

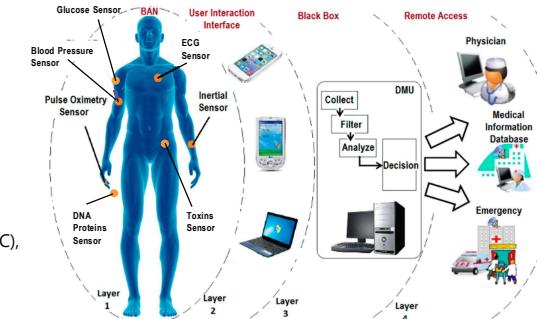
Analog Circuits for Biochip

L06

Wireless power and data transmission to implanted systems

Short Review

Alexandre Schmid
 Institute of Electrical and Micro Engineering, EPFL
 Biomedical and neuromorphic microelectronic systems


Outline of the course

- Implantable biomedical devices: system architecture and examples
 - Impedance matching
- NRIC (inductive coupling, power and data transmission)
 - Tx (transmitter)
 - Architecture and circuits
 - Analog and digital modulations, line encoding
 - Rx (receiver)
 - Active circuits
 - Inductive load modulation (passive)
- NRMRC (magnetic coupling, power)
- NRCC (capacitive coupling, power and data)
- Ultrasound coupling (acoustic power coupling)
- Optical coupling (power and data)
- Far-field telemetry (data)
 - Active Tx
 - Passive Tx: backscattering
 - Active receivers (non-coherent, super heterodyne, super regenerative)

Architecture of a eHealthcare system

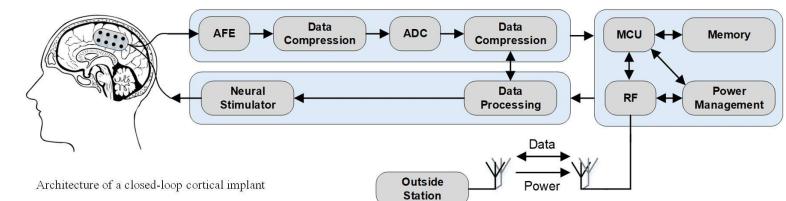
Four-layer architecture

- Layer 1, BAN (Body Area Network)
 - Vital parameters are captured by on-body (wearable) and in-body (implantable) sensors
- Layer 2, user interaction devices/interface
 - Access points (AP), data is collected and transferred to an upper layer
 - Dedicated lines, Powerline Communication (PLC), or existing wireless infrastructure
- Layer 3, Decision Measuring Unit (DMU)
 - Major computation and decision regarding patient status
 - Connection to the internet
- Layer 4, Healthcare services
 - Medical professionals have access to DMU computed data

Four-layer typical architecture of an eHealthcare system
 (adapted from Ghamari, M. et al. A Survey on Wireless Body Area Networks for eHealthcare Systems in Residential Environments. Sensors 2016, 16, 831)

Architecture of a closed-loop implant and system

Functional modules: analog technology compliant


- Electrodes (recording and stimulation)
 - Fabrication, materials
- Recording, and stimulation channels
 - CMOS, high-voltage/current
- Power management
 - Temperature sensing

Functional modules: digital technology compliant

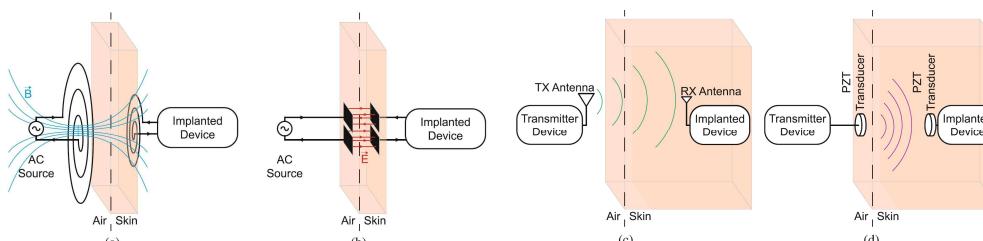
- Digital electronics and memory
 - Deep-submicron CMOS and memory, new devices
- External base station and antennas

Functional modules: RF technology compliant

- RF (radio-frequency, power and data telemetry)

Architecture of a closed-loop cortical implant

General rules


- Autonomy
 - System should allow patients autonomy: major impact on circuits
- Simplicity
 - Reduce circuit complexity and current consumption
 - Increasing circuit robustness and reliability
- Complexity shifting
 - When only little power is available at the (implanted) transmitter, circuit complexity and signal processing should be shifted towards the receiver side

Outline of the course

- Implantable biomedical devices: system architecture and examples
 - Impedance matching
- NRIC (inductive coupling, power and data transmission)
 - Tx (transmitter)
 - Architecture and circuits
 - Analog and digital modulations, line encoding
 - Rx (receiver)
 - Active circuits
 - Inductive load modulation (passive)
- NRMRC (magnetic coupling, power)
- NRCC (capacitive coupling, power and data)
- Ultrasound coupling (acoustic power coupling)
- Optical coupling (power and data)
- Far-field telemetry (data)
 - Active Tx
 - Passive Tx: backscattering
 - Active receivers (non-coherent, super heterodyne, super regenerative)

