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Lecture Outline

(Book Bio/CMOS: Appendix B & Chapter’ paragraph 8.9.3, 9.1.1, 9.2)

CMOS design to drive the
electrochemical cell

Electrical properties of the
electrochemical cell

Basic Configuration of the cell:
Grounded Counter

Noise of the electrochemical
interface
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A.

B.

D.

E.

Why the electrochemical
cell needs three electrodes?

Because we need
redundancy to improve the
measure

Because we need to
measure a current, a
voltage, and a flux

Because we need to
measure a current, while
applying a precise voltage
Because we need to

measure a voltage, while
supplying a precise current

Because the cell is a node
with three entering currents



Equivalent circuit: passive model
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= How to measure the equivalent
circuit of an electrochemical cell?

A. Impossible to measure,
that’s just a theoretical
model

B. Possible but very
difficult to measure
since it contains too
many parameters

C. Possible but not very
useful since that’s just
a theoretical model

e That’s enough to
perform a measure of

impedance



Equivalent Impedance
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The Layering effects result in the impedance 1n parallel
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Equivalent Impedance
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This impedance presents both

resistive and reactive components
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Nyquist Plot
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The Nyquist plot 1s also a mean to fit data about a
specific electrochemical cell
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Nvquist Plot
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The Nyquist plot 1s also a mean to fit data about a
specific electrochemical cell
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“In real cases, are layering phenomena
correctly described by capacitors?

A. Yes, of course!

B. Impossible to correctly
model the layering

C. Possible but very
difficult to correctly
model the layering

D. Possible but not very
useful since that’s just
a theoretical model

@Not really



Capacitance vs Frequency
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Fig. 9. Measured capacitance versus charge/discharge frequency on clean
gold electrodes. The continuous line shows the fitting.

Some times, the Layering effect corresponds to
non-ideal capacitances
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Interface models
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Equivalent circuits for non-ideal layering effects
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CPE element
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The Constant Phase Element (CPE)

as Equivalent Component
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CPE element

~ 1
Rcpe =2 oC, V1 — o2

ZcPE .
XcPE = g
1 1
‘XCPE‘Z o = o =
o o—1
Cy, w*w C)
C
~ p
Ccpe =

(c) S.Carrara

18



Equivalent Capacitance vs frequency
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Non-Faradaic Current
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Non-Faradaic currents are also circulating in the cell
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Why C,,//R, do not correctly

model Faradaic currents ?

a Since Faradaic currents
do not follow Ohm law

Since Faradaic currents
also depend on
species’ concentration

C. Since it is not possible
to correctly model the
Faradaic currents

D. Since itis very difficult
to correctly model the
Faradaic currents
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Equivalent circuit: active model
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Redox with hydrogen
peroxide
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.1 4 Oxygen Reduction
O+ reduction and H,O, oxidation observed by potential sweeping
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Faradaic Current Generator
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The sensitivity depends on the Reference Potential
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Faradaic Current Generator

I=8C+1,,,
|
IOﬁ”set = O
[=5C
(V-V,)
I(1,V)=S(V)C(t) S(V)=S,e °

The sensitivity depends on the Reference Potential
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=  How to correctly apply the
right Reference Potential (to RE)?

A. In closed loop
B. In open loop

C. With a power
supplier

Without current
supply

E. Without changes In
frequency



fx( Q6
& How to apply the Reference
Potential without current supply?

Designing a proper
voltage supplier

B. Designing a proper
current supplier

C. Designing a proper
frequency supplier

D. Designing a proper
electrochemical cell
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Required Building Blocks

Voltage Analog Analog

Follower Adder Shifter
Current Analog Analog

Amplifier MUX Integrator

Basic Configurations of Operational Amplifiers
(Book Bio/CMOS: Appendix B)

(c) S.Carrara
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What is an Operational Amplifier?

A. A normal Differential
Amplifier

A special

Differential Amplifier
C. A differential

Amplifier Operating

at special frequency

D. An Amplifier
Operating differently



~ Why an Operational Amplifier
is a Special Differential Amplifier?

Since it has an

enormous gain

Since it has
enormous input
impedance

Since it has
negligible output
impedance

‘Since it has several
special features



What' s an Op. Amp.?

DIFFERENTIAL AMPLIFIER

V+ —

V___

+ I/() :GO(V+_V—)

G, = ©
R >0 —>I1.=0

R =0 >V #f(R,)
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What' s an Op. Amp.?

Output

input (+) (-) input

discrete components

Q\| | |/I A simple operational

,\76 amplifier made from

A simple scheme of a differential amplifier at transistosr level

(c) S.Carrara
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What' s an Op. Amp ?
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A more complex architecture of an Operational Amplifier (the common 741)
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What' s an Op. Amp.?
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Differential Amplifier

Non-inverting
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(Darlington, pair)
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A more complex architecture of an Operational Amplifier (the common 741)
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The basic CMOS for Redox

VOLTAGE
Vin

< FOLLOWER
E] +

TRANSIMPEDANCE
AMPLIFIER
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The basic CMOS for Redox
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Grounded Counter

VOLTAGE
g FOLLOWER
+
R,
Vin R3
— N\ AN
TRANSIMPEDANCE
AMPLIFIER %
R;

é The Counter is connected at Ground
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Grounded Counter

The current flowing

through the Working is |
flowing through R, too Vout R;
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Grounded Counter

The current provided by
the voltage follower is
only flowing through R,
Vi R;and Rj
— A\ AN

7

The current entering
1.=0 the voltage follower
IS null

[
N

<

Vout % Rl
<
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Grounded Counter

R,
Vin R3 V+
—NA\AN
V., =V=V,€0= 1

The Voltage @ OUT
Is equal to the Vo %

voltage V.,=Vg
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The Voltage
@ Reference
Is equal to
the voltage V.
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Grounded Counter
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Grounded Counter
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Grounded Counter

R
Vo=V =(Y%) =Vin E :

The input voltage is just
applied between the
Reference and the
Working
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Grounded Counter

R

Vi R

—\AN

Vout = RIW Vout
The output voltage is then |
directly proportional to the == For example, in chronoamperometry
Faradaic current generated by [y
the redox occurring at the V =R nFAND C,
working electrode . \/;t
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Noise issues!

FAND
Jr

JTt
V.=Rl,=1,+ IC@ Total noise in the output signal

V. _=RI.=R”

out

C, This is only the Faradaic contribution

I =1, . +1, + Iﬂicker Usual sources of noise in electronics
4kT _ _
I, .—PSD=— Johnson-Nyquist thermal noise current
White R
noise Originates from the discrete nature of electric charge
Ishot = (I)(T’f) J J¢-

Shot noise is temperature and frequency independent

A Flicker noise, which has a spectral density that
— decreases with the frequency. It is the dominant noise
f source at low frequencies

I flicker
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Does the electronic noise
Is the only one in the system?

A. Yes, of course!

B. Almost, since it is
the dominant one

@No, since 1t Is not
the dominant one

D. Not Really



Noise @ the Bio-interface
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Typical chronoamperometry (650 mV) on hydrogen peroxide
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Noise @ the Bio-interface
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Typical chronoamperometry (300 mV) on Ferrocyanide
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Noise Power Spectra Density

Average current of the biosensor

The inverse SNR of the measurement at 1Hz l

SN

P SD flicker = —

f “\

Generalized frequency dependence

Generalized flicker formula to extract the values of noise
coefficients by fittings on the electrochemical interface
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Power Spectra DenS|ty
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(c) S.Carrara 53



Nmse PSD on Bare
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N0|se PSD on MWCNT
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Dependence by the Voltage
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Equivalent circuit with all the
current sources
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