. For a more detailed description, please refer to the TP-1 problem statement for the Five-Pack OTA (Pages 11 and 12 of the TP-1 document).

I_{TAIL}	L_n	W_n	L_p	W_p	L_{TAIL}	W_{TAIL}
?	?	?	?	?	?	?

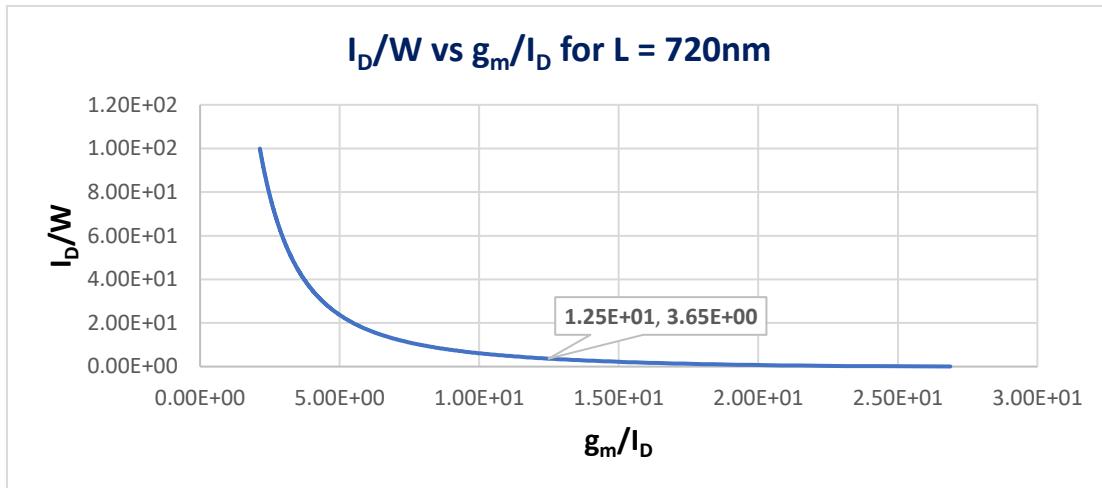
Sizing the NMOS Input Pair


The Excel spreadsheet provided to you lists the different small signal parameters like g_m , $g_m \cdot r_o$, g_m/I_D , I_D/W , g_m/C_{gg} , etc. for different values of overdrive voltage. There are seven sheets, each corresponding to a different value of L starting from $L_{min} = 180nm$ to $L = 2um$.

To identify the minimum length needed to meet the gain requirement in (1), we plot the $g_m \cdot r_o$ as a function of V_{ov} for different values of L . From the plot, we notice that for $L < 720\text{nm}$, the gain specification cannot be satisfied. So, the minimum length required to meet the gain specification = 720nm. In our excitement, let us quickly fill the table 😊

I_{TAIL}	L_n	W_n	L_p	W_p	L_{TAIL}	W_{TAIL}
?	720nm	?	?	?	?	?

Let us now try and determine the current that satisfies the g_m requirement in (2). For this we can plot $g_m \cdot r_o$ vs g_m/I_D for $L = 720\text{nm}$ as $g_m \cdot r_o$ and g_m are known and I_D is the only unknown.


The plot suggests that for a $g_m \cdot r_o = 70.9$, we have a $g_m/I_D = 12.5$. This implies,