Wireless power transfer (WPT) techniques

- Methods to transmit power to the implanted system
 - **Near-field** (NF) coupling, $d \leq \lambda/2\pi$ (d , separation distance, and λ , wavelength of signal)
 - Magnetic coupling, inductive link (a)
 - Electric field coupling, capacitive link (b)
 - **Far-field** (FF) radiation, $d \geq \lambda/2\pi$, or radio-frequency (RF) transmission (c)
 - Ultrasound (US) (d)

Wireless power transfer strategies for implantable bioelectronics. (a) Schematic of inductive coupling method. (b) Schematic of capacitive coupling method. (c) Schematic of far-field method. (d) Schematic of ultrasound method

Impedance matching, maximal power transfer

- Low-frequency analysis focuses on current, voltage values
- In RF, parasitic store energy and thus, it is important to also consider power
 - Transfer the maximum amount of power generated at a source to the load
 - Complex algebra can be used to model the transfer
 - complex source impedance $Z_0 = R_0 + jX_0$
 - complex load impedance $Z_L = R_L + jX_L$
 - ideal voltage source V_0
 - The average power P_L is dissipated in the resistive part of the load, while the current is complex
- Mathematical manipulations are applied to find the condition of maximal power transfer P_L
 - The two resulting conditions for reactances, $X_0 = -X_L$, and resistances, $R_0 = R_L$, are combined into the conjugate matching

$$Z_0 = Z_L^*$$
- In case matching is not achieved, maximal power is not transmitted which is measured by the reflection coefficient (γ)

$$\Gamma = \frac{Z_2 - Z_1}{Z_2 + Z_1}$$

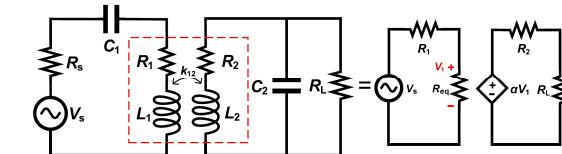
Z_1 and Z_2 are arbitrary impedances

$$0 \leq |\Gamma| \leq 1$$
 - The power transfer is represented as a sum of two power waves: the incident power originating from the source and reflected power that was not delivered to the load

Single-circuit branch impedance matching networks

- Because there are only two initial resistances to compare, R_0 and R_L , and two possible flavors of reactances that can be used ($j\omega L$) and ($1/j\omega C$), there are only four possible combinations that can be made
 - Reactances are used instead of purely resistive networks because they dissipate less power and offer better noise performances

EE518P2 - 2025


EE518P2 - 2024

(Homework HW01)

9

NRIC design (1)

- A systematic procedure is mostly applied
 - Iterative process, based on optimization steps
 - Analytical model used in each step
- Relevant variables that are sought to be optimized

$$PTE = \frac{P_{out}}{P_{in}}$$

P_{out} output power which is delivered to the IMD
 P_{in} input power which is sent through the external unit

$$PDL = R_L I_{out}^2 = \frac{V_{out}^2}{R_L}$$

I_{out} , V_{out} , and R_L are the output current, output voltage, and load resistance, respectively

- PTE, Power Transmission Efficiency
 - percentage of the transmitted power from the source is delivered to the load
 - helps calculate the power loss and prevent the heat damage caused by the power losses
- PDL, Power Delivered to the Load
 - enough power is delivered to the load to provide the power needed for the stimulation or sending data back

EE518P2 - 2025

EE518P2 - 2024

Class EE518-L06 11

Outline of the course

- Implantable biomedical devices: system architecture and examples
 - Impedance matching
- NRIC (inductive coupling, power and data transmission)
 - Tx (transmitter)
 - Architecture and circuits
 - Analog and digital modulations, line encoding
 - Rx (receiver)
 - Active circuits
 - Inductive load modulation (passive)
- NRMRC (magnetic coupling, power)
- NRCC (capacitive coupling, power and data)
- Ultrasound coupling (acoustic power coupling)
- Optical coupling (power and data)
- Far-field telemetry (data)
 - Active Tx
 - Passive Tx: backscattering
 - Active receivers (non-coherent, super heterodyne, super regenerative)

EE518P2 - 2025

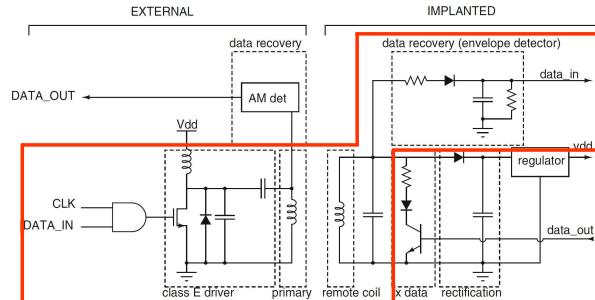
EE518P2 - 2024

Class EE518-L06 10

Modulation techniques

- The carrier signal (single tone) does not contain/carry any information
- Modulation by a source signal adds information to the carrier
- Analog vs. digital modulation depends on the nature of the source signal
 - Amplitude modulation (AM)
 - Frequency modulation (FM)
 - Phase modulation (PM)
- Note that, modulation techniques are well-established techniques and are described using a rigorous mathematical apparatus. In the following, we take a practical approach of the topic

