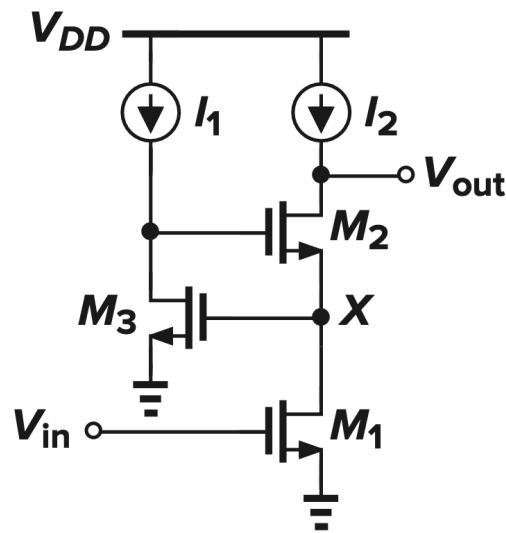

EE-523 – Exercise 1

1. In the op amp shown below, $(W/L_{\text{eff}})_{1-8} = 100/0.34$, $I_{\text{SS}} = 1\text{mA}$, $V_{b1} = 1.7\text{V}$. Assume $\gamma=0$, $V_{\text{TH,P}} = 0.8\text{V}$, $V_{\text{TH,N}} = 0.7\text{V}$, $\mu_n C_{\text{ox}} = 0.134 \text{ mA/V}^2$, $\mu_p C_{\text{ox}} = 0.038 \text{ mA/V}^2$, $\lambda=0$, and $V_{\text{DD}} = 3\text{V}$.

- (a) What is the maximum allowable input CM level?
- (b) What is the value of V_X (voltage at node X)?
- (c) What is the maximum allowable output swing if the gate of M_2 is connected to output?
- (d) What is the acceptable range of V_{b2} ?



2. Determine the resistance seen at the source of M_2 if $\gamma = 0$.

3. Suppose that in the circuit below, $I_1 = 100\mu\text{A}$, $I_2 = 0.5\text{mA}$, and $(W/L_{\text{eff}})_{1-3} = 100/0.34$, $V_{\text{TH,N}} = 0.7\text{V}$, $\mu_n C_{\text{ox}} = 0.134 \text{ mA/V}^2$, $\mu_p C_{\text{ox}} = 0.038 \text{ mA/V}^2$, $\lambda=0$. Assuming that I_1 and I_2 are implemented with PMOS devices having $(W/L_{\text{eff}})_P = 50/0.32$

- (a) Calculate the gate bias voltages of M_2 and M_3 .
- (b) Determine the maximum allowable output voltage swing.
- (c) Calculate the overall voltage gain, assuming $\lambda=0.2$.

