EE512 - Applied Biomedical Signal Processing
Lab session - Instantaneous Frequency

Experiment 1: the importance of pre-filtering for instantaneous frequency
estimation

1.1.  Bandpass filter design

>> [Nb,wn] = buttord([0.16 0.28], [0.12 0.32],0.5,20);
>> [b,a] = butter (Nb,wn);

A1.1. Figure 1 shows the amplitude response of the filter with the passband frequencies of
4Hz and 7Hz (the filter gain is unitary in the frequency range of [4-7] Hz and zero
otherwise).

>> [h,w]=freqgz (b,a,1000);

>> plot (Fs.*linspace(0,0.5,1000),abs (h))

%Fs = 50Hz (The analyzed signals are sampled at 50Hz)
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Figure 1. Bandpass filter.

The signals recorded from the ECG lead V3 and V4 are bandpass filtered:
>> V3 filt = filtfilt(b,a,V3);
>> V4 filt = filtfilt(b,a,V4);

Figure 2 shows the raw atrial ECG signals on lead V3 and V4, and the corresponding
power spectral densities. The atrial ECG signals represent the original ECG after the
cancellation of the ventricular activity. The cancellation process may lead to residual
ventricular activity sfill present in the atrial signals. One notes the negative spikes in the
signals, but also the spectral components at low frequencies (that cannot be attributed to
the fibrillatory frequency during atrial fibrillation).

Looking at the filter output (Figure 3), one notes indeed that the amplitude modulation of
the two atrial activities (lead V3 and V4) are quite similar, which would be difficult to assess
on the raw signals.
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Figure 2. Lead V3 (left) and lead V4 (right) before bandpass filtering.
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Figure 3. Lead V3 (left) and lead V4 (right) after bandpass filtering.
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A1.2. The signals are sampled at 50Hz, thus the highest signal frequency is half the
sampling frequency.

1.2. Estimating the instantaneous frequency (IF) on the raw V3 signal yields the two
estimates in Figure 4.

>> IF =

STFT (V3,31,50);
>> [IF,y]

= AdaptBP(V3,5,0.85,0.89,50,0);



A1.3. The estimates are too high (influence of harmonics) and the STFT estimate presents
problems due to a large constant (zero frequency) component sometime present in the
raw V3 signal. The adaptive IF estimate for B = 0.98 is smoother and lower than the IF
estimates for B = 0.85. The parameter B conftrols for the bandwidth of the adaptive
bandpass filter which makes that for narrow bandwidth (high B values) the frequency
tracking is more accurate.

Estimating the instantaneous frequency (IF) on the bandpass filtered signal:
>> IF = STFT(V3 filt,31,50);
>> [IF,y] = AdaptBP(V3 filt,5,0.85,0.89,50,0);

A1.3. Figure 5 shows the benefits of the bandpass filtering of the raw signal: the IF estimates
are centered on the right frequency value and present less distortions. Note that, the
underlying assumption for IF is that the signal is locally mono-component (or at least
narrow-band). This is rarely the case in practice and thus some band-pass filtering should
be performed.
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Figure 4. Instantaneous frequency estimated on the raw V3 signal using STFT (upper) and
adaptative frequency tracking (lower).
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Figure 5. Instantaneous frequency estimated on the filtered V3 signal using STFT (upper)
and adaptative frequency tracking (lower).

Experiment 2: indirect estimation of respiration frequency from respiration sinus
arrhythmia (RSA) during a VO2-max test

2.1. Extract the respiration component present in the RR-intervals (lsampling frequency of
4Hz)

>> [Nb,Wn] = buttord(0.4/4,0.2/4,0.5,20) ;

>> [b,al] = butter (Nb,Wn, 'high') ;

>> Resp = filtfilt(b,a,RR-RR(1));

A2.1. The extracted signal shows clear oscillatory components corresponding to the
respiration.
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Figure 6. Respiration component extracted from the RR signal

2.2 Instantaneous frequency (IF) estimation using the Hilbert transform (Figure 7), Teager
transform (Figure 8), STFT (Figure 9) and the adaptative bandpass filter (Figure 10).

IF estimation using Hilbert transform:

>>TF = IFhilbert (Resp,4);

>>a=0.05;

>>TFf = filtfilt(a, [l a-1],IF);
>>plot (tr,RF,t,IFf, 'r', 'LineWidth', 2)
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Figure 7. Instantaneous frequency estimation using the Hilbert fransform.

