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• Principal component analysis (PCA)

• Also called Hotelling or Karhunen-Loève transform

• Motivation: use-cases

1. Dimensionality reduction

2. Blind source separation

3. Statistical shape analysis/modelling

• SVD is useful to implement PCA

Introduction - Principal Component Analysis (PCA)
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• Data matrix 𝑋 of size 𝑀 × 𝑁

• M: dimensions (e.g., # channels)

• N: trials/experiments (e.g., # samples)

• 4-step approach:

A. Remove mean: 𝑫 = 𝑿 − 𝜇

B. Covariance matrix: 𝚺 = 𝑫𝑫𝑇

C. Eigenvectors 𝑣𝑖 and Eigenvalues 𝜆𝑖:

𝑾 = 𝑣1, 𝑣2, … , 𝑣𝑀

𝜆1, 𝜆2, … , 𝜆𝑀

D. Principal components: 

𝐘 = 𝐖𝑇𝑫 ∈ ℝ𝑀×𝑁

The Math

⇐ eig 𝚺

A. Tharwat, “Principal component analysis - a tutorial,” IJAPR, vol. 3, no. 3, p. 197, 2016, doi: 10.1504/IJAPR.2016.079733.

https://doi.org/10.1504/IJAPR.2016.079733
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• M: dimensions (e.g., # channels)
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Terminology

⇐ eig 𝚺

A. Tharwat, “Principal component analysis - a tutorial,” IJAPR, vol. 3, no. 3, p. 197, 2016, doi: 10.1504/IJAPR.2016.079733.

• Principal axes

• Principal directions

• Principal components (!)

• Principal component scores

https://doi.org/10.1504/IJAPR.2016.079733
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A. Tharwat, “Principal component analysis - a tutorial,” IJAPR, vol. 3, no. 3, p. 197, 2016, doi: 10.1504/IJAPR.2016.079733.

What you’d 

like to reduce

https://doi.org/10.1504/IJAPR.2016.079733
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What you’d 

like to reduce

MxM rotation matrix 

in decreasing λ order

https://doi.org/10.1504/IJAPR.2016.079733
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What you’d 

like to reduce

The rotated 

data matrix

MxM rotation matrix 

in decreasing λ order

https://doi.org/10.1504/IJAPR.2016.079733
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https://doi.org/10.1504/IJAPR.2016.079733
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Simple Examples

• 2D Gaussian distribution

𝜆1𝑣1

𝜆2𝑣2
𝑣1 =

−0.86
0.50

with 𝜆1 = 0.99

𝑣2 =
0.50

−0.86
with 𝜆2 = 0.10

Eigenvectors and Eigenvalues:

X =
𝑥1 𝑥2 ⋯ 𝑥𝑁

𝑦1 𝑦2 ⋯ 𝑦𝑁

M = 2 

# dimensions

N = 10’000

# samples
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Simple Examples

𝜆1𝑣1

𝜆2𝑣2

X =
𝑥1 𝑥2 ⋯ 𝑥𝑁

𝑦1 𝑦2 ⋯ 𝑦𝑁
𝐘 = 𝐖𝑇(𝐗 − ഥ𝐗) =

𝑣1
𝑇

𝑣2
𝑇

𝑇

(𝐗 − ഥ𝐗)

PCA Space
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Wikipedia

• Intuitive explanation [Wikipedia]:

• Fitting an M-dimensional ellipsoid to the data (X), 

where each axis of the ellipsoid represents a principal axis (𝑣𝑖). 

• If some axis of the ellipsoid is small, then the variance (𝜆𝑖) along that axis is also small. 

• Linear transformation of data to new coordinate system (PCA space)

• Orthogonal (lower-dimensional) system. i.e., the principal axes are perpendicular and 

normalized

• The greatest variance of the data comes to lie on the first coordinate (1st PC), 

the second greatest variance on the second coordinate (2nd PC), etc. 