EE518P2 - 2025

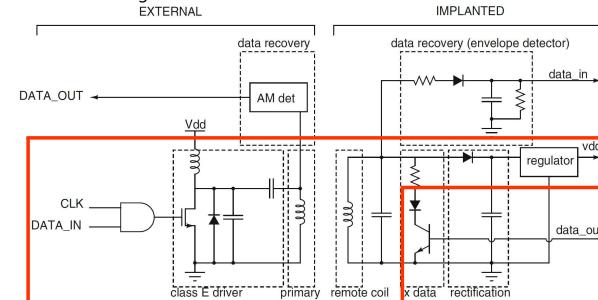

EE518P2 - 2024

Class EE518-L06 12

Classical bio-telemetry link (1)

- Fully inductive link, general scheme

- Data is transferred from the primary to the remote coil by amplitude modulation (OOK = 100% ASK) of the power carrier. Demodulation at the remote coil is achieved by envelope detection of the carrier amplitude
- To transmit data from the remote implant to the primary coil, the load current of the primary coil is modulated, by intermittently switching a load at the remote coil. Another possibility is intermittent detuning of the remote coil, causing a similar effect (load modulation) on the primary coil
- Power transmission

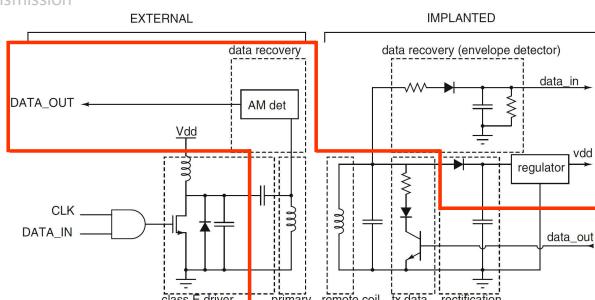


Generalized circuit diagram of a class E inductive link system, with two-way communication

Classical bio-telemetry link (3)

- Fully inductive link, general scheme

- Data is transferred from the primary to the remote coil by amplitude modulation (OOK = 100% ASK) of the power carrier. Demodulation at the remote coil is achieved by envelope detection of the carrier amplitude
- To transmit data from the remote implant to the primary coil, the load current of the primary coil is modulated, by intermittently switching a load at the remote coil. Another possibility is intermittent detuning of the remote coil, causing a similar effect (load modulation) on the primary coil
- Power transmission and regulation



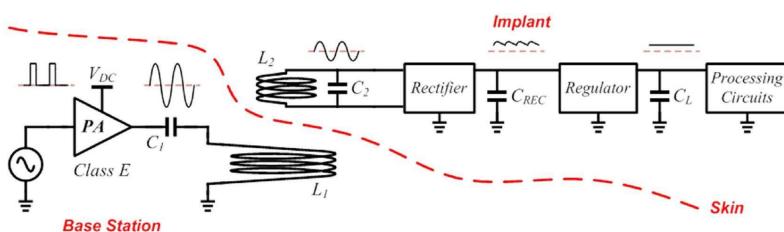
Generalized circuit diagram of a class E inductive link system, with two-way communication

Classical bio-telemetry link (2)

- Fully inductive link, general scheme

- Data is transferred from the primary to the remote coil by amplitude modulation (OOK = 100% ASK) of the power carrier. Demodulation at the remote coil is achieved by envelope detection of the carrier amplitude
- To transmit data from the remote implant to the primary coil, the load current of the primary coil is modulated, by intermittently switching a load at the remote coil. Another possibility is intermittent detuning of the remote coil, causing a similar effect (load modulation) on the primary coil
- Power transmission

Generalized circuit diagram of a class E inductive link system, with two-way communication


Outline of the course

- Implantable biomedical devices: system architecture and examples
 - Impedance matching
- NRIC (inductive coupling, power and data transmission)
 - Tx (transmitter)
 - Architecture and circuits
 - Analog and digital modulations, line encoding
 - Rx (receiver)
 - Active circuits
 - Inductive load modulation (passive)
- NRMRC (magnetic coupling, power)
- NRCC (capacitive coupling, power and data)
- Ultrasound coupling (acoustic power coupling)
- Optical coupling (power and data)
- Far-field telemetry (data)
 - Active Tx
 - Passive Tx: backscattering
 - Active receivers (non-coherent, super heterodyne, super regenerative)

