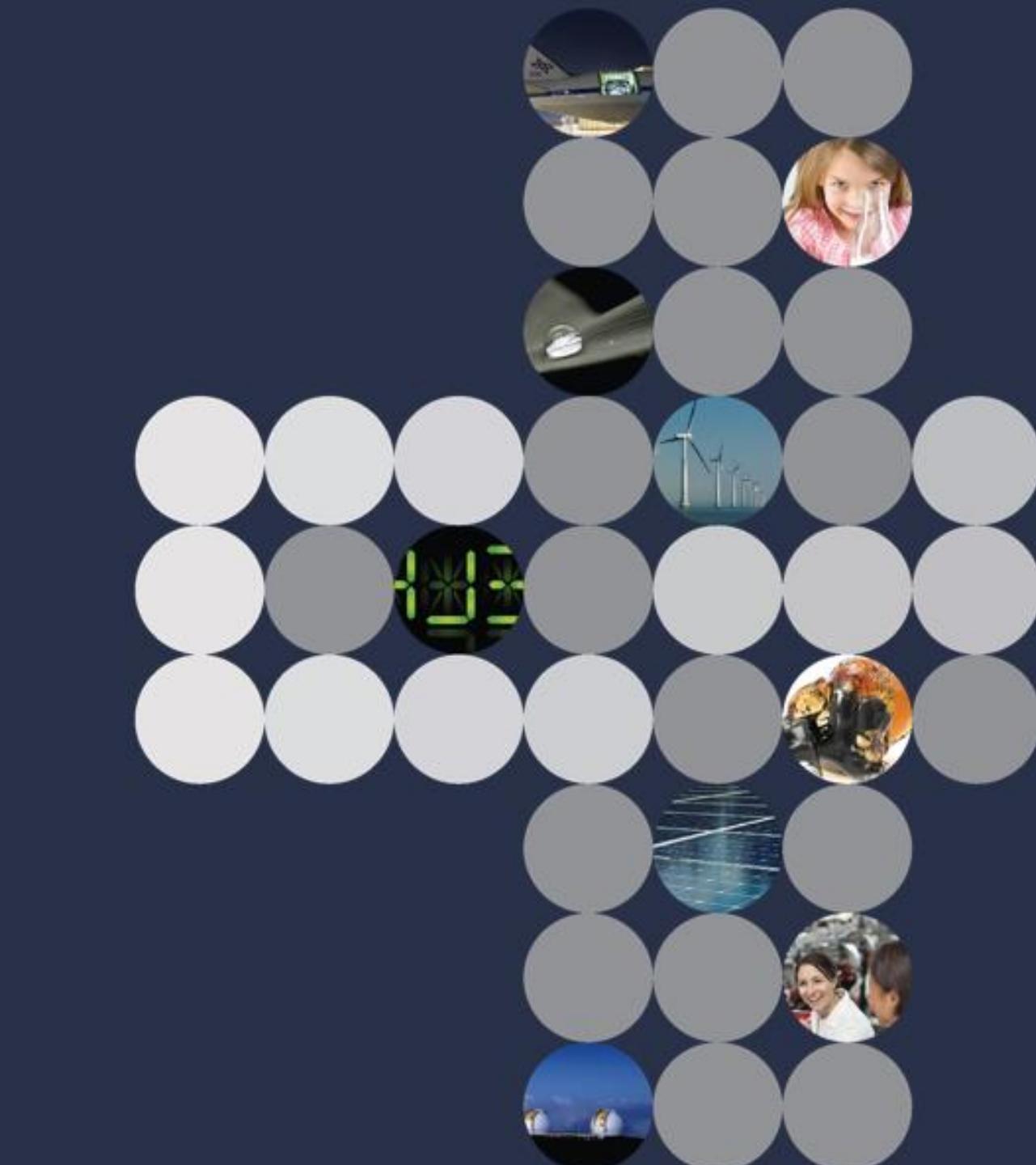


EE512 – Applied Biomedical Signal Processing

Regression and Classification

Ramin Soltani(asi@csem.ch)
CSEM Signal Processing Group



Outline

- Introduction to Machine Learning (ML)
- Regression
- Classification
 - Supervised
 - Unsupervised
- Regularization
- Feature selection
- Validation strategies
- Performance evaluation

Introduction to Machine Learning

- **Goal:** “teach” a machine to interpret data
- **How:** Training a model with a data subset
- **Usage:** The trained model can then interpret new data

• PPG	• Filtering	• Univariate analysis	• Decision tree	• Embed in a device
• ECG	• Time	• PCA	• Support vector machine	
• Accelerometer	• Frequency	• LASSO	• Bayes	
	• Statistics			

Introduction to Machine Learning

Supervised (known labels)

- Support vector machine
- Linear regression
- Logistic regression
- Naïve Bayes
- Decision trees
- Neural networks

Unsupervised (unknown labels)

- K- means
- Gaussian Mixture Model
- DBScan

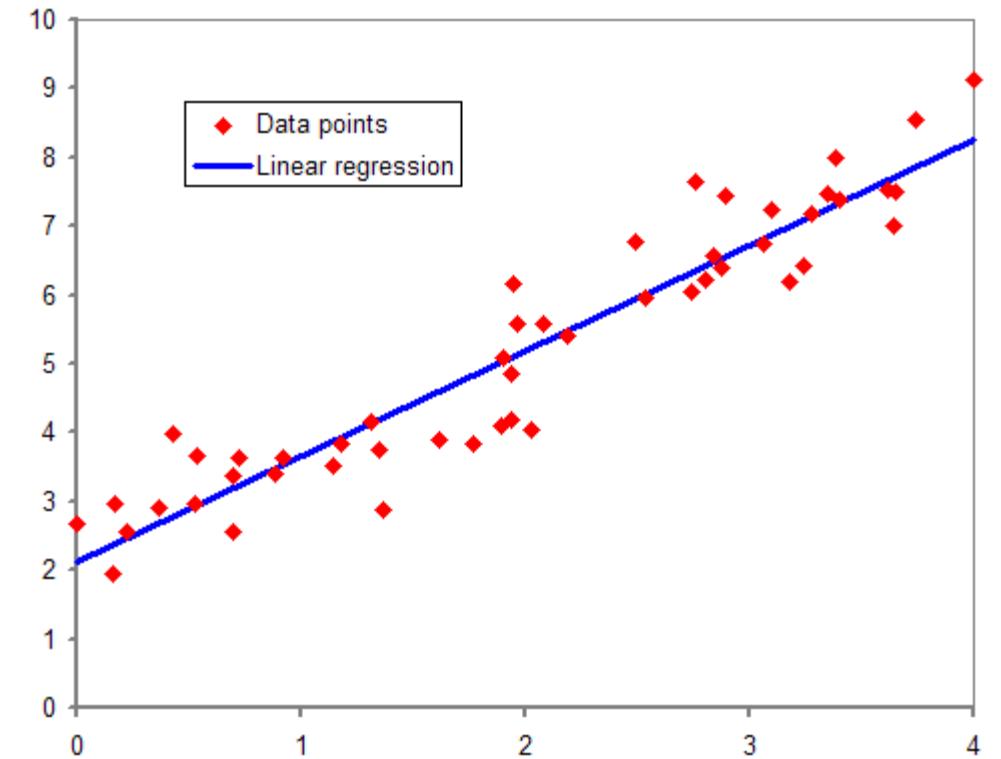
Reinforcement learning

- Q-Learning
- Markov decision process
- Monte Carlo

Regression vs Classification

- **Regression**
 - Goal: estimate an output **value**
 - Usage: Mainly for **curve fitting**
- **Classification**
 - Goal: predict an output **class**

Regression



Regression

- Estimate the dependence between a dependent variable (the output, Y) and 1 or more independent variables (the inputs, X).

