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Intfroduction - Principal Component Analysis (PCA)

Principal component analysis (PCA)

Also called Hotelling or Karhunen-Loeve transform

Motivation: use-cases

Dimensionality reduction

Blind source separation

Statistical shape analysis/modelling

SVD is useful to implement PCA
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Data matrix X of size M x N
M: dimensions (e.g., # channels)
N: trials/experiments (e.g., # samples)
4-step approach:
A. Removemean:D =X —u
B. Covariance matrix: ¥ = DDT
C. Eigenvectors v; and Eigenvalues 4;:
W = {vq,v,,..., vy}
(A1, A, ooy Aag)

D. Principal components:

& eig (X)

Y = WI'D € RM*N

A. Tharwat, “Principal component analysis - a tutorial,” IJAPR, vol. 3, no. 3, p. 197, 2016, doi: 10.1504/IJAPR.2016.079733.
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Terminology
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Intuition
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What you'd
like to reduce

Data matrix X of size M X N

|Iv\: dimensions|(e.g., # channels)

N: trials/experiments (e.g., # samples)
4-step approach:
A. Removemean:D =X —u
B. Covariance matrix: £ = DDT
C. Eigenvectors v; and Eigenvalues 4;:
W = {vq,v,,..., vy}

A, A2 e A}

D. Principal components:

& eig (X)

Y = WI'D € RM*N

A. Tharwat, “Principal component analysis - a tutorial,” IJAPR, vol. 3, no. 3, p. 197, 2016, doi: 10.1504/IJAPR.2016.079733.
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Data matrix X of size M X N

What you'd
like to reduce

N: trials/experiments (e.g., # samples)

4-step approach:

|Iv\: dimensions|(e.g., # channels)

A. Removemean:D =X —u

B. Covarionce matrix: ¥ = DDT

C. Eigenvectors v; and Eigenvalues 4;:

MxM rotation matrix
in decreasing A order

|W = {v,, vy, ...,vM}l
A1, Ay, o, Ay}

& eig (X)

D. Principal components:

Y = WI'D € RM*N

A. Tharwat, “Principal component analysis - a tutorial,” IJAPR, vol. 3, no. 3, p. 197, 2016, doi: 10.1504/IJAPR.2016.079733.
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Intuition
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Data matrix X of size M X N

What you'd
like to reduce

N: trials/experiments (e.g., # samples)

4-step approach:

|Iv\: dimensions|(e.g., # channels)

A. Removemean:D =X —u

B. Covarionce matrix: ¥ = DDT

C. Eigenvectors v; and Eigenvalues 4;:

MxM rotation matrix
in decreasing A order

|W = {v,, vy, ...,vM}l
A1, Ay, o, Ay}

& eig (X)

D. Principal components:

The rotated
data matrix

|Y=WTDEIRMXN|

A. Tharwat, “Principal component analysis - a tutorial,” IJAPR, vol. 3, no. 3, p. 197, 2016, doi: 10.1504/IJAPR.2016.079733.
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What you'd
like to reduce

MxM rotation matrix
in decreasing A order

The rotated
data matrix

Data matrix X of size M X N

|Iv\: dimensions|(e.g., # channels)

N: trials/experiments (e.g., # samples)

4-step approach:
A. Removemean:D =X —u
B. Covariance matrix: £ = DDT
C. Eigenvectors v; and Eigenvalues 4;:
|W = {11, v, ...,vM}l
{11, 2A5, , Ay}

D. Principal components:

& eig (X)

|Y=WTDEIRMXN|

A. Tharwat, “Principal component analysis - a tutorial,” IJAPR, vol. 3, no. 3, p. 197, 2016, doi: 10.1504/IJAPR.2016.079733.
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Simple Examples
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Properties of PCA

Intuitive explanation [Wikipedia]:

Fitting an M-dimensional ellipsoid to the data (X),
where each axis of the ellipsoid represents a principal axis (v;).

If some axis of the ellipsoid is small, then the variance (4;) along that axis is also small.
Linear transformation of data to new coordinate system (PCA space) @

Orthogonal (lower-dimensional) system. i.e., the principal axes are perpendicular and
normalized

The greatest variance of the data comes to lie on the first coordinate (15t PC),
the second greatest variance on the second coordinate (24 PC), etc.

PCA assumes that the original data follows a Gaussian distribution.