Wireless power transmission chain, and receiver power control chain

- Full-system architecture of an inductive power transmission system

- Link power efficiency

$$\eta_T = \eta_{PA} \times \eta_k \times \eta_{REC} \times \eta_{REG}$$

where $\eta = P_{OUT}/P_{IN}$ is the power efficiency of each individual consecutive stage in the chain

in the following, we study each individual element of the power transmission chain

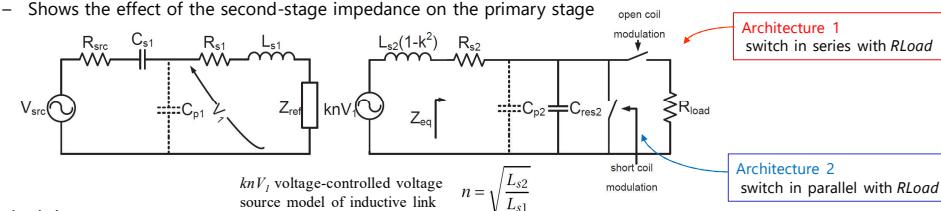
(Homework HW02)

EE518P2 - 2025

EE518P2 - 2024

Class EE518-L06 17

Outline of the course


- Implantable biomedical devices: system architecture and examples
 - Impedance matching
- NRIC (inductive coupling, power and data transmission)
 - Tx (transmitter)
 - Architecture and circuits
 - Analog and digital modulations, line encoding
 - Rx (receiver)
 - Active circuits
 - Inductive load modulation (passive)
- NRMRC (magnetic coupling, power)
- NRCC (capacitive coupling, power and data)
- Ultrasound coupling (acoustic power coupling)
- Optical coupling (power and data)
- Far-field telemetry (data)
 - Active Tx
 - Passive Tx: backscattering
 - Active receivers (non-coherent, super heterodyne, super regenerative)

Load modulation principle

- Reflected impedance model

- Shows the effect of the second-stage impedance on the primary stage

- Principle

- One unique switch is placed parallel or in series with the load that allows changing/modulating the value of the load
- Data-bits control the switch state (open/close)

- Architecture 1: the switch is in series with R_{load}

- Switch is closed: no effect of the switch (neglecting the resistance R_{on} of the switch)
- Switch is open: R_{load} is disconnected (neglecting the parasitic capacitors of the switch)

- Architecture 2: the switch is in parallel with R_{load}

- Switch is closed: R_{load} is shortened (neglecting the resistance R_{on} of the switch)
- Switch is open: no effect of the switch (neglecting the parasitic capacitors of the switch)

EE518P2 - 2025

EE518P2 - 2024

Class EE518-L06 19

Load modulation, $V1$ at the primary side and High/Low States

- Changing the position of the secondary-stage switch induces a change in the secondary-stage load
- Consequently, two different reflected loads Z_{ref} show at the primary stage
 - Voltage $V1$ (primary) reflects the change of the load R_{load} (secondary)
 - A high (higher) amplitude of $V1$ (primary) yields a "High State" V_{1H}
 - A low (lower) amplitude of $V1$ (primary) yields a "Low State" V_{1L}
- Z_{refH} and Z_{refL} are two reflected impedances that correspond to the secondary-stage switch open or closed, considering Architecture 1 or Architecture 2
 - Numerical component values are used to determine $V1$ and the switch position that corresponds to a High State and a Low State

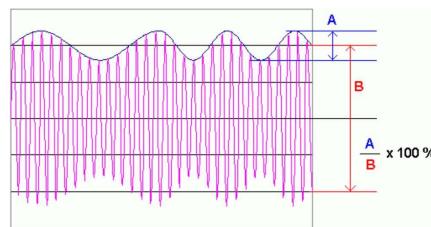
EE518P2 - 2025

EE518P2 - 2024

Class EE518-L06 18

EE518P2 - 2025

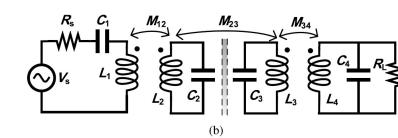
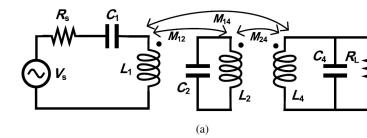
EE518P2 - 2024


Class EE518-L06 20

Load modulation, Modulation index

- A modulation index can be defined
 - In voltage MI_V or current MI_C domains

$$MI_V = \frac{V_H - V_L}{V_H + V_L} 100\% \quad MI_C = \frac{I_H - I_L}{I_H + I_L} 100\%$$



- The modulation index is an expression of the difference between the High State and Low State
- Example, considering ASK modulation

Non-radiating EM field: (inductive) magnetic resonance coupling (NRMRC)

- Non-radiative inductive coupling (NRIC) relies on magnetic coupling of the two coils
 - The NRMRC technique uses three or four coil-based architectures, not just two as in inductive coupling
- Improvement with respect to the inductive link (NRIC)
 - Better impedance matching capability to optimize the system power transfer
 - Higher Q-factor
 - compensates for the sharp decline of PTE caused by the reduced coupling coefficient due to the increasing separation distance
 - Higher bandwidth of operation