$$Y_i = f(X_i, \beta) + e_i$$

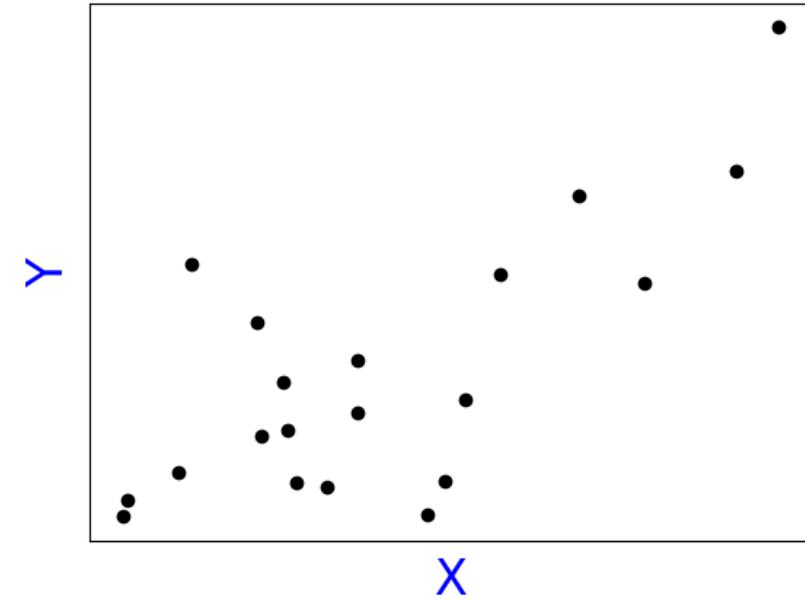
β : model parameters, e : error term

7

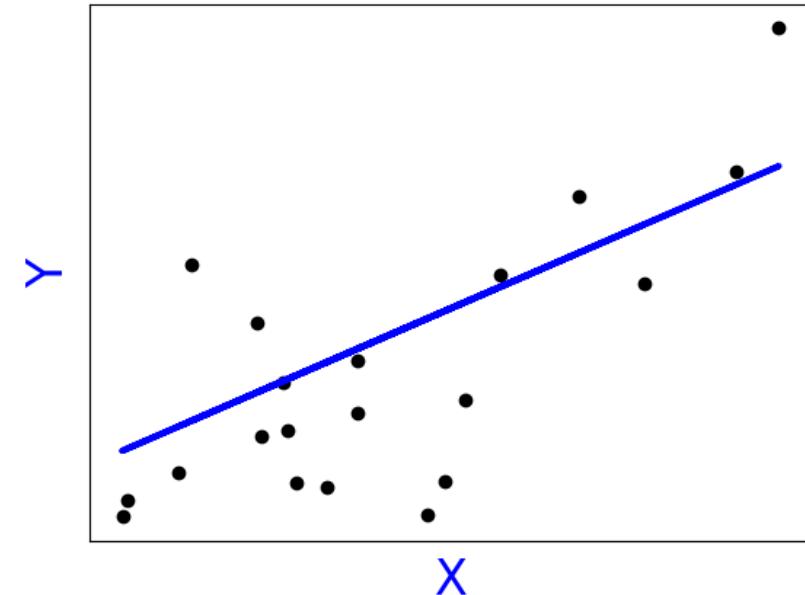
- Linear regression assumes a linear relationship between inputs and output
- Nonlinear regression does not assume a linear relationship
 - E.g., exponential, logarithmic, Gaussian

Linear regression

- $Y_i = \beta_0 + \beta_1 X_{i1} + \cdots + \beta_n X_{in} + e_i$
- Least squares to find the best fit:
- $r_i = Y_i - f(X_i, \beta)$
- Objective: minimize $S = \sum_{i=0}^n r_i^2$
- Polynomial regression is also linear regression!

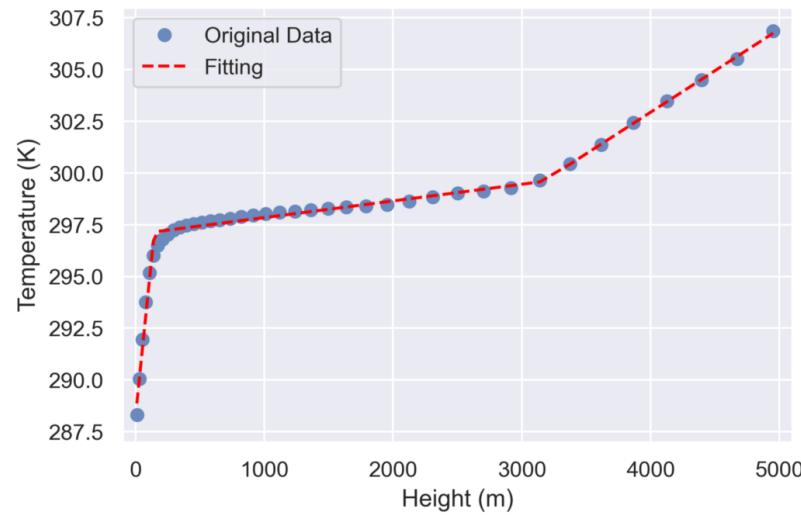


8



Linear regression – additional examples

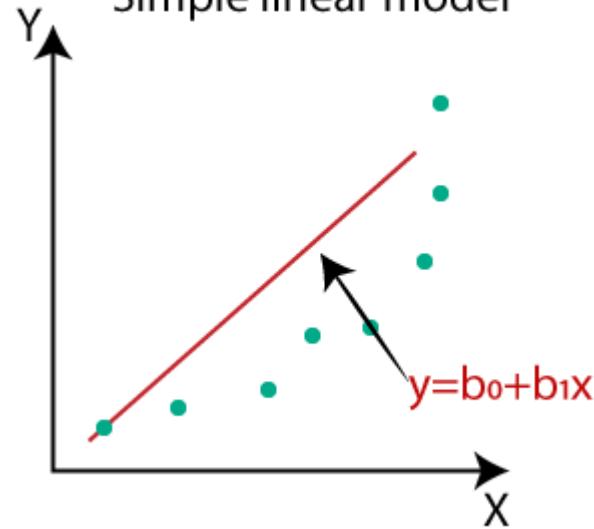
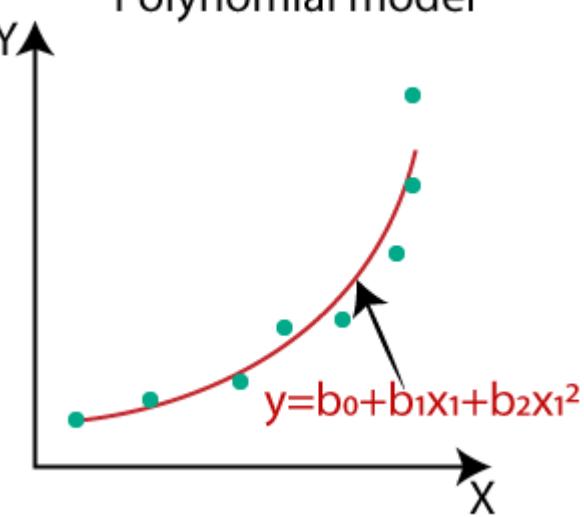
- Piecewise linear regression



- Cubinc polynomial regression

Simple linear model

Polynomial model

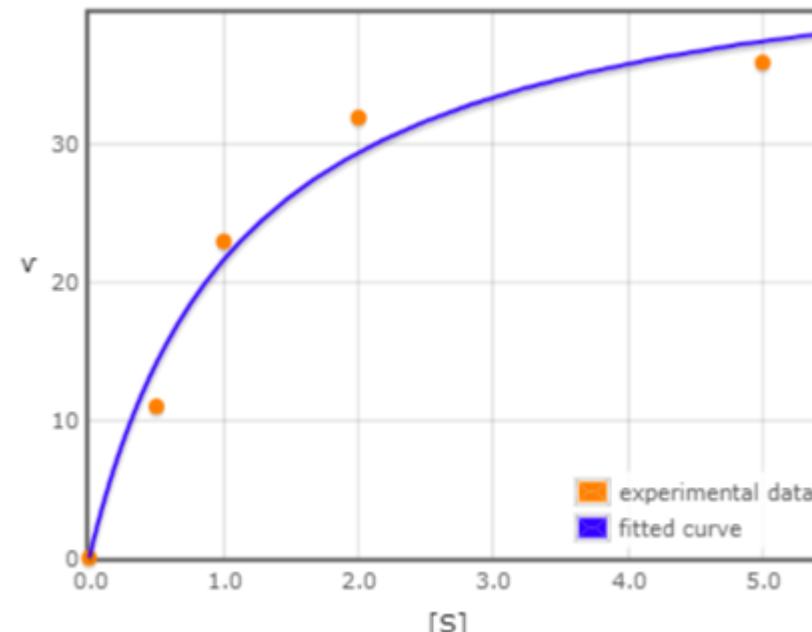


9

Nonlinear regression

- Includes logarithmic, exponential, Gaussian, ...
- Example: Equation for enzyme kinetics:

$$f(x, \beta) = \frac{\beta_1 * x}{\beta_2 + x}$$

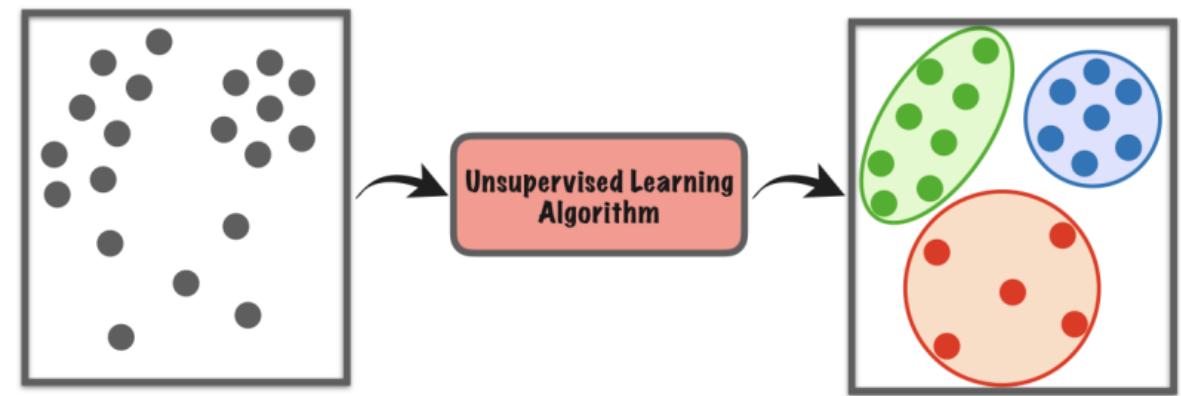


10

Practical examples in digital health

- Speed estimation from cadence
 - $Speed = \beta_0 + \beta_1 cadence + \beta_2 slope + \beta_3 height + \beta_4 energy + \dots$

Unsupervised learning / Clustering



Centroid based method – k means

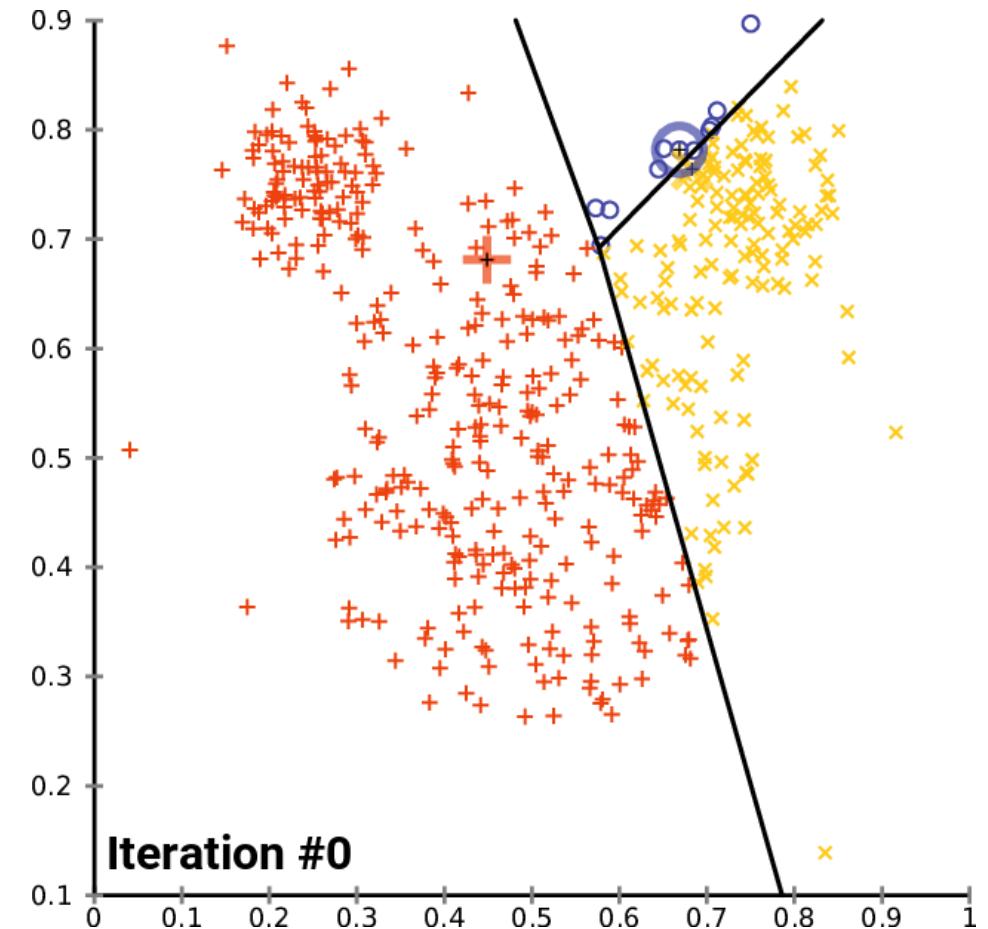
- Initialize a set of means $\{m_1, m_2, \dots m_k\}$
- Assign each observation to a cluster with mean based on least square distance

$$S_i^{(t)} = \left\{ x_p : \left\| x_p - m_i^{(t)} \right\|^2 \leq \left\| x_p - m_j^{(t)} \right\|^2 \forall j, 1 \leq j \leq k \right\}$$

- Update means (centroids)

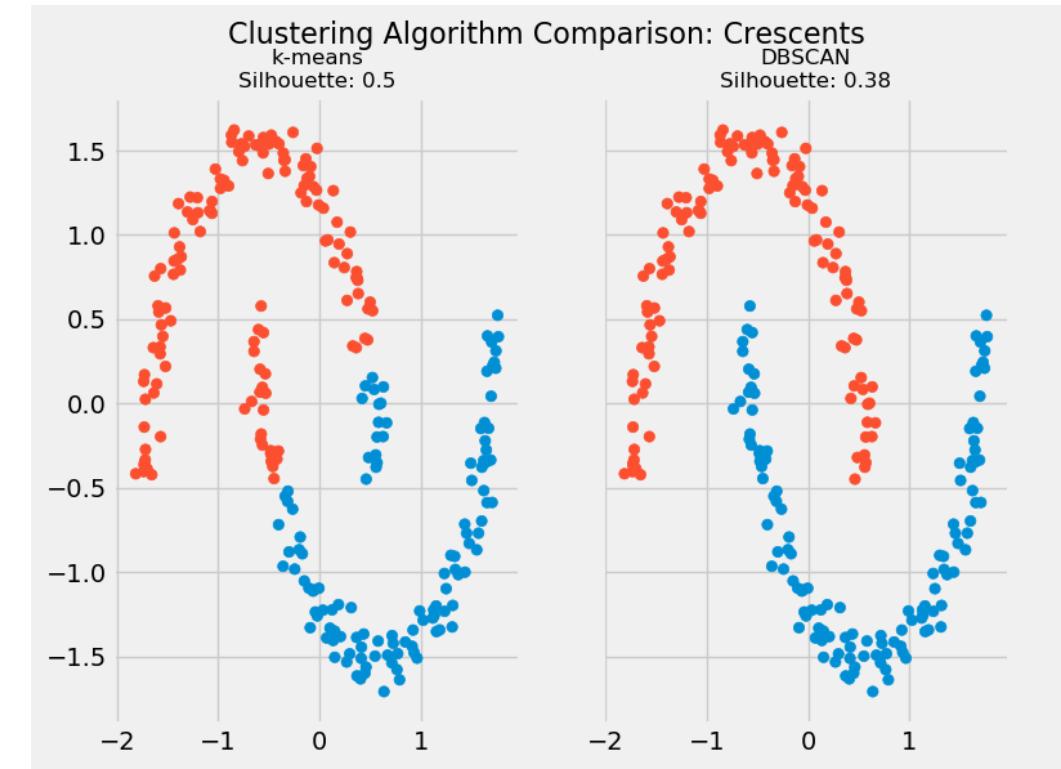
$$m_i^{(t+1)} = \frac{1}{|S_i^{(t)}|} \sum_{x_j \in S_i^{(t)}} x_j$$