IF estimation using Teager tfransform:

>>TF = teager (Resp,4);

>>a=0.05;

>>TFf = filtfilt(a, [l a-1]1,1IF);
>>plot (tr,RF,t,IFf, 'r', 'LineWidth', 2)
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Figure 8. Instantaneous frequency estimation using the Teager tfransform.

IF estimation using Short-Term Fourier fransform:

>>TF = STFT (Resp, 31, 4); %Swindow length of 31 samples
>>a=0.05;

>>IFf = filtfilt(a, [l a-1]1,1IF);

>>plot (tr,RF,t,IFf, 'r', 'LineWidth', 2)
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Figure 9. Instantaneous frequency estimation using STFT.

IF estimation using adaptative bandpass filter:
>>[IF, y] = AdaptBP (Resp,0.25,0.925,0.925,4,0);
>>plot (tr,RF,t,IF, 'r', 'LineWidth', 2)
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Figure 10. Instantaneous frequency estimation using adaptative bandpass filter

A2.2. The best estimate seems to be obtained with the adaptive bandpass filter (note that
no lowpass filtering of the estimate is needed).



Experiment 3: extraction of a common oscillation and estimation of its
instantaneous frequency using bandpass adaptive filtering

Remove the mean values and resample the signals at 1 Hz:

>> X=heart 3; %load the data

>> X=X-ones (length(X),1) *mean (X) ;

>> X=resample (X,1,4);

>> RR = X(:,1); $RR-intervals

>> BP = X(:,2); %Blood pressure signal
>> Resp = X(:,3); %Respiration signal
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Figure 11. Cardiovascular recordings:
Respiration (lower).
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Figure 12. Power spectral density of the RR intervals (upper), Blood pressure (middle) and
Respiration (lower).

A3.1. Power spectral density of the Blood pressure signal shows a frequency component
around 0.07Hz (corresponding to the baroreflex effect). For the respiration signal, the main
frequency component is around 0.25Hz. It makes senses to down-sample the signals from
4Hz to THz to enhance these low frequency components.

3.1. Using adaptative bandpass filter, one extracts the common oscillation between RR
intervals and respiration:

>> [IF,Y,weights] = AdaptBP weight ([RR Resp],0.2,0.9,0.95,0.95,1);

A3.2. Figure 13 shows the outputs of the common filter for these two signals. The common
oscillation of the two signals is of course the respiration itself (the respiration modulates the
RR signal, the so-called sinus arrhythmia). Apart from the fransient, Figure 13 shows that
there is a good correspondence between the amplitude of respiration component
extracted from the RR -intervals (upper panel) and the amplitude of component
extracted from the respiration signal(middle panel). The respiration frequency (lower
panel) varies during the recording, which would make the use of a fixed bandpass filter to
extract the respiration frequency inaccurate. One notes in Figure 12 (lower panel) that the
power spectral density of the original respiration signals shows two main distinct frequency
components (two distinct peaks).
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Figure 13. Respiration frequency component extracted in the RR -intervals (upper) and in
the respiration signal (middle). The IF estimation of the common oscillation between the
RR-intervals and the respiration is illustrated on the lower graph.

3.2. Using adaptative bandpass filter, one extracts the common oscillation between RR
intervals and blood pressure:

>> [IF,Y,weights] = AdaptBP weight ([RR BP],0.06,0.9,0.95,0.95,1);

A3.3. This common oscillation with the largest amplitude is the baroreflex. Figure 14 shows
the outputs of the common filter for the RR intervals (upper) and blood pressure signal
(lower). There is some correlation between the amplitudes of the RR intervals and blood
pressure components, especially in the large amplitude regions. The baroreflex frequency
is assumed constant in most studies (being estimated through power spectral density
estimation of the RR-intervals), but one clearly notes that the baroreflex is characterized by
a time-varying frequency (the frequency of the baroreflex lies between 0.05 Hz and 0.09
Hz; Figure 14, lower panel).
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Figure 14. Baroreflex frequency component exiracted in the RR-intervals (upper) and in
the blood pressure signal (middle). The IF estimation of the common oscillation
(baroreflex) between the RR-intervals and the blood pressure signal is illustrated on the
lower graph.