Architectures

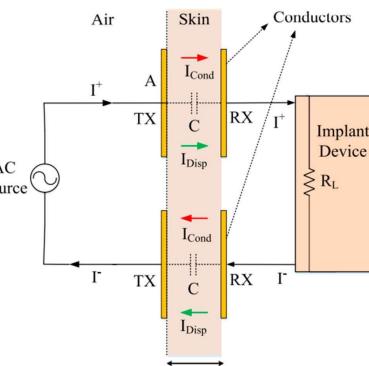
Single inductive link equivalent circuit with (a) one or (b) two additional resonators

Outline of the course

- Implantable biomedical devices: system architecture and examples
 - Impedance matching
- NRIC (inductive coupling, power and data transmission)
 - Tx (transmitter)
 - Architecture and circuits
 - Analog and digital modulations, line encoding
 - Rx (receiver)
 - Active circuits
 - Inductive load modulation (passive)
- NRMRC (magnetic coupling, power)
 - NRCC (capacitive coupling, power and data)
 - Ultrasound coupling (acoustic power coupling)
 - Optical coupling (power and data)
 - Far-field telemetry (data)
 - Active Tx
 - Passive Tx: backscattering
 - Active receivers (non-coherent, super heterodyne, super regenerative)

Outline of the course

- Implantable biomedical devices: system architecture and examples
 - Impedance matching
- NRIC (inductive coupling, power and data transmission)
 - Tx (transmitter)
 - Architecture and circuits
 - Analog and digital modulations, line encoding
 - Rx (receiver)
 - Active circuits
 - Inductive load modulation (passive)
- NRMRC (magnetic coupling, power)
 - NRCC (capacitive coupling, power and data)
 - Ultrasound coupling (acoustic power coupling)
 - Optical coupling (power and data)
 - Far-field telemetry (data)
 - Active Tx
 - Passive Tx: backscattering
 - Active receivers (non-coherent, super heterodyne, super regenerative)


Near-field coupling, non-radiating EM field: capacitive coupling (NRCC)

- The coupling system consists of
 - a pair of conductors placed on each side of the skin, of area A and separated by a distance D (< 5 mm) and connected to the implant device with a load resistance R_L
 - a second pair of conductors creates a current closing loop
- Energy transfer
 - Time-varying electric fields produced by the transmitting metal TX support displacement currents I_{Disp} that enable wireless transfer of energy to an implanted RX
 - However, conduction currents I_{Cond} are induced in the skin and the surrounding tissues

$$I_{Disp} = \epsilon_0 \epsilon_r(\omega) A \frac{\partial \vec{E}}{\partial t} \quad I_{Cond} = \frac{V(t)\sigma(\omega)A}{D}$$

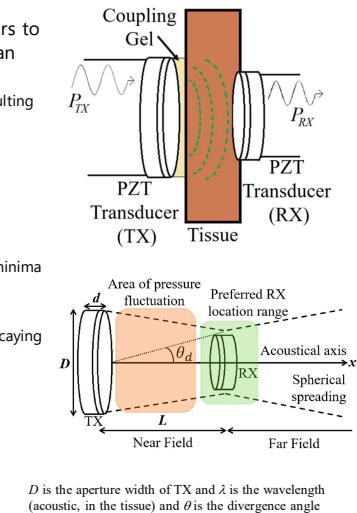
ϵ_0 is the permittivity of free space and $\epsilon_r(\omega)$ and $\sigma(\omega)$ are the frequency-dependent relative permittivity and conductivity of the medium between the pair of conductors, respectively

- Usage
 - Telemetry system using digital modulation techniques, such as frequency shift keying (FSK) or binary phase shift keying (BPSK)
 - Power transmission is only in early stages of study

EE518P2 - 2025

EE518P2 - 2024

Class EE518-L06 25


Ultrasound coupling, acoustic power transfer

- APT (acoustic power transfer) uses a pair of piezoelectric transducers to transfer energy in the form of ultrasound waves through tissue to an implanted device where it is converted to electric power
 - TX ultrasonic oscillator is outside the body: produces surface vibrations resulting in acoustic pressure waves in the frequency range of 200 kHz to 1.2 MHz
 - The pressure field is directed towards the RX transducer
 - The RX is implanted and converts acoustic energy to electrical energy

Location of the receiver

- Near field, closest to the TX transducer
 - the pressure field envelope oscillates in this zone resulting in several minima and maxima of power.
- Far-field
 - The pressure field behaves as a smooth spherically spreading wave decaying with increasing distance
 - Transition between near and far fields
 - the beam waist of the acoustic beam is at its smallest
 - preferred location where the RX should be installed

$$L = \frac{(D^2 - \lambda^2)}{4\lambda} \approx \frac{D^2}{4\lambda}, D^2 \gg \lambda^2 \quad \theta_d = \sin^{-1}\left(\frac{1.22\lambda}{D}\right)$$