- Converge when no more updates possible



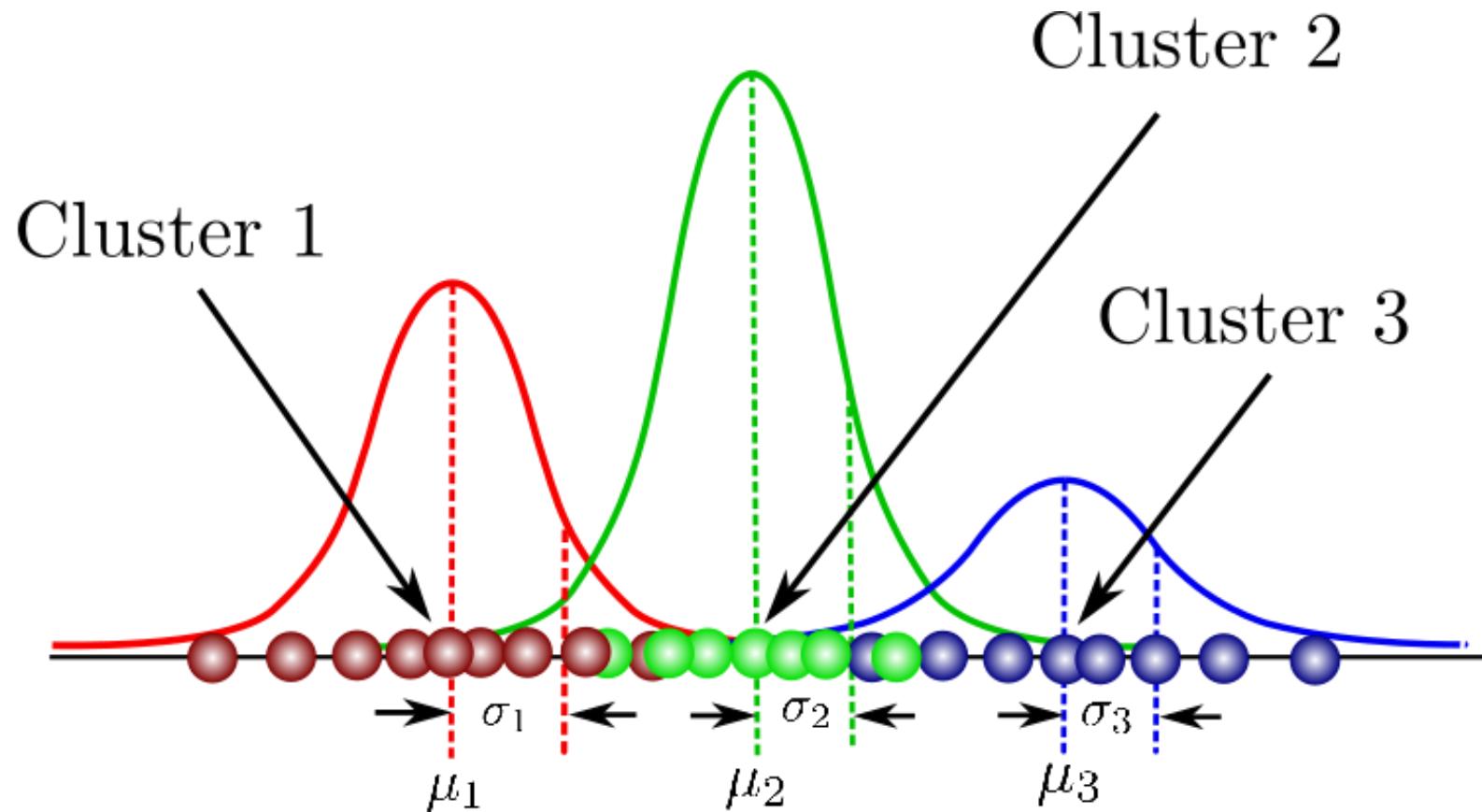
Clustering – k means

- Advantages: easy method when labels are unknown
- Limitations: may not converge optimally (wrong clusters!)
- Initialization of clusters is not always evident, needs a predefined number of clusters
- Insensitive to data shape (e.g. non-linearly separable clusters)

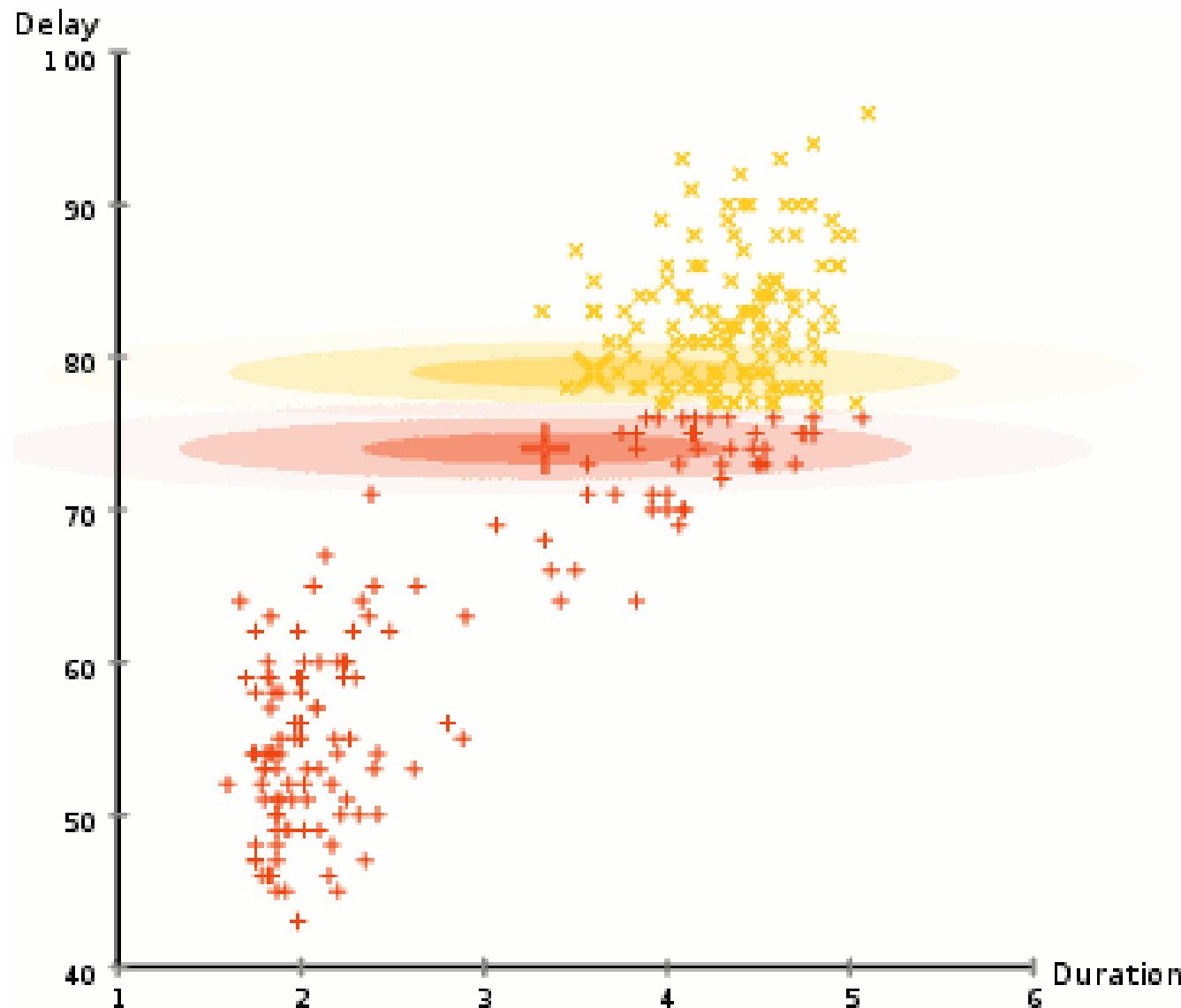


Distribution based method – Gaussian Mixture Model

- Relies on a mixture of Gaussian densities
- Expectation – Maximization algorithm