$$I_D = \frac{g_m}{12.5} = 20\mu A \text{ and } I_{TAIL} = 2I_D = 40\mu A$$

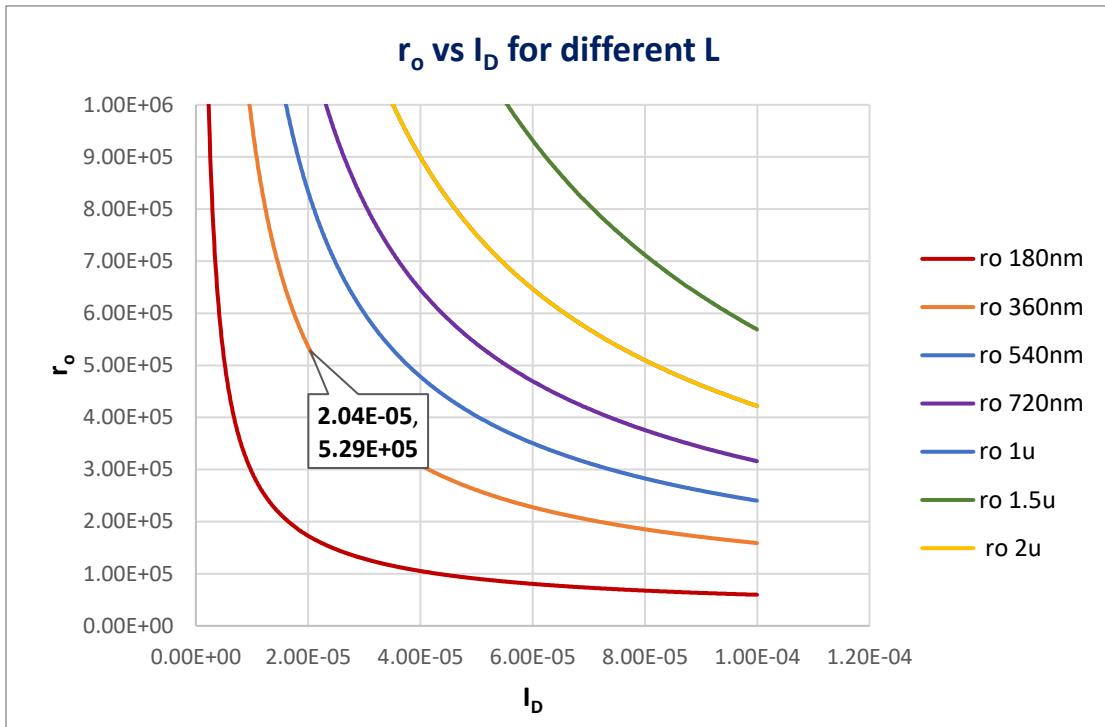
Again, with reinvigorated enthusiasm, let us fill our nice little table. Two down. Five to go! 🎉

I_{TAIL}	L_n	W_n	L_p	W_p	L_{TAIL}	W_{TAIL}
$40\mu A$	720nm	?	?	?	?	?

Let us now determine the width W_n . For this, one could plot I_D/W vs g_m/I_D for $L_n = 720\text{nm}$ as g_m and I_D are known, and W is the only unknown.

As can be seen from the plot, the value of I_D/W corresponding to $g_m/I_D = 12.5$ is 3.65. Therefore, $W_n = 20/3.65 = 5.5\mu\text{m} \approx 6\mu\text{m}$. Yes, yes, we get what to do now. Fill the table!

I_{TAIL}	L_n	W_n	L_p	W_p	L_{TAIL}	W_{TAIL}
$40\mu\text{A}$	720nm	$6\mu\text{m}$?	?	?	?


Also check the Overdrive voltage (V_{ov}) and V_{DSAT} to make sure that the transistor will be in saturation.

Sizing the PMOS Transistor

For the PMOS transistor, we note that the requirements are the output impedance and the V_{GS} values.