D is the aperture width of TX and λ is the wavelength (acoustic, in the tissue) and θ is the divergence angle

EE518P2 - 2025

EE518P2 - 2024

Class EE518-L06 27

Outline of the course

- Implantable biomedical devices: system architecture and examples
 - Impedance matching
- NRIC (inductive coupling, power and data transmission)
 - Tx (transmitter)
 - Architecture and circuits
 - Analog and digital modulations, line encoding
 - Rx (receiver)
 - Active circuits
 - Inductive load modulation (passive)
- NRMRC (magnetic coupling, power)
- NRCC (capacitive coupling, power and data)
- Ultrasound coupling (acoustic power coupling)
- Optical coupling (power and data)
- Far-field telemetry (data)
 - Active Tx
 - Passive Tx: backscattering
 - Active receivers (non-coherent, super heterodyne, super regenerative)

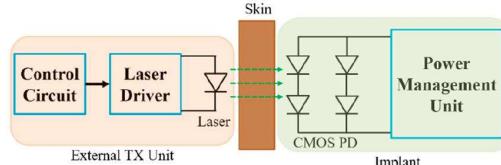
EE518P2 - 2025

EE518P2 - 2024

Class EE518-L06 26

Outline of the course

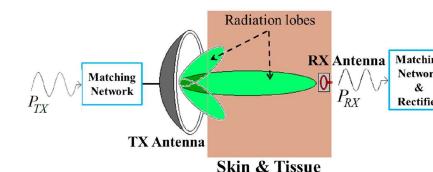
- Implantable biomedical devices: system architecture and examples
 - Impedance matching
- NRIC (inductive coupling, power and data transmission)
 - Tx (transmitter)
 - Architecture and circuits
 - Analog and digital modulations, line encoding
 - Rx (receiver)
 - Active circuits
 - Inductive load modulation (passive)
- NRMRC (magnetic coupling, power)
- NRCC (capacitive coupling, power and data)
- Ultrasound coupling (acoustic power coupling)
- Optical coupling (power and data)
- Far-field telemetry (data)
 - Active Tx
 - Passive Tx: backscattering
 - Active receivers (non-coherent, super heterodyne, super regenerative)


EE518P2 - 2025

EE518P2 - 2024

Class EE518-L06 28

Optical power transfer


- An external TX unit is used to power the implant utilizing an external laser
- The laser light is received and converted to electric power by a CMOS photodiode (PD) array embedded under the skin

- The maximum output power is claimed to be $168 \mu\text{W}$ for a $500 \times 500 \mu\text{m}^2$ PD array
- Thus, a small power transfer efficiency with respect to the large silicon area
- New techniques under study
 - Near-infrared wavelengths
 - Photovoltaic technique

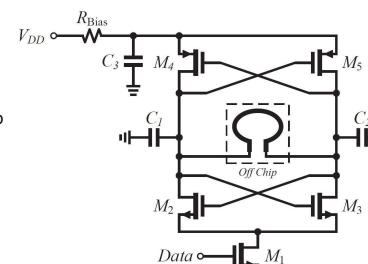
Radiative far-field (RFF) coupling

- Radiative far-field (RFF) WPT relies on electromagnetic coupling of an RX antenna positioned at a large separation distance ($d > > \lambda$) from the TX antenna
 - Recent in the biomedical field
 - Transfer technique demonstrates robustness against misalignment of the TX and RX coils
- Method
 - The radiated fields are modeled as plane waves with electric and magnetic field components as E_θ and H_ϕ respectively
 - The radiated field is incident on the matched RX antenna and generates a current across the RX antenna terminals

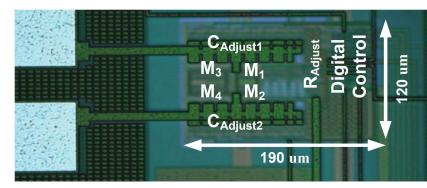
Outline of the course

- Implantable biomedical devices: system architecture and examples
 - Impedance matching
- NRIC (inductive coupling, power and data transmission)
 - Tx (transmitter)
 - Architecture and circuits
 - Analog and digital modulations, line encoding
 - Rx (receiver)
 - Active circuits
 - Inductive load modulation (passive)
- NRMRC (magnetic coupling, power)
- NRCC (capacitive coupling, power and data)
- Ultrasound coupling (acoustic power coupling)
- Optical coupling (power and data)
- Far-field telemetry (data)
 - Active Tx
 - Passive Tx: backscattering
 - Active receivers (non-coherent, super heterodyne, super regenerative)

Dual frequency transfer method


- Dual frequency approach, one frequency for remote power and another one for data communication
 - Power transfer is independent of data communication
 - Extra power is required due to the active transmitter of the sensor node
 - An extra antenna is used for data communication
- Example of far-field medical communication system with dual-frequency data and power transmission
- Major blocks
 - Implant: remotely powered IC (integrated circuit), discrete-component or integrated sensors and antennas
 - External base station, transceivers, antennas, control circuits