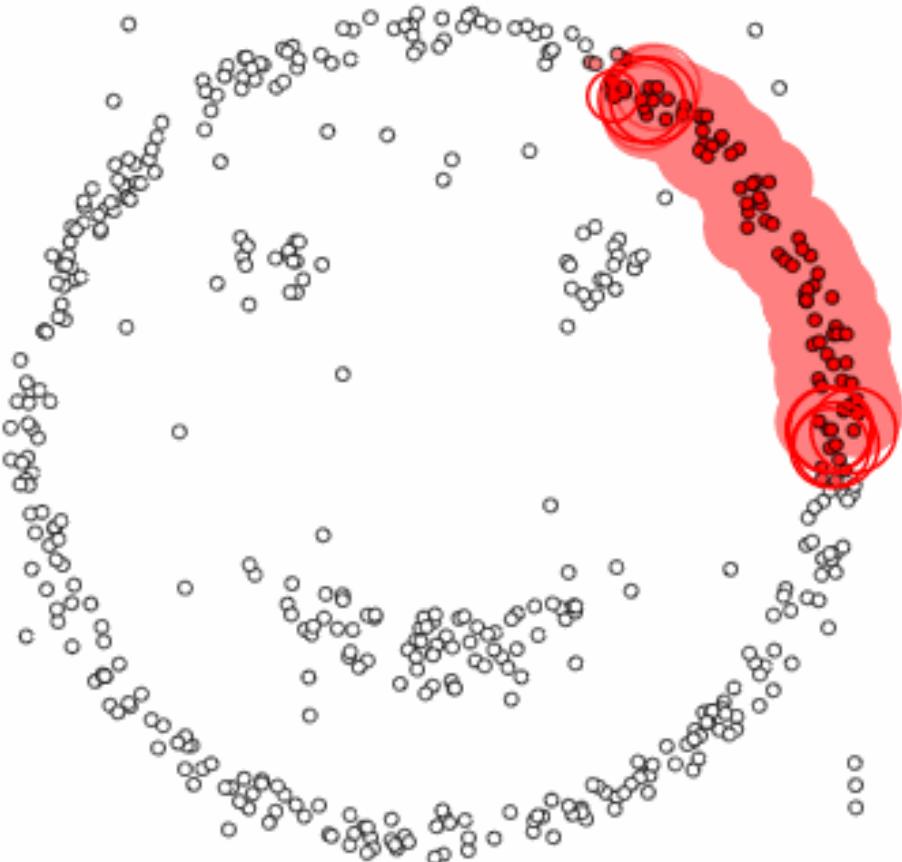


Distribution based method – Gaussian Mixture Model



16

Density based method – DBSCAN



- Requires two parameters:
 - ϵ , the radius of a neighborhood
 - minPTs, minimum number of points to form a dense region
- Start with a single point, and add new points to the cluster until there are no more points within ϵ
- Then, a new point belongs to a new cluster
- Repeat until there are no more points

Clustering – DBSCAN

- **Advantages**

- No prior #clusters knowledge
- Sensitive to data shape
- Robust to outliers
- Only two parameters needed

- **Drawbacks**

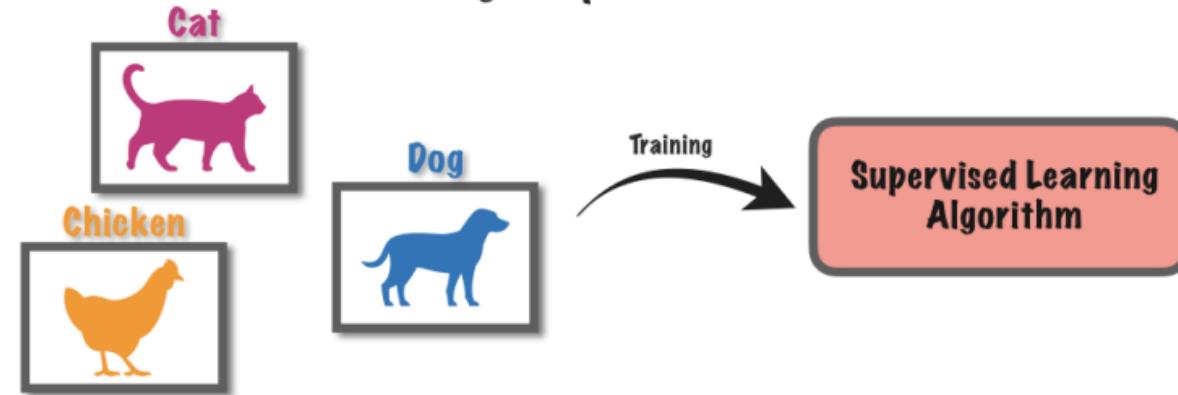
- Depends on order of point selection
- Heavily dependent on distance metric
- Choosing appropriate distance metric may be difficult

Clustering – Conclusion

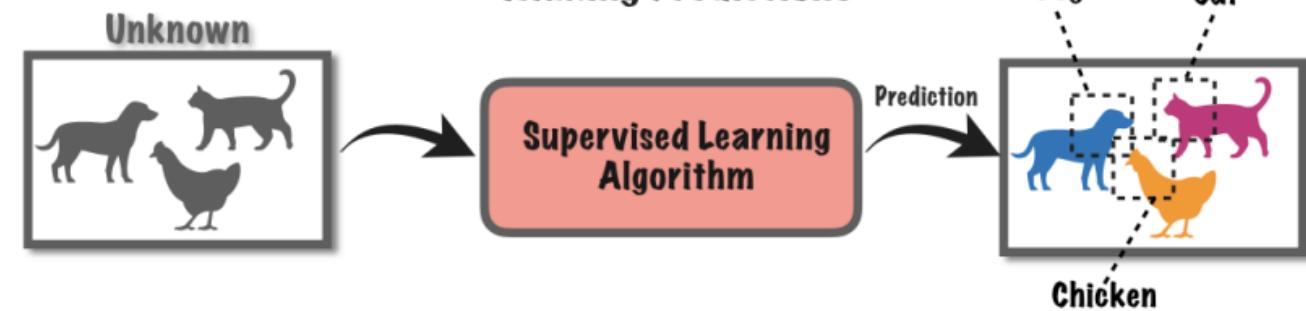
- Clustering is useful when attempting to make sense of unlabeled data
- Several methods exist with varying advantages/drawbacks
- Model selection may benefit from prior knowledge about the data distribution/shape/domain expertise

Supervised learning

Training a Supervised Learner



Making Predictions

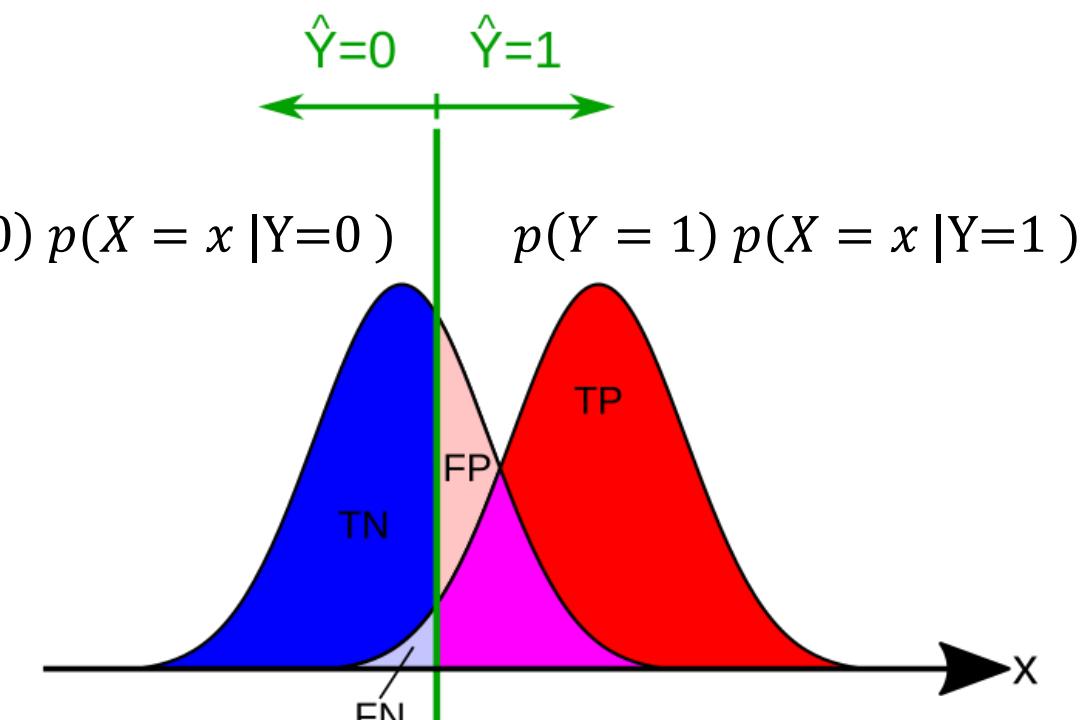


Naïve Bayes (probabilistic classifier)

- Assign a new observation \hat{y} to a class C:
 - $\hat{y} = \underset{k \in \{1, \dots, K\}}{\operatorname{argmax}} p(C_k) \prod_{i=1}^n p(x_i | C_k)$
- Common assumption is that probability is Gaussian:

- $$p(x = v | C_k) = \frac{1}{\sqrt{2\pi\sigma_k^2}} e^{-\frac{(v-\mu_k)^2}{2\sigma_k^2}}$$

- Where v is an observation



Logistic Regression

- Based on the logistic function, for data that has a “sigmoid” distribution

$$p(x) = \frac{1}{1+e^{-(x-\mu)/s}}$$

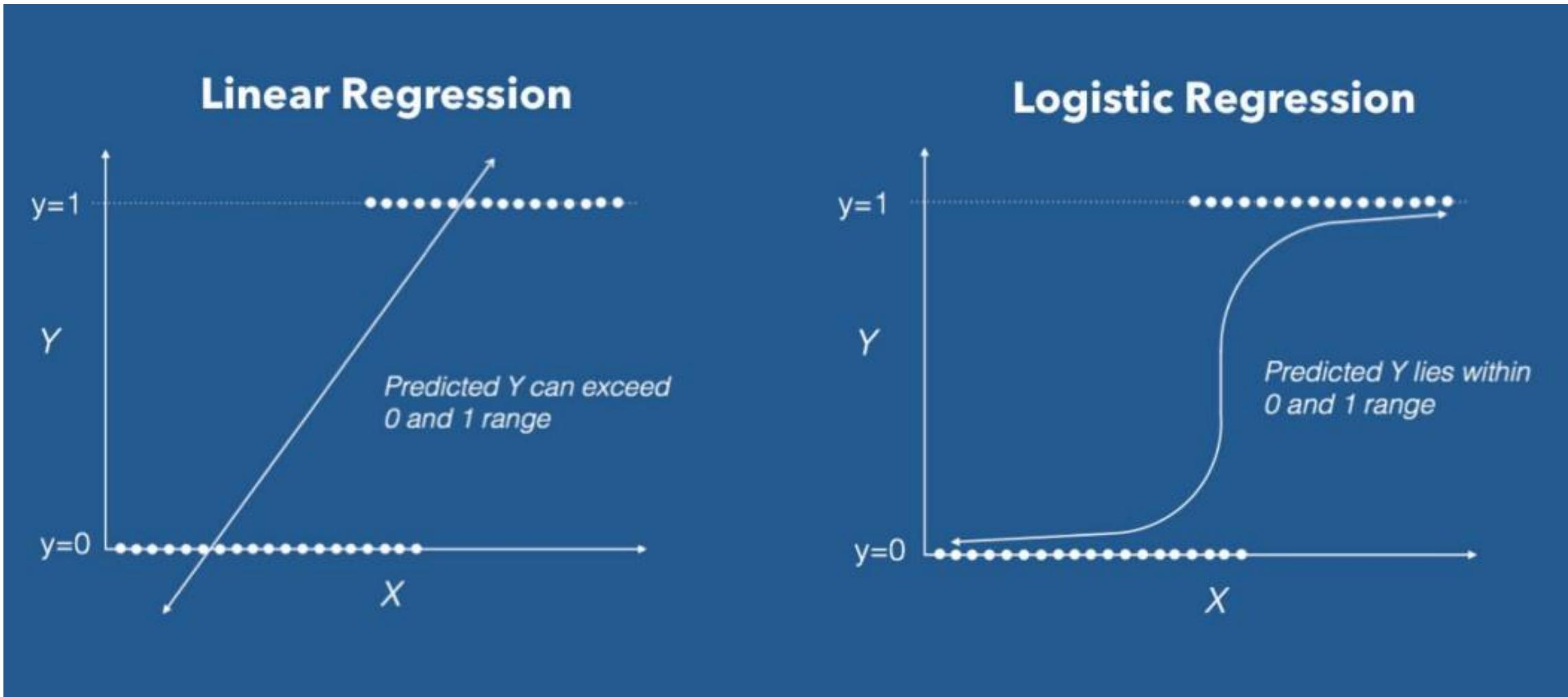
with μ a location parameter ($p(\mu) = 0.5$) and s a scale parameter

- Goal is to minimize negative log-likelihood (alternatively, maximize the positive log-likelihood):

$$cost = \begin{cases} -\log(p(x)) \text{ if } y = 1 \\ -\log(1 - p(x)) \text{ if } y = 0 \end{cases}$$

- Gradient descent: minimize the derivative of the cost function

Logistic Regression



Decision trees

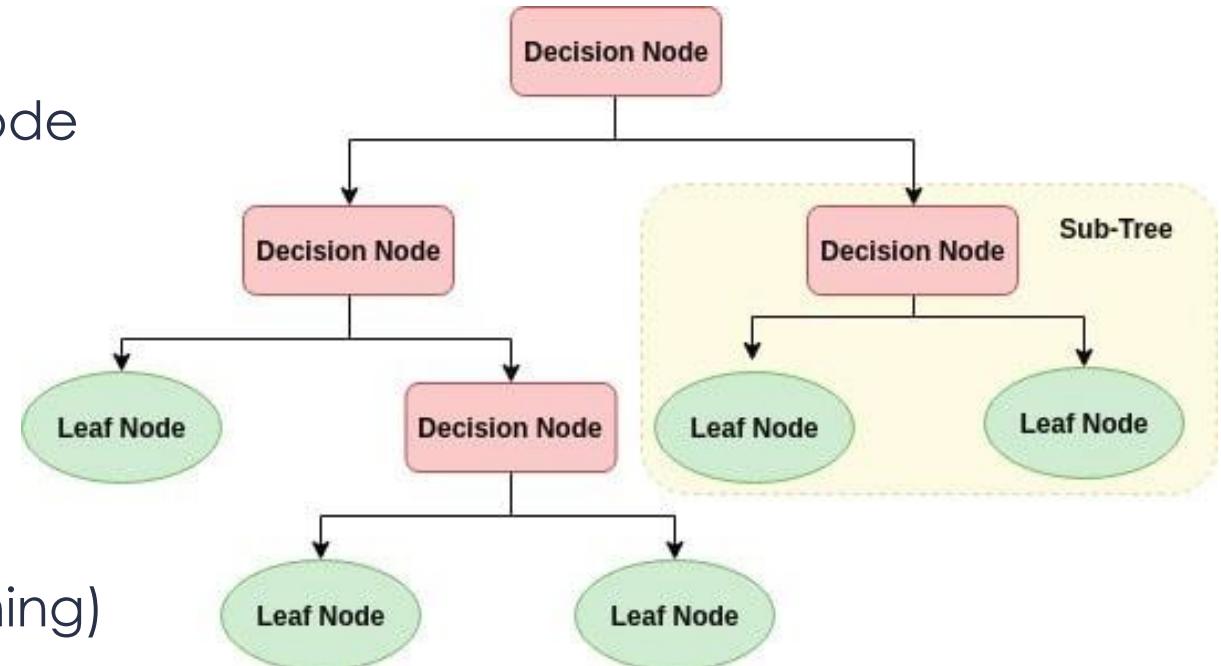
- Classification based on splitting data through decision nodes
- Attribute selection measure to optimize nodes:
- E.g., information gain / Gain ratio (used in C4.5 tree)

$$\text{Entropy: } H(T) = -\sum_{i=1}^J p_i \log_2(p_i)$$

- Information gain between parent node and sum of children nodes:

$$IG(T, a) = H(T) - H(T|a)$$

- Tree depth and maximum nodes may be selected and optimized
- Tree pruning (e.g., reduced error pruning)