• PCA assumes that the original data follows a Gaussian distribution.

Properties of PCA

https://en.wikipedia.org/wiki/Principal_component_analysis#Intuition
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Practical Issues and SVD

A. Tharwat, “Principal component analysis - a tutorial,” IJAPR, vol. 3, no. 3, p. 197, 2016, doi: 10.1504/IJAPR.2016.079733.

𝑈 𝑢𝑖 𝑉𝑇

𝑣𝑖 𝑀 × 𝑘
𝑁 × 𝑘

𝑀 × 𝑘

1 × 𝑘

https://doi.org/10.1504/IJAPR.2016.079733


13

Code Examples
1. function [PC, PA, Lambda] = pca_via_covariance(X)

2. %% PCA_via_covariance: Perform PCA using covariance.

3. %       X - M x N matrix of input data

4. %           (M dimensions, N trials)

5. %  PC - M x N matrix of projected data

6. %       (e.g., the principal components)

7. %      PA - each column is a principal axis

8. % Lambdas - M x 1 matrix of variances

9.     [M, N] = size(X);

10.  

11.     % subtract off the mean for each dimension

12.     mn = mean(X,2);

13.     X = X - repmat(mn,1,N);

14.  

15.     % calculate the covariance matrix

16.     covariance = 1 / (N-1) * X * X';

17.  

18.     % find the eigenvectors and eigenvalues

19.     [PA, Lambdas] = eig(covariance);

20.     

21.     % extract diagonal of matrix as vector

22.     Lambdas = diag(Lambdas);

23.     % sort the variances in decreasing order

24.     [~, rindices] = sort(-1*Lambdas);

25.     Lambdas = Lambdas(rindices);

26.     PA = PA(:, rindices);

27.  

28.     % project original data -> principal comps. 

29.  PC = PA' * X;

30. end

1. function [PC, PA, Lambda] = pca_via_svd(X)

2. %% PCA_via_SVD: Perform PCA using SVD.

3. %       X - M x N matrix of input data

4. %           (M dimensions, N trials)

5. %  PC - M x N matrix of projected data

6. %       (e.g., the principal components)

7. %      PA - each column is a principal axis

8. % Lambdas - M x 1 matrix of variances

9.     [M, N] = size(data);

10.     

11.     % subtract off the mean for each dimension

12.     mn = mean(X,2);

13.     data = data - repmat(mn,1,N);

14.     

15.     % construct the matrix Y

16.     Y = data' / sqrt(N-1);

17.     

18.     % SVD does it all

19.     [u, S, PA] = svd(Y);

20.     

21.     % calculate the variances

22.     S = diag(S);

23.     Lambdas = S .* S;

24.      

25.  

26.  

27.  

28.     % project original data -> principal comps.

29.     PC = PA’ * X;

30.  end

J. Shlens, “A tutorial on principal component analysis,” arXiv preprint arXiv:1404.1100, 2014, 

Accessed: Apr. 18, 2017. [Online]. Available: https://arxiv.org/abs/1404.1100

https://arxiv.org/abs/1404.1100


14

Principal component scores → principal components
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• Dimensionality reduction

• Blind source separation

• Statistical shape modelling

Usage Examples
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Dimensionality Reduction

https://gael-varoquaux.info/science/ica_vs_pca.html
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P. Jolicoeur and J. E. Mosimann, “Size and shape variation in the painted turtle. 

A principal component analysis,” Growth, vol. 24, pp. 339–354, Dec. 1960.

• Classical reference

• Jolicoeur and Mosimann studied 

statistically the size of turtle shells: 

length (L), width (W), height (H).

Dimensionality Reduction – Turtles

X
=

M = 3: # features

N = 24:

# turtles
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Dimensionality Reduction – Turtles 

P. Jolicoeur and J. E. Mosimann, “Size and shape variation in the painted turtle. 

A principal component analysis,” Growth, vol. 24, pp. 339–354, Dec. 1960.