Implanted active data transmitter

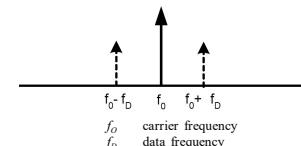
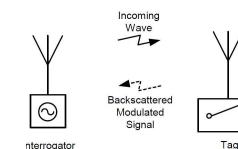

- Free-running LC-tank oscillator
 - LC cross-coupled pair oscillator (M_2 - M_3)
 - Off-chip inductor used as radiating antenna
 - Oscillation frequency is determined by C_1 , C_2 and the off-chip inductive antenna
 - Resistive loss (finite Q of C and L) compensated by the negative resistance of the MOSFETs cross-coupled pair

Specification	Design value
Center frequency	868 MHz
Modulation	OOK
Power	144 μ W
Supply	1.3 V
Data rate	1.7 Mbps
Turn-on time	< 10 ns
Frequency drift	< 1 MHz
Fabrication technology	180 nm

Design of the circuit: Homework #4

Free-running LC-tank oscillator schematic

Free-running LC-tank oscillator microphotograph



EE518P2 - 2025

EE518P2 - 2024

Class EE518-L06 33

Principle of the backscattering data communication

- The RF carrier is generated in the interrogator also called reader (transmitter side)
- The tag, also called transponder, modulates and re-radiates the RF carrier that originates from the reader upon occurrence of a high impedance mismatch
- The power consumption of the tag is minimized because it does not include an RF oscillator to generate the carrier

Block-level system

- If Data = Bit "1"**
 - $Z_{in} = R'$ is not matched to the tag antenna
 - All the power of the RF incoming signal is reflected to the interrogator
- If Data = Bit "0"**
 - $Z_{in} = R$ is matched to the tag antenna
 - All the power of the RF incoming signal is absorbed by the tag

EE518P2 - 2025

EE518P2 - 2024

Class EE518-L06 35

Loop antenna design

- Selection of the appropriate frequency
 - Frequency band in ISM
 - Considering the transmission of electromagnetic waves in free space, the path loss is proportional to the square of the carrier frequency according to Friis equation
 - At fixed antenna size, the radiation efficiency improves as frequency increases. Equivalently, the capacitor of the LC tank should be minimized
- Antenna efficiency
 - Assuming that the antenna is isotropic, which means that it radiates the same intensity in all directions, then the gain of the antenna G_T can be approximated by the efficiency η_{ant}

$$\eta_{ant} = \frac{R_{rad}}{R_{loss} + R_{rad}}$$

$$R_{rad} = 20\pi^2 \left(\frac{2\pi r}{\lambda} \right)^4$$

$$R_{loss} \approx \frac{r}{r_o \delta \sigma}, \text{ if } r_o \gg \delta$$

R_{rad} (radiated resistance) and R_{loss} (radiated loss) model power radiation and losses of the antenna, respectively.
 λ is the wavelength of the radiated signal
 r is the coil radius
 r_o , σ and δ are the cross-section radius, conductivity, and skin depth of the wire, respectively

- For a fixed antenna size r , R_{rad} increases with the carrier frequency
- However path loss and body tissue absorption losses are also higher at higher frequencies
- Therefore, the optimum operation frequency depends on how deep the implant is inside the body and the size of antenna

(Homework HW04)

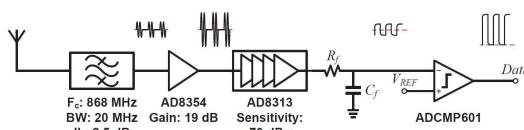
EE518P2 - 2025

EE518P2 - 2024

Class EE518-L06 34

Outline of the course

- Implantable biomedical devices: system architecture and examples
 - Impedance matching
- NRIC (inductive coupling, power and data transmission)
 - Tx (transmitter)
 - Architecture and circuits
 - Analog and digital modulations, line encoding
 - Rx (receiver)
 - Active circuits
 - Inductive load modulation (passive)
- NRMRC (magnetic coupling, power)
- NRCC (capacitive coupling, power and data)
- Ultrasound coupling (acoustic power coupling)
- Optical coupling (power and data)
- Far-field telemetry (data)**
 - Active Tx
 - Passive Tx: backscattering
 - Active receivers (non-coherent, super heterodyne, super regenerative)
 - Power receivers considerations

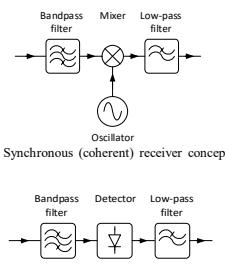

EE518P2 - 2025

EE518P2 - 2024

Class EE518-L06 36

Receiver example, Non-coherent Receiver

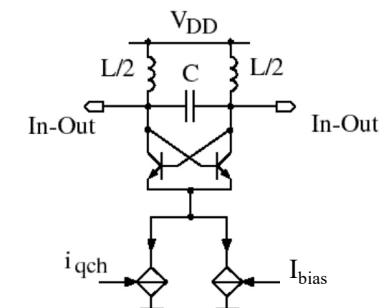
- Coherent receiver
 - Carrier recovery for demodulation; phase synchronization between the carrier of the received signal and the local oscillator is needed
- Non-coherent receiver
 - No carrier recovery for demodulation
 - Narrowband filters and envelope detectors are used to determine which frequency is received
 - Generally preferred due to an easier design
 - Poorer bit error rate than the coherent receiver system



