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Recap: Nonlinearity

§ Two types of nonidealities: nonlinearity and mismatch 
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Recap: Nonlinearity

§ Two types of nonidealities: nonlinearity and mismatch 
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Recap: Mismatch

§ Mismatch typically leads to 3 important effects: dc offsets, even-order distortion, 
and lower common-mode rejection. 
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Recap: Mismatch

§ Mismatch typically leads to 3 important effects: dc offsets, even-order distortion, 
and lower common-mode rejection. 
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Even-Order Distortion 



MS EE 320 EE-523 7

Analog-to-digital Converter (ADC): Introduction

An ADC generates N bit binary representation of Vin 

§ In most cases, a reference voltage is supplied to the ADC (for example a 
bandgap reference)

§ The analog input, Vin, is “quantized” in the voltage range

Vin 
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ADC Introduction: LSB

Least 

Significant 

Bit (LSB)

§ The voltage change associated with an LSB change in the digital output 
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ADC Introduction: Clock
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Uniform and Nonuniform Sampling

Uniform Nonuniform
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Various Types of Data Converters
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Nyquist rate sampling, aliasing
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Sample and Hold
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Sample and Hold
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DC Characteristics − Monotonicity 

§ Monotonicity is usually required in ADCs

§ Output code should increase with increasing input voltage 
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DC Test Setup
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Missing Codes
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Differential Non-Linearity (DNL) 
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Integral Non-Linearity (INL) 

§ Just like DNL, INL can be specified at each code 

§ INL is often derived form DNL information 
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INL and DNL Plots

§ INL and DNL for an experimental 14b ADC 
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SNR, Quantization Noise

§ SNR or Signal-to-Noise ratio: Signal power, and noise power (quantization
noise/error and the circuit noise)

§ We consider quantization noise as a white noise that is uncorrelated with the 

signal, with a uniform probability distribution 

§ ENOB: Effective Number of Bits, calculated from SNDR
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SNR, Quantization Noise

§ We want to determine the mean squared value of the quantization noise 

Quantization noise
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Quantization Noise for Ramp Input 

§ Concentrating on region from –T/2 to T/2 

Mean squared quantization noise 
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SNR for Ideal ADC

§ Pure sine wave has only one frequency component, easier to generate

§ Example: For an 8-bit ADC (N=8), the maximum SNR is 49.76 dB 
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Successive Approximation 

§ Key idea: Performing a binary search, and finding 1 bit from each cycle, starting 

with the MSB 
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Successive Approximation Register (SAR) 

§ Binary search for input voltage
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SAR Operation
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DAC

§ Capacitive DACs are common in SAR ADC

§ Most common: Charge Redistribution DAC

§ Switches individually connect to VRef or ground 

3-bit DAC example 



MS EE 320 EE-523 29

CDAC Operation (1) - Reset 

§ Reset charge on all caps

§ Shorting top and bottom connections to GND
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CDAC Operation (2) – Charge Redistribution 

§ Dial up a voltage by connecting the switches in a binary fashion to VRef
§ Let’s say we want code 100:
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SHA combined with CDAC – Sample Phase

§ It is possible to combine S/H capacitance with CDAC

§ Use the same cap for sampling and DAC
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Redistribution Phase 

§ Sampling switches are connected to ground

§ Vx = -Vin
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3-bit ADC Example: MSB Trial

§ Next test if Vin > Vref /2, or is MSB (b0) = 1?

§ Then proceed to next most significant bit (i.e., b1) and so on... 
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3-bit ADC Example

§ Waveform at Vx (the comparator input) during conversion

§ Vref = 1V, Vin = 0.4Vref

§ Vx gets closer and closer to the ground
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SAR Logic

§ The logic controls the operation of ADC and generates the digital output code

P. Harpe, IEEE Solid-State Circuits Magazine, 2016 
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Fully Differential SAR ADC 
§ N-bit differential SAR has 2

N-1 
unit caps on each side

§ Comparator decides the sign (i.e., MSB) and 3 bits

§ Connect to Vref+, Vref- depending on MSB decision, continue with other bits 

Fully Differential SAR ADC 
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CDAC Topologies

Conventional Binary 
Weighted (CBW)

Binary Weighted 
w/Attenuator Cap (BWC)

M. Saberi, et al., TCAS-I, 2011
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StrongARM Latch Comparator

The StrongARM latch has become popular for three reasons: 
§ it consumes zero static power

§ it directly produces rail-to-rail outputs 

§ its input-referred offset arises from primarily one differential pair

T. Kobayashi, et al., VLSI Circuits Symp.,1992
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StrongARM Latch Comparator

The StrongARM latch has become popular for three reasons: 
§ it consumes zero static power

§ it directly produces rail-to-rail outputs 

§ its input-referred offset arises from primarily one differential pair

(a) The original and (b) modified StrongARM latch topologies 

Y. T. Wang and B. Razavi, JSSC, 2000
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StrongARM Latch Comparator: Phase 1

(1) Precharge
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StrongARM Latch Comparator: Phase 2

(2) Amplification
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StrongARM Latch Comparator: Phase 3

(3) Turn-on of cross-coupled NMOS pair
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StrongARM Latch Comparator: Phase 3
Equivalent circuit
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StrongARM Latch Comparator: Phase 3
Equivalent circuit
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StrongARM Latch Comparator: Phase 4

(4) Turn-on of cross-coupled PMOS pair 
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StrongARM Latch Comparator
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StrongARM Latch Comparator

Latch without cross-coupled NMOS pair and 

the resulting static current 
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StrongARM latch followed by the RS latch 
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StrongARM Latch: Offset
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