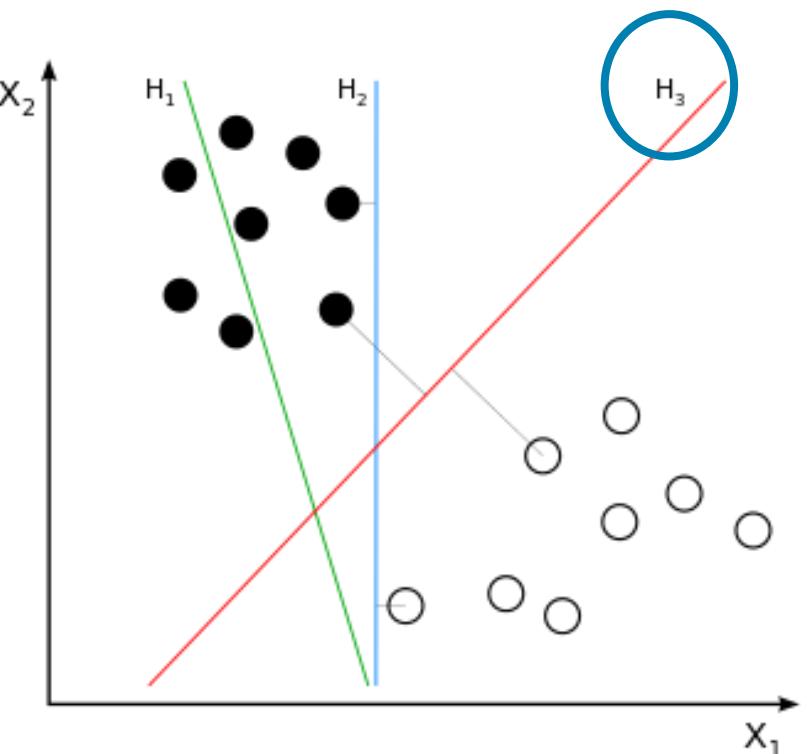
Support Vector Machines

- Motivation: classify data with highest margin between classes
- Linear classifier:

$$w^T x - b = 1$$

$w^T x - b = -1$, w a vector normal to the hyperplane

- Non-linear classifier (kernel)
 - E.g., Gaussian radial basis function
 - $K(x, x') = \exp\left(-\frac{\|x-x'\|^2}{2\sigma^2}\right)$, x, x' are feature vectors
- Hard and soft margins



Regularization

Regularization

- Add additional constrain to the cost function of the models
- Regularized linear regression

- **Ridge Regression**
$$\sum_{i=1}^n \left(y_i - \beta_0 - \sum_{j=1}^p \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^p \beta_j^2 = \text{RSS} + \lambda \sum_{j=1}^p \beta_j^2$$

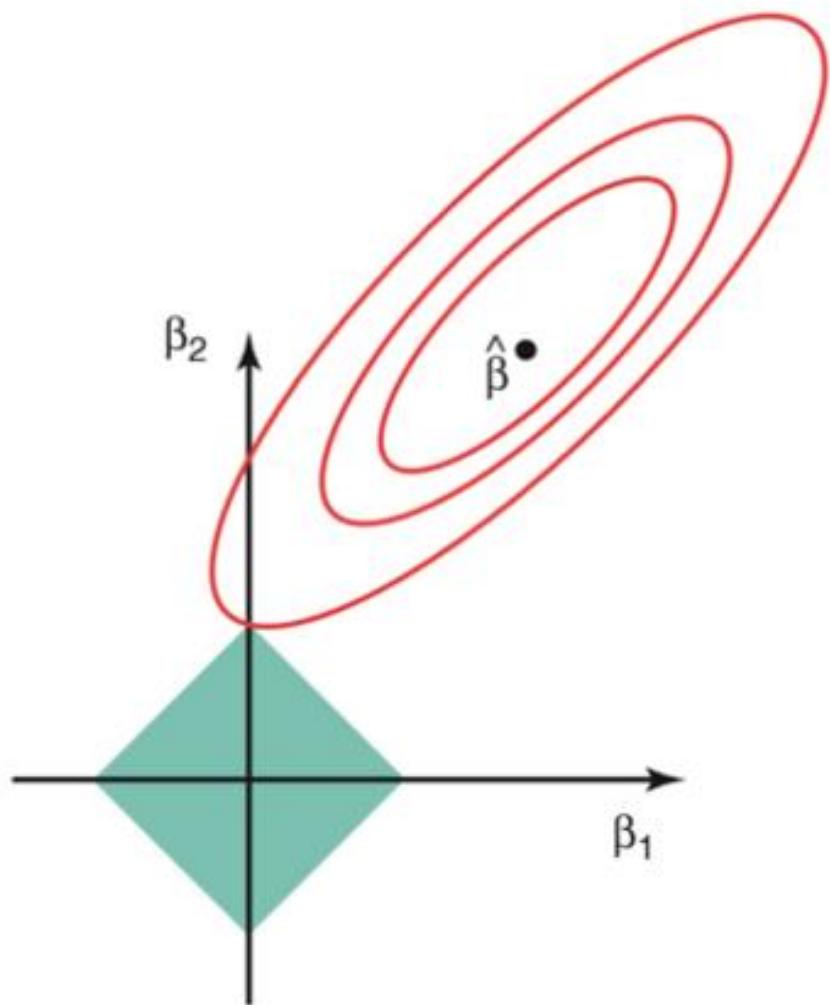
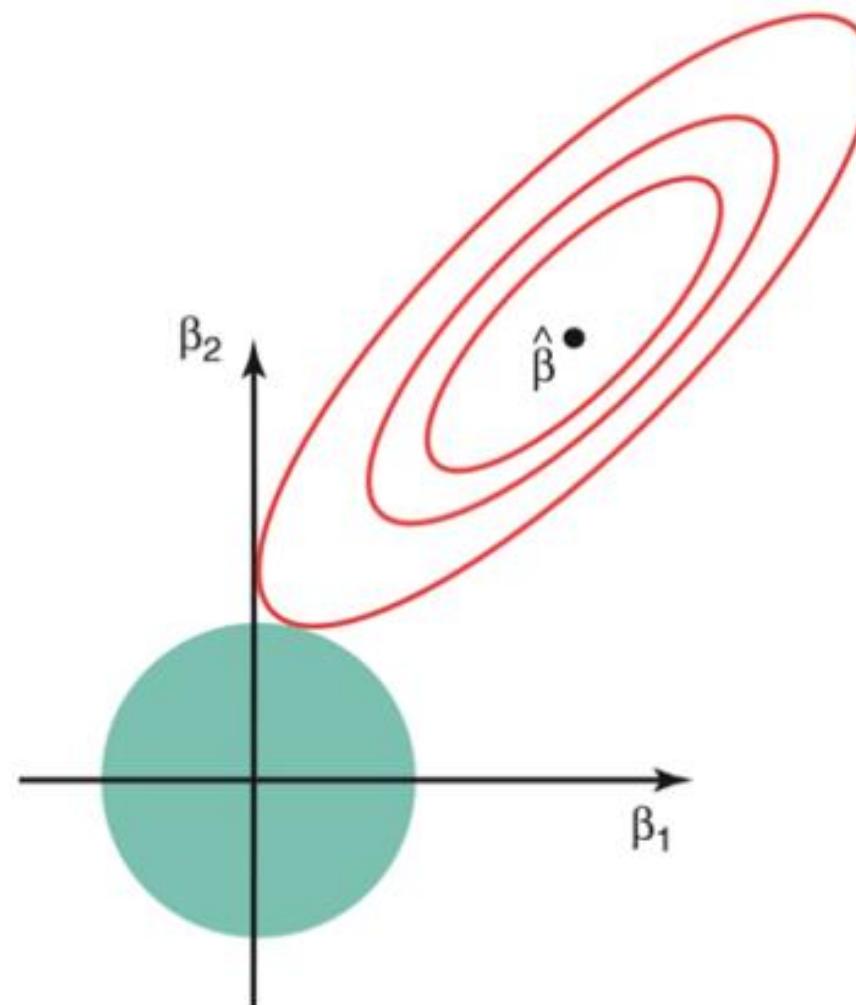
27

- **LASSO** (least absolute shrinkage and selection operator)

$$\sum_{i=1}^n \left(y_i - \beta_0 - \sum_{j=1}^p \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^p |\beta_j| = \text{RSS} + \lambda \sum_{j=1}^p |\beta_j|.$$

- **Elastic net: Ridge + LASSO**

Regularization



28

Regularization

- Advantages:
 - Avoids overfitting
 - Manage multicollinearity among features (avoid singularity)
 - Dimensionality reduction (i.e., Simplicity and Computational Efficiency)
- Disadvantages
 - Deviation from the original goal (learning error reduction)

Feature selection

Feature selection

- What are features? **Special characteristics of a class**
- E.g.:
 - Time domain: peak detection, zero-crossings, amplitude, peak-to-peak
 - Frequency domain: spectrogram transformation (e.g. Fourier)
 - Statistical: mean, median, variance, standard deviation, ...
 - Expert based / heuristic: domain or application specific!