- The output impedance should be larger than $r_o = A_v/g_{mn} = 279\text{K}\Omega$ for a current $I_D = 20\mu\text{A}$.
- The overdrive voltage, $V_{ov} = V_{GS} - V_{TH} = 0.8 - 0.54 = 0.26\text{V}$. We note that this is an approximate value as we do not know the exact V_{TH}

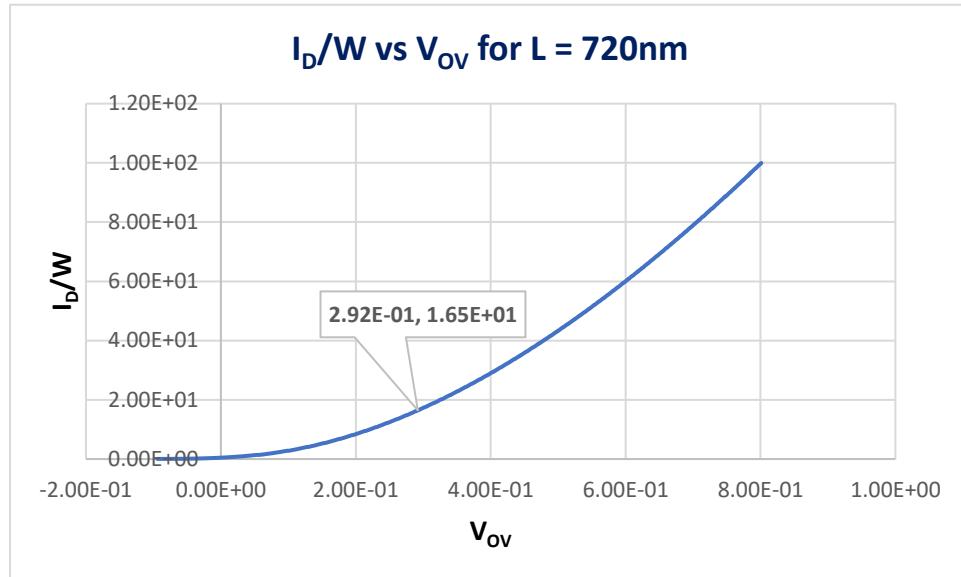
First, we identify the required length by plotting r_{op} as a function of I_D for different values of the length L .

From the above plot, we see that $L = 360\text{nm}$ satisfies the required output resistance specification.

I_{TAIL}	L_n	W_n	L_p	W_p	L_{TAIL}	W_{TAIL}
$40\mu\text{A}$	720nm	$6\mu\text{m}$	360nm	?	?	?

To determine the width W , we can look at the I_D/W corresponding to an overdrive voltage of -0.26V as shown below. $I_D/W = 6.55$. Therefore, $W = 20/6.55 = 3\mu\text{m}$.

L 360nm	Vov 360nm	gm 360nm	ID 360nm	gm/ID 360nm	gmro 360nm	ID/W 360nm	gm/W 360nm	gm/Cgg 360nm	1/(ID.ro) 360nm	VDSAT 360nm	W 360nm	ro 360nm	Cgg 360nm	gds 360nm
3.60E-07	-2.60E-01	4.28E-05	6.55E-06	6.54E+00	5.94E+01	6.55E+00	4.28E+01	1.64E+10	1.10E-01	-2.76E-01	1.00E-06	1.39E+06	2.62E-15	7.21E-07


Did you notice something? No?

We simulated with $W_p = 2\mu\text{m}$ in TP-1

I_{TAIL}	L_n	W_n	L_p	W_p	L_{TAIL}	W_{TAIL}
$40\mu\text{A}$	720nm	$6\mu\text{m}$	360nm	$3\mu\text{m}$?	?

Sizing the Current Mirror Transistors

The choice of length is decided by the accuracy of the current mirroring required. At this point in time, we can consider $L = 4*L_{min}$ as a safe value to start off with. To determine W , one can look at V_{ov} as a function of I_D/W . Typically, for current mirrors, we would like to limit the V_{ov} to less than 300mV.

From the above plot, $I_D/W = 16.5$. This corresponds to a $W = 40/16.5 = 2.4\mu m$

I_{TAIL}	L_n	W_n	L_p	W_p	L_{TAIL}	W_{TAIL}
$40\mu A$	720nm	$6\mu m$	540nm	$3\mu m$	720nm	$3\mu m$