Band-Pass filter: 4DFB-860D-10, TOKO; Centered freq. of 868 MHz, large -3dB bandwidth (BW) of 20 MHz, Insertion loss of 2.5 dB (IL, loss of the signal travelling through the block)
 Amplifier AD8354: gain of 19 dB
 Logarithmic amplifier AD8313; similar to an envelope detector; the sensitivity corresponds to the minimum detectable signal; - 70 dBm of sensitivity corresponds to 0.1 nW
 Comparator ADCMP601; 100 mV build-in hysteresis to avoid noisy transition

EE518P2 - 2025

EE518P2 - 2024


Class EE518-L06 37

Block diagram of the non-coherent receiver used to receive and demodulate the data sent using the free-running LC-tank oscillator transmitter (OOK)

Super-regenerative oscillator, operation principle

- Upper section
 - High-Q LC resonator for low current
 - Differential inputs and outputs
 - Admittance presented to the resonator $Y = -gm/2$
 - The losses of the LC resonator are equivalent to a positive conductor g_{pos}

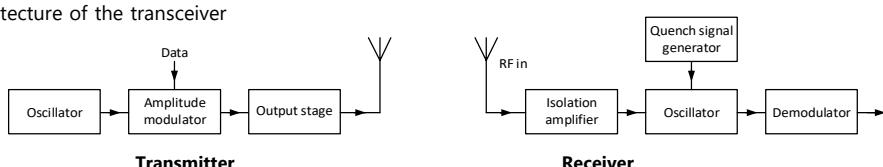
- Middle section
 - Cross-coupled pair of bipolar transistors

- Lower section, biasing
 - Quench signal, ac current source i_{qch}
 - Bias current source I_{bias}
 - Total current $I_{tot} = i_{qch} + I_{bias}$

$$g_{neg} = -\frac{i_{qch}}{4U_T} - \frac{I_{bias}}{4U_T}$$

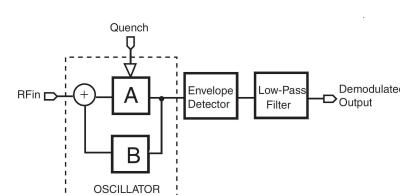
- Oscillation criteria
 - The resistance loss in the LC is compensated by the cross-coupled pair
 - Definition of the critical current (condition) $g_{pos} + g_{neg} = 0$

(Homework HW05)


EE518P2 - 2025

EE518P2 - 2024

Class EE518-L06 39


Super-regenerative receiver architecture

- Architecture of the transceiver

- Operation principle

- Based on the variation of the start-up time of an oscillator which depends on the RF input signal
- The gain A of the amplifier is controlled by a quench signal
- B is a band-pass filter
- The oscillation signal is periodically suppressed by the quench signal

EE518P2 - 2025

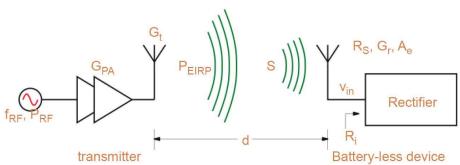
EE518P2 - 2024

Class EE518-L06 38

Outline of the course

- Implantable biomedical devices: system architecture and examples
 - Impedance matching
- NRIC (inductive coupling, power and data transmission)
 - Tx (transmitter)
 - Architecture and circuits
 - Analog and digital modulations, line encoding
 - Rx (receiver)
 - Active circuits
 - Inductive load modulation (passive)
- NRMRC (magnetic coupling, power)
- NRCC (capacitive coupling, power and data)
- Ultrasound coupling (acoustic power coupling)
- Optical coupling (power and data)
- Far-field telemetry (data)
 - Active Tx
 - Passive Tx: backscattering
 - Active receivers (non-coherent, super heterodyne, super regenerative)
 - Power receivers considerations

EE518P2 - 2025


EE518P2 - 2024

Class EE518-L06 40

Power transmission in far field: Maximum available input power

- Expression of the maximum power using Friis Transmission Relation

$$P_{AV} = S \cdot \frac{\lambda^2}{4\pi} \cdot G_R = P_{EIRP} \cdot G_R \cdot \frac{\lambda^2}{(4\pi d)^2}$$

- Practical example

- 2.45 GHz
- $\lambda = 0.1224$ m
- $P_{EIRP} = 4$ W
- Antenna gain: $G_R = 1$ (0 dB)

d(m)	$P_{AV}(\mu\text{W})$
1 m	379 μW
5 m	15.17 μW
10 m	3.79 μW
12 m	2.6 μW