Feature selection

- Goal: select subset of features to be used in classification
- Why not use all available features?
 - Simplify models, reduce time/computational complexity
 - Avoid “curse of dimensionality”: more data is needed to train with more features!
 - Avoid overfitting

Feature selection - Algorithm

- Filter
 - Rank features based on information metrics
- Wrapper
 - Use the performance of the model with the selected features to select the best subset
- Embedded
 - Feature selection is embedded in model (learns features and model simultaneously)

33

Feature selection methods

Filter

- Univariate analysis
- Information gain
- Pearson correlation
- T-test

Embedded

- LASSO

Wrapper

- Sequential
(forward/backward)
- Genetic algorithm
- Recursive elimination

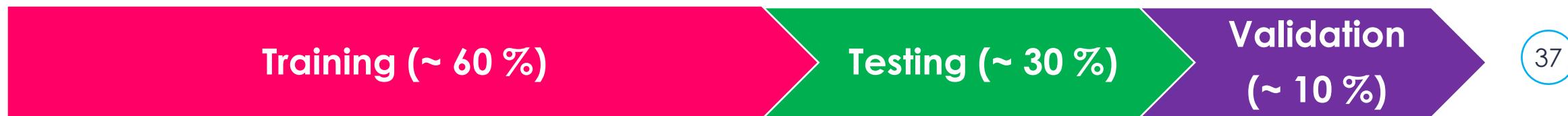
Feature selection

- **Filter**
 - Fast, classifier independent, reduces risk of overfitting, BUT
 - Does not look at feature or model dependencies
- **Wrapper / Embedded**
 - Models interactions/dependencies, may perform better than filter, BUT
 - Slower algorithms, overfitting prone, classifier-dependent

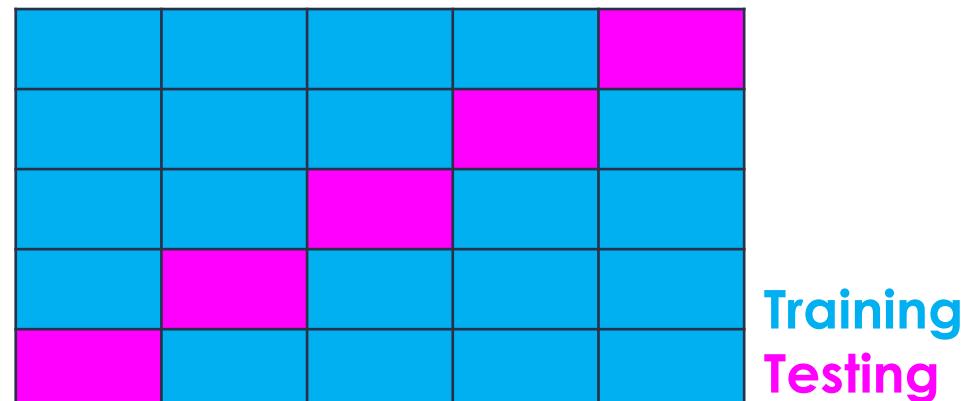
Validation strategies

Training / testing / validation

- Why train / test / validate?
- Model may perform well if trained with entire dataset, but may not **generalize** to classify unseen data → Avoid **overfitting**
- **Data splitting**



- **Cross validation (e.g. leave one out)**
 - Split the data into n folds
 - Train on n-1 folds and test on remaining fold
 - Repeat n times



Performance evaluation

Confusion matrix

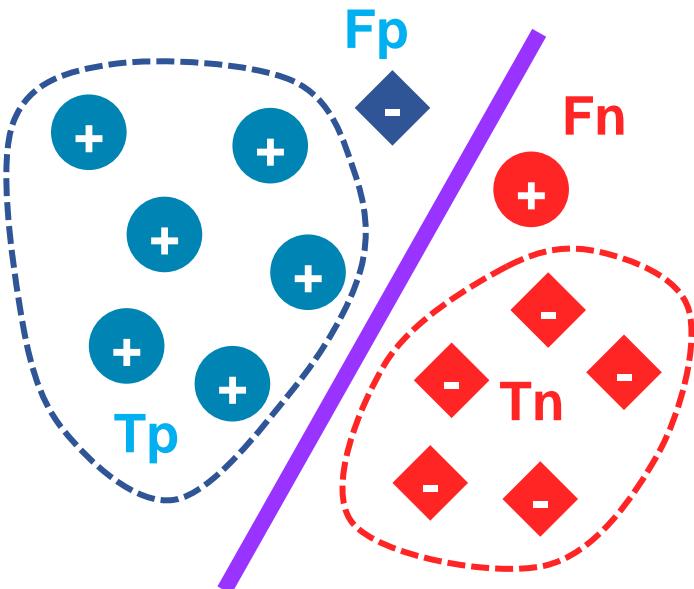
- Table representation of classification outputs
- Used for performance metrics calculation
- Activity classification example:

		Predicted class		
		Rest	Walk	Run
Actual class	Rest	95	5	0
	Walk	0	92	8
	Run	0	2	98

39

Confusion matrix performance metrics

- **TP = True Positive**: Class correctly detected
- **TN = True Negative**: Class correctly rejected
- **FP = False Positive**: Class incorrectly detected
- **FN = False Negative**: Class incorrectly rejected



$$Sensitivity = \frac{Tp}{Tp + Fn}$$

$$Specificity = \frac{Tn}{Tn + Fp}$$

$$Accuracy = \frac{Tp + Tn}{Tp + Fn + Tn + Fp}$$

$$Precision = \frac{Tp}{Tp + Fp}$$

40

Confusion matrix performance metrics

- Activity classification example:

		Predicted class		
		Rest	Walk	Run
Actual class	Rest	95	5	0
	Walk	0	92	8
	Run	0	2	98

41

- Walk sensitivity = $92 / (92 + 8) = 92\%$
- Walk precision = $92 / (92 + 5 + 2) = 93\%$
- Walk specificity = $(95 + 98) / (95 + 98 + 5 + 2) = 97\%$

Coding tools for regression/machine learning

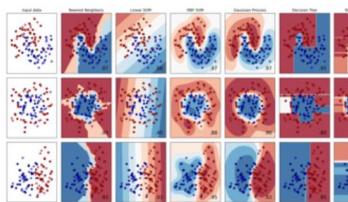
- [scikit-learn](#) (python toolbox)

Classification

Identifying which category an object belongs to.

Applications: Spam detection, image recognition.

Algorithms: SVM, nearest neighbors, random forest, and more...



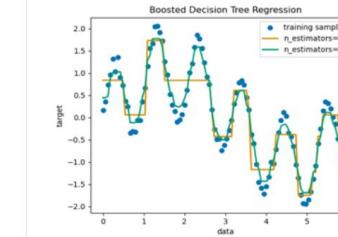
Examples

Regression

Predicting a continuous-valued attribute associated with an object.

Applications: Drug response, Stock prices.

Algorithms: SVR, nearest neighbors, random forest, and more...



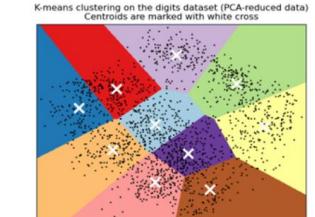
Examples

Clustering

Automatic grouping of similar objects into sets.

Applications: Customer segmentation, Grouping experiment outcomes

Algorithms: k-Means, spectral clustering, mean-shift, and more...



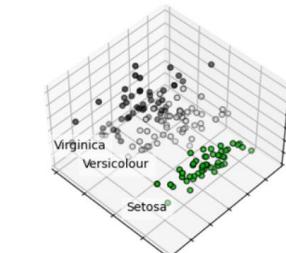
Examples

Dimensionality reduction

Reducing the number of random variables to consider.

Applications: Visualization, Increased efficiency

Algorithms: PCA, feature selection, non-negative matrix factorization, and more...



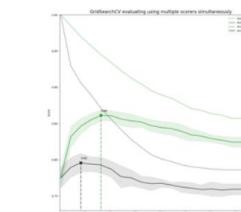
Examples

Model selection

Comparing, validating and choosing parameters and models.

Applications: Improved accuracy via parameter tuning

Algorithms: grid search, cross validation, metrics, and more...



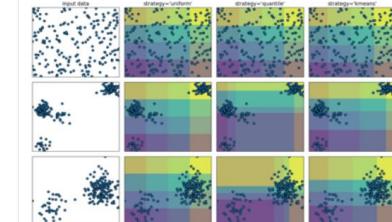
Examples

Preprocessing

Feature extraction and normalization.

Applications: Transforming input data such as text for use with machine learning algorithms.

Algorithms: preprocessing, feature extraction, and more...



Examples

- Ramin Soltani – asi@csem.ch
- CSEM Signal Processing Group

43