=PrL = Csem


https://en.wikipedia.org/wiki/Principal_component_analysis#Intuition
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Code Examples 4\ MATLAB

function [PC, PA, Lambda] = pca via covariance (X) function [PC, PA, Lambda] = pca via svd(X)
PCA via covariance: Perform PCA using covariance. PCA via SVD: Perform PCA using SVD.
X - M x N matrix of input data X - M x N matrix of input data
(M dimensions, N trials) (M dimensions, N trials)
PC - M x N matrix of projected data PC - M x N matrix of projected data
(e.g., the principal components) (e.g., the principal components)

o\°
o\°

o® A® o© o o° o° o°
o o® o® o° o° o° o°

PA - each column is a principal axis PA - each column is a principal axis

Lambdas - M x 1 matrix of variances Lambdas - M x 1 matrix of variances

[M, N] = size (X); [M, N] = size(data);

% subtract off the mean for each dimension % subtract off the mean for each dimension

mn = mean (X, 2); mn = mean (X, 2);

X = X - repmat (mn,1,N); data = data - repmat (mn,1,N);

% calculate the covariance matrix % construct the matrix Y

covariance = 1 / (N-1) * X * X'; Y = data' / sqgrt(N-1);

% find the eigenvectors and eigenvalues % SVD does it all

[PA, Lambdas] = eig(covariance) ; [u, S, PA] = svd(Y);

% extract diagonal of matrix as vector % calculate the variances

Lambdas = diag (Lambdas) ; S = diag(S);

% sort the variances in decreasing order Lambdas = S .* S;

[~, rindices] = sort (-1l*Lambdas);

Lambdas = Lambdas (rindices) ;

PA = PA(:, rindices);

% project original data -> principal comps. % project original data -> principal comps.
PC = PA' * X; PC = PA’ * X;
end end

J. Shlens, "A tutorial on principal component analysis,” arXiv preprint arXiv:1404.1100, 2014,

E PF L oo Csem Accessed: Apr. 18, 2017. [Online]. Available: https://arxiv.org/abs/1404.1100
[ X J
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scikit-learn 1.1.3

= CONTENTS
Other versions

Documentation More ~  Videos  Answers
class sklearn.decomposition.PCA(n_components=None, * copy=True, whiten=False,

« Documentation Home

pca Please cite us if you use the soft- svd_solver="auto, tol=0.0, iterated_power='"auto’, n_oversamples=10,
« Al, Data Science, and Statistics Principal component analysis of raw data colle ware. power_iteration_normalizer="auto’, random_state=None) [source]
« Statistics and Machine L eamning Toolbox sklearn.decomposition.PCA Principal ¢ lysis (PCA)
f rincipal component analysis .
« Dimensionality Reduction and Feature Svnt Examples using P P Y
Extraction yntax

pca

Syntax

Description
Examples

Input Arguments
Output Arguments
More About
Algorithms
Alternative Functionality
References

Extended Capabilities
Version History

See Also

coeff = pca(X)

coeff = pca(X,Name,Value)

[coeff,score,latent] = pca( __)
[coeff,score,latent,tsquared] = pca( __)
[coeff,score,latent,tsquared,explained,mu] = pca( __)

Description

coeff = pca(X) returns the principal component coefficients, also known as loadings, for the n-by-p data
matrix X. Rows of X correspond to observations and columns correspond to variables. The coefficient
matrix is p-by-p. Each column of coeff contains coefficients for one principal component, and the
columns are in descending order of component variance. By default, pca centers the data and uses the
singular value decomposition (SVD) algorithm.

coeff = pca(X,Name,Value) returns any of the output arguments in the previous syntaxes using
additional options for computation and handling of special data types, specified by one or more

Name ,Value pair arguments.

For example, you can specify the number of principal components pca returns or an algorithm other than
SVD to use.

[coeff,score,latent] = pca( __) also returns the principal component scores in score and the
principal component variances in latent. You can use any of the input arguments in the previous

Principal component scores are the representations of X in the principal component space. Rows of
score correspond to observations, and columns correspond to components.

[coeff,score,latent,tsquared] = pca( __ ) also returns the Hotelling's T-squared statistic for each
observation in X.

[coeff,score,latent,tsquared,explained,mu] = pca(__ ) alsoreturns explained, the
percentage of the total variance explained by each principal component and mu, the estimated mean of
each variable in x.

Principal component scores = principal components

=PrL
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sklearn.decomposition.PCA

Linear dimensionality reduction using Singular Value Decomposition of the data to projectitto a
lower dimensional space. The input data is centered but not scaled for each feature before
applying the SVD.