𝜇

𝚺

𝜆𝑖

𝑾
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• 3 Eigenvectors and Eigenvalues:

• First principal component:

Y = 0.813 L + 0.496 W + 0.307 H

   → explains 98.6% of total variance!

• For a turtle shell, it is not necessary to consider the 

three features length, width, and height. The 

abovementioned linear combination is sufficient.

• Other two components indicate marginal 

relations between: 

(2nd) L w.r.t W and H, (3rd) H w.r.t L and W.

Dimensionality Reduction – Turtles 

0.813       -0.545       -0.205

0.496        0.832       -0.249

0.307        0.101        0.947

L

H

W

λ 680.4          6.5            2.9
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Dimensionality Reduction – Turtles 
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• It may be that the features have widely different amplitude ranges, 

which may lead to “numerically null” rows.

• Use whitening/normalization:  𝑿𝑁 =

1

𝜎1
⋯ 0

⋮ ⋱ ⋮

0 ⋯
1

𝜎𝑀

𝑿

• The PCA works well only for linear relations between features. 

• If, for instance, there is a product-type relation, PCA will be a lot less useful.

Dimensionality Reduction – Remarks
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• Dimensionality reduction

• Blind source separation

• Statistical shape modelling

Usage Examples
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PCA and Signals – Blind Source Separation

X = M: # channels

N: # samples
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PCA and Signals – Blind Source Separation

Example: 

1. RR intervals

2. Blood pressure

3. Respiration

X = M: 3 channels

N: 1000 samples
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PCA and Signals – Blind Source Separation

PCA
𝐘 = 𝐖𝑇𝑫

Input Signals Principal Components
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PCA and Signals – Blind Source Separation

Input Signals with Suppressed Respiration Principal Components

00

෡𝑿 = ෡𝐖𝐘

0
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• Dimensionality reduction

• Blind source separation

• Statistical shape modelling

Usage Examples
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• Mean Shape – knowledge about general shape

• Describe natural anatomical variability (PCA)

Statistical Shape Modelling – Motivation

X =

𝑥1
1

𝑦1
1

𝑧1
1

⋮
𝑥𝑆

1

𝑦𝑆
1

𝑧𝑆
1

⋯

𝑥1
𝑁

𝑦1
𝑁

𝑧1
𝑁

⋮
𝑥𝑆

𝑁

𝑦𝑆
𝑁

𝑧𝑆
𝑁

N: 41 femurs

M: 3*S = 1902

with S=634 surface points

Image Data

CT-Scans

Surface

Alignment
3D Surface 

Representation
PCA

J. Zhang et al., “An anatomical region-based statistical shape model of the human femur” COMPUT METHOD BIOMEC, 2:3, 176-185, 2014, doi: 10.1080/21681163.2013.878668.

Mean Shape: ഥX Shape Variation

𝑣1 ⋯ 𝑣𝑀

𝜆1 ⋯ 𝜆𝑀

http://dx.doi.org/10.1080/21681163.2013.878668
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Statistical Shape Modelling – Femurs

෡𝑿 = തX + ෍

𝑖

𝑀

𝑣𝑖 ⋅ 𝑏𝑖 , with 𝑏𝑖 ≤ 3λ𝑖

Mean Shape Eigenvectors

4
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Statistical Shape Modelling – Hearing Aids

G. Unal, et al., “Customized Design of Hearing Aids Using Statistical Shape Learning,” in 

Medical Image Computing and Computer-Assisted Intervention – MICCAI 2008, Berlin, 

Heidelberg, 2008, vol. 5241, pp. 518–526. doi: 10.1007/978-3-540-85988-8_62.

R. Paulsen, et al., “Building and Testing a Statistical Shape Model of the Human Ear 

Canal,” in Medical Image Computing and Computer-Assisted Intervention — MICCAI 

2002, Berlin, Heidelberg, 2002, vol. 2489, pp. 373–380. doi: 10.1007/3-540-45787-9_47.

Scree 

Plot

https://doi.org/10.1007/978-3-540-85988-8_62
https://doi.org/10.1007/3-540-45787-9_47
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Statistical Shape Modelling – Feet

B. P. Conrad, et al., “Statistical shape modelling describes anatomic variation in the foot,” 

Footwear Science, vol. 11, no. sup1, pp. S203–S205, Jun. 2019, doi: 10.1080/19424280.2019.1606334.

https://doi.org/10.1080/19424280.2019.1606334
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• PCA works well only for linear relations between features. 

• If, for instance, there is a product-type relation, PCA will be a lot less useful.

• PCA is sensitive to outliers

• Use robust PCA (RPCA)

• PCA assumes that the original data follows a Gaussian distribution

• Try alternatives such as independent component analysis (ICA)

Limitations of PCA
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A First Limitation of PCA

• Two non-orthogonal 2D Gaussians

X =
𝑥1 𝑥2 ⋯ 𝑥𝑁

𝑦1 𝑦2 ⋯ 𝑦𝑁

M = 2 

# dimensions

N = 20’000

# samples
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1. fECG: Fetal Electrocardiography

2. EIT: Electrical Impedance Tomography

Today’s Lab – Blind Source Separation Using PCA
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1. fECG: Fetal Electrocardiography

2. EIT: Electrical Impedance Tomography

Lab #1
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Abdominal ECG for Fetal Heart Rate Estimation

aECG: Abdominal ECGCTG: Cardiotocography

Source: Philips CTG FM30 Source: CSEM
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Fetal Physiology and Abdominal ECG
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Challenges of Fetal ECG

EMG

Noise

mECG

fECG Fetal

fECG

Maternal

mECG

Abdominal

aECG

Maternal heart

𝑈𝑚 = 50 − 5′000 μV
HR𝑚 = 60 − 80 bpm

Fetal heart
𝑈𝑓 = 10 − 300 μV

HR𝑓 = 110 − 180 bpm
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fECG

Blind Source Separation for Fetal ECG

First

PCA

Heart Rate 

Estimation

mHR

fHRFetal

fECG

Maternal

mECG

Abdominal

aECG

EMG

Noise

mECG

fECG

aECG

mQRS Detection 

&

mECG Generation

Second

PCA

mQRS

Cancellation

mECG

fECG

mECG
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1. fECG: Fetal Electrocardiography

2. EIT: Electrical Impedance Tomography

Lab #2
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EIT – Electrical Impedance Tomography

EIT 

Device

Image 

Reconstruction

ECG

Ventilation

Cardiovascular
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EIT – Electrical Impedance Tomography

J. M. Deibele, et al., “Dynamic separation of pulmonary and cardiac changes in electrical impedance tomography,” 

Physiological Measurement, vol. 29, no. 6, pp. S1–S14, Jun. 2008, doi: 10.1088/0967-3334/29/6/S01.

https://doi.org/10.1088/0967-3334/29/6/S01
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▪ Please submit your report as a single PDF file.

▪ We recommend working in groups of 3 students; 

the last group can be a group of 2 or 4.

▪ You can prepare one single report for the group 

(name1_name2_name3_lab_PCA.pdf), but every 

member needs to upload the same file 

individually.

▪ There are 2 experiments in this practical session. 

The Python code for each experiment is already 

coded and will be provided as Jupyter 

notebooks. These will only require minimal input 

from you. A major part of this practical session is 

thus focused on questions testing your 

understanding and correct interpretation of the 

signals and the analysis results that you see.

Today’s Lab – Instructions



Karen Adam – kam@csem.ch

CSEM Signal Processing and AI Group

https://www.facebook.com/CSEMSA
https://www.linkedin.com/company/csem/
https://twitter.com/cseminfo
https://www.youtube.com/user/CSEMtechnologies
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