It uses the LAPACK implementation of the full SVD or a randomized truncated SVD by the
method of Halko et al. 2009, depending on the shape of the input data and the number of
components to extract.

It can also use the scipy.sparse.linalg ARPACK implementation of the truncated SVD.

Notice that this class does not support sparse input. See Truncatedsvp for an alternative with
sparse data.

components_ : ndarray of shapefin_components, n_features)
Principal axes in feature space, rlipresenting the directions of maximum variance in the data. Equivalently, the
red input data, parallel to its eigenvectors. The components are sorted by

decreasing explained variance .

explained_variance_: ndarray of shape (n_components,)
The amount of variance explained by each of the selected components. The variance estimation uses
n_samples - 1 degrees of freedom.

Equal to n_components largest eigenvalues of the covariance matrix of X.
New in version 0.18.

explained_variance ratio_: ndarray of shape (n_components,)
Percentage of variance explained by each of the selected components.

If n_components is not set then all components are stored and the sum of the ratios is equal to 1.0.

singular_values_: ndarray of shape (n_components,)
The singular values corresponding to each of the selected components. The singular values are equal to the
2-norms of the n_components variables in the lower-dimensional space.

New in version 0.79.

mean_: ndarray of shape (n_features,)
Per-feature empirical mean, estimated from the training set.

Equal to X.mean(axis=8).



Usage Examples

Dimensionality reduction

Blind source separation .

Stafistical shape modelling

=PrL = Csem




Dimensionality Reduction

E P F L oo Csem https://gael-varoquaux.info/science/ica_vs_pca.html
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Dimensionality Reduction — Turtles
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Classical reference

Jolicoeur and Mosimann studied 20 Fenes

. . . . length width height
staftistically the size of turtle shells: _ p———eeeeee—
103 84 38
length (L), width (W), height (H). 103 o o
109 44
123 92 50
Growth, 1960, 24, 339-354. = o i
133 102 51
SIZE AND SHAPE VARIATION IN THE PAINTED TURTLE. . . o 10 1
A PRINCIPAL COMPONENT ANALYSIS N -89 24 _ 136 18; ‘5*‘:
5
# turtles 101 104 5
PIERRE JOLICOEUR AND JAMEs E. MosimMann? 1 o i
153 107 56
Walker Museum, Un;versz'ty of Chicago igg iig gg
an 158 115 62
Institut de Biologie, Université de Montréal 159 118 63
162 124 61
177 132 67
 e——————]
\
|

M = 3: # features



import pandas as pd
from sklearn.decomposition import PCA

Dimensionality Reduction — Turtles

# lood data
2a fn = r'1968Jolicoeur_TurtleData.xlsx'
— TARLE. data = pd.read_excel(fn)
MEeaN VECTORS X JAND) COVARIANCE MATRICES W data males — data.ilocl1:. :31
24 Females data females = data.iloc[1:, 3:]

length width height
- # perform PCA
X (136.00 102.58 51.96) pca = PCA()

-451_39 271.17 168.70 pca.Tit_transform(data_females.values);

w 271.17 171.73 103.29 U

168.70 103.29 66.65 L

pca.mean_
TABLE 4
. SIZE AND SHAPE VARIATION z array([136. , 182.58333333, 51.95833333])
- —
24 Females
Principal 1st 2nd 3rd # covariance rfmtmx W
axes (major) (inter- (minor) pca.get covariance()
mediate)

array([[451.39130435, 271.17391304, 168.69565217],

Magnitude [271.173913e4, 171.73188486, 183.28623188)],

of 680.40 6.50 2.86
variance [168.69565217, 183.28623188, 66.55036232]])

# explained variance (eigenvalues Lambda)

A
%t:tfa] 98.64 0.94 041
pca.explained variance_
TABLE 3 array([680.41238684, £.49962394, 2.86162875])
CovARIANCE MATRICES A AND MATRICES OF DirRECTION CosINEs U oF THE PriNcIPAL AXES
24 Females # percentage of total variance

pca.explained variance_ratioc_*188

680.40 0.00 0.00
A 0.00 6.50 0.00
0.00 0.00 286 array([98.64285247, ©.94228373, ©.4148638 ])
.81263 49549 30676
U — 54537 83213 10062 # principal axes in feature space, i.e., the eigenvectors
94645 # NOTE: strictly speaking these are NOT the principal components(!)

pca.components_

P. Jolicoeur and J. E. Mosimann, “Size and shape variation in the painted turtle.

A principal component analysis,” Growth, vol. 24, pp. 339-354, Dec. 1960. array([[ @.81264378, @.49549812, @.30867437 ],
[ @.54536962, -8.83213158, -@.10064207]

EPFL oo Csem [-8.20538271, -@.249@87558, 8.94645618]33



Dimensionality Reduction — Turtles
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3 Eigenvectors and Eigenvalues:

0.813 -0.545 -0.205 L
0.496 0.832 -0.249 W
0.307 0.101 0.947 H

A [680.4 6.5 2.9 |

First principal component:
Y=0.813L+0.496 W+ 0.307 H

- explains 98.6% of total variance!

For a turtle shell, it is not necessary to consider the
three features length, width, and height. The
abovementioned linear combination is sufficient.

Other two components indicate marginal
relations between:
(2n9) Lw.r.t Wand H, (319 Hw.r.tLand W.

2 Csem

65
o ©® T 60
$ L
i~ S5
e
Te® ~ 50

# explained variance (eigenvalues Lambda)

pca.explained variance_

array|[688.41239634, 5.49962394 , 2.86162875]) I

# percentage of total variance
pca.explained variance_ratioc_*188

array [98.64285247, @.94228373, @.4148638 ])

# principal axes in feature space, i.e., the eigenvectors
# NOTE: strictly speaking these are NOT the principal components(!)
pca.components_

array([| ©.81264378, ©.49549812, @.3867437 |, |
T 3 T S L T~
[-2.28538271, -8.24987558, ©.94645618]])




Dimensionality Reduction — Turtles

=PrL

2 Csem

# scree plot

plt.subplot(121)

plt.plot(np.arange(pca.n_components ) + 1, 10@%*pca.explained variance ratio , '.-")
plt.xlabel('Principal Component Number');

plt.ylabel('Percent of Total Variation (%)')

plt.title('Scree Plot')

# cumulated variance

plt.subplot(122)

plt.plot(np.arange(pca.n_components_) + 1, np.cumsum(188*pca.explained_variance_ratio_), '.-')
plt.xlabel('Principal Component Number')

plt.ylabel('Cumulated Variation (%)')

plt.title('Cumulated Variation')

plt.show()
Scree Plot Cumulated Variation
100 - 100 1 —— - d
% 80 _. 80+
S g
s -
© o
= 60 - 5 60
= >
o -
= J [
L 40 5 404
£ :
o 3
g 20 N 20 .
0 - .
T T T D T L T
1 2 3 1 2 3
Principal Component Number Principal Component Number




Dimensionality Reduction — Remarks

It may be that the features have widely different amplitude ranges,
which may lead to “numerically null” rows.

Use whitening/normalization: X, =|: =~ : [X

The PCA works well only for linear relations between features.

If, for instance, there is a product-type relation, PCA will be a lot less useful.

=PrL = Csem



Usage Examples

. . v v v v K
Blind source separation o [ ] ] (22)
)
\ %}{ LR LS
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PCA and Signals — Blind Source Separation

X — — M: # channels

N: # samples

=PrL = Csem



PCA and Signals — Blind Source Separation

Example:

W 1. RR intervals

850 A

RR-Intervals (ms)
[e:2] w w
[ ] (=] wn
o (=] (=]

|
wn
(=]

=]
=]
(=]

. . . . . . 0
0 200 400 600 800 1000 Z’ 2 BlOOd pressure
ﬁ 3. Respiration

o
un

w
(=]

BP (mmHg)
| o [#:2]
(%] (=] (%)

70 A
T T T T T T - . ,‘.-"“ TN =2 ]
0 200 400 600 800 1000 1\ ",r' LYY
‘ | W
2400 - : : e = s =
3 I X=| . v | FM:3channels
= 2200 - = = = =
: |
= (I T AT
=S . R ninniiaainnnsaiin i e Lttt
HJch2000 IR Lt g 1
o [ .
1800 - N: 1000 samples
T T T T T T
0 200 400 600 800 1000

=PrL = Csem
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PCA and Signals — Blind Source Separation

Input Signals
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PCA and Signals — Blind Source Separation

Input Signals with Suppressed Respiration Principal Components
- -
1000 400 1~ ~ - ->
-
~ -~y ~ - _ - -
2 900 2001 -
E = I | |
- : Tk
E 800 - o 0 l !
£ B ” '
¥ il ” iy
700
_200—A”¢ \\\;
~ 0 200 400 600 800 1000
95
90 1 —100 -
B85 _
E :, 04
E 80+ £
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& E 100
70
200_ T T T T T T
4] 200 400 600 800 1000
15 1
— 10_
pca.components 2
0 0 0 - 5
array([[ == , =ITSTSISTETE=ES, STERETSTItm—Et, 4
[—9.88584922&—91, -1.33958738e-82, —1.59958955&—91], 0
[—1.362984—48&—92, 0.99986966e-81, 5.359?1384&—84]]) _5

T T T
600 800 1000

CPEL  : CSem : 2 e



Usage Examples

Dimensionality reduction ﬂ

Blind source separation .

Stafistical shape modelling

=PrL = Csem




Stafistical Shape Modelling — Motivation S
7} zV
X=|: . : - MIsR=1902
x; xév with $=634 surface points
Vs ys
Mean Shape - knowledge about general shape  [;; ]
\ J
Describe natural anatomical variability (PCA) .
Image Data 3D Surface Surface [V1 = Upm]
CT-Scans - Representation - - - A, - Ay]
Mean Shape: X Shape Variation

B @, PO
Greater 4 W ) (
Trochanter
Proximal &
Shaft
Distal
Shaft
‘ Lateral Medial
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Statistical Shape Modelling — Femurs
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Statistical Shape Modeling -~ Hearing Aids J &3 a\
E P
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Fig. 2. Pure shape model. Each shape has been generated by varying the first three
Mode 1 modes of variation between —3 (top) and +3 (bottom) standard deviations
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Statistical Shape Modelling — Feet

Statistical shape modelling describes anatomic variation in the foot

Bryan P. Conrad®*, Michael Amos®, Irene Sintini®, Brian Robert Polasek® and Peter Laz®

“Nike Sport Research Lab, Portland, OR, USA; "Nike Inc, Nike Sports Research Lab, Beaverton, OR, USA; “University of Denver,
Denver, CO, USA
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Limitations of PCA

PCA works well only for linear relations between features.

If, for instance, there is a product-type relation, PCA will be a lot less useful.

PCA is sensitive to outliers
Use robust PCA (RPCA) @

PCA assumes that the original data follows a Gaussian distribution

Try alternatives such as independent component analysis (ICA)
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Today's Lab — Blind Source Separation Using PCA

fECG: Fetal Electrocardiography

Time (s)

EIT: Electrical Impedance Tomography
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Lab #1

fECG: Fetal Electrocardiography
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Abdominal ECG for Fetal Heart Rate Estimation

CTG: Cardiotocography

Source: Philips CTG FM30
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Fetal Physiology and Abdominal ECG
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Challenges of Fetal ECG

Maternal heart
U,, = 50 — 5’000 pV mECG
HR,, = 60 — 80 bpm

Abdominal

aECG |

Maternal

EMG
fECG
Fetal heart

HR; = 110 — 180 bpm
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Blind Source Separation for Fetal ECG
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Lab #2
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EIT: Electrical Impedance Tomography
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EIT — Electrical Impedance Tomography
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EIT — Electrical Impedance Tomography

first approximation second approximation

X X X e
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Nx1 ventilation

Figure 1. Flowchart of the method. PCA #: principal component number #, LMS: least-mean-
squares fit, BP: bandpass, ‘shift :I:%’: input is phase shifted by [—1/3, 0, 1/3] heart cycle to
account for phase shifts introduced by the blood flow. N: number of processed frames, M: number
of pixels in one frame.

PI- 0 J. M. Deibele, et al., “Dynamic separation of pulmonary and cardiac changes in electricalimpedance tomography,”
L = Csem -

Physiological Measurement, vol. 29, no. 6, pp. S1-S14, Jun. 2008, doi:


https://doi.org/10.1088/0967-3334/29/6/S01

Today'’s Lab — Instructions

Please submit your report as a single PDF file.
We recommend working in groups of 3 students;

the last group can be a group of 2 or 4. MMMM

You can prepare one single report for the group
(namel name2 name3 lab PCA.pdf), but every
member needs to upload the same file
individually.

There are 2 experiments in this practical session.
The Python code for each experiment is already Time (s)

coded and will be provided as Jupyter

notebooks. These will only require minimal input

from you. A major part of this practical session is max.
thus focused on questions testing your
understanding and correct interpretation of the
signals and the analysis results that you see.
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Karen Adam — kam@csem.ch

CSEM Signal Processing and Al Group



https://www.facebook.com/CSEMSA
https://www.linkedin.com/company/csem/
https://twitter.com/cseminfo
https://www.youtube.com/user/CSEMtechnologies
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