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Introduction (1): SVD overview

SVD is a matrix factorization tfechniqgue which provides a systematic way
to determine a low-dimensional approximation 1o high-dimensional data
in terms of dominant patterns.

O

Mathematical mapping o a new coordinate system, similar to Fourier
transform, based on data. “Tailored” solution to a specific problem.

Based on simple linear algebra, interpretable and scalable.
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Introduction (3): SVD applied examples

One of the most widely used techniue In data processing,
dimensionality reduction and high-dimensional statistics.

Image compression

Noise reduction

Filterless signal decomposition

Robust approach for least square estimation problems

Polynomial approximation (degree = 4)
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Mathematical overview: SVD central theorem

SVD central theorem: any matrix X of size KxM and of rank r can be
decomposed as:

X =USVT

with U an orthogonal Kx K matrix, V. an orthogonal M x M matrix, and S
a specific Kx M matrix.

S can be seen as the generalization of a diagonal mafrix, with:
S;=0,i#j andS;=06,>0,i=1,2,...,r

In Matlab:
[U, S, V] =svd(X);

In python:
U, S, V =numpy.linalg.svd(X)
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Mathematical overview (2): «Slim» or keconomy» SVD

Full SVD _ _ Full SVD

In the product X = USVT, the K - r last lines of S and
the K — r last columns of U are useless because they _ o _Economy SVD
interact only with null blocks of S. One may use the
“slim” SVD:

X =0T
U formed with the first r columns of U.
¥ formed with first r lines of X.

INn Matlab: [u, s, V] =svd(X, ‘econ’);
IN DYThOﬂI U, S, V = numpy.linalg.svd(X, full_matrices=False)
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Mathematical overview (2). Geometrical interpretation

X =USVI

« U, and V are unitary matrices rotating vectors (preserve angle and
length).
« Sisrectangular diagonal matrix scaling vectors.
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Mathematical overview (3): Dominant correlation interpretation

X = USVT = XXTU — USZ
XTXV =V§?
Columns of U are the eigenvectors of the correlation matrix XX7

Columns of V are the eigenvectors of the correlation matrix X7 X @

Columns of U are hierarchically ordered by how much correlation
they capture in the columns of X; V similarly captures correlation in
the rows of X.

The amount of correlation / information captured by U or V
component is characterized by their corresponding singular values.
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Mathematical overview (4): Low rank approximation

Full SVD _ Tl_‘uncated SVD

N -
V*

:

3
N

......................................

 The SVD provides an optimal low-rank p approximation to the matrix X by
keeping the leading p singular values and vectors and discarding the
rest.
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SVD application: Data compression
Full SVD

)Y \%A

Truncation val =124 Truncation val =31

>
,
l_
/

»>>» B=imread('MachuPichu.jpg'"); % Load image
»> N=double (rgb2grav(fA) ) % Convert RBG->grayscale image.
»>» [U,5,V] = svd(X):; % Apply 5VD

>> % Loop over different truncation wvalues

or r=[zsize(X, 1) floor(size(X, 1)/16) floor(size(X, 1)/64)]
% Truncated image
¥ approx = Uj(:,l:r)*53(1l:r, 1) *Vj(:,1:x)"';

figure, imagesc(X approx), axis off, colormap gray
title(['Truncation val =',mumZstr(r, "%d"}1}): | \i 5 V* ] H 2§ V*
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SVD application: Face recognition example

Person1 DPerson?2 Person 3 Person k
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SVD application: Face recognition example

X =UXV~

Eigenfaces
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SVD application: Face recognition example

X =UXV~

500 1000 1500 2000
T

Eigenfaces
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SVD application: Face recognition example
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SVD application: Noise reduction

We fill the matrix X with one lead signal of m
samples in each column, giving X, a matrix

m x 8.

One observation / measurement
corresponds to one lead signal of m

samples.

M A A AN A A A A A

-—

=
cee ‘)—\
=

2 Ccsem

| Xm,1

~AAANANNAAAMNAANA A A AN

-~

v

SEIPEPN o W
V
- mv"’“{ﬂlli./"""'rq!:r""vr
1]

I

&
|

1

1

[

m]f
AP A A A
T

MWHMP Af Hmknv Afb_%_‘ 4{

A _vhr\_,...,\ur‘\_ ..,]'{‘\_ .,]L!r-\,..ﬂ,‘é'-"'\,..,.hr\,_. .,\‘r\._.,,]‘p-\._qr\
T

-_,,V’LMK\,J(L\T\,J/\,J(L_.I(L._Ali(fb..,dlk/‘a.ﬁ*-!{'

A A A AAAA ANy

<«

=
=
o)

xm,8-

https://www.researchgate.net/publication/13194658_SVD-based_on-line_ECG_signal_orthogonalization



SVD application: Noise reduction

UL S ——_—

second third components

U'X - N | @

[1)]
= : g
- - _ < 040 - i
' o
- /LA/\JJ(M /A | Ll - % 030 |
AP A AAPAAPAAPA AP A A A AN fr i w
G O S SR U S S Ge 020 @ _
B O A —
0.10 — |
Projections of signal leads (matrix X)
i . 0.00 * L 1 I
in the SVD components (columns of matrix U) 0 5 4 e s

subspace SVD components

https://www.researchgate.net/publication/13194658_SVD-based_on-line_ECG_signal_orthogonalization

=PrL :=Csem



SVD application: Noise reduction
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Example of 8-leads ECG decomposition:
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SVD application: Noise reduction

Noise : ECG with baseline wandering (Dl)

ECG leads’ signals during exercise
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SVD application: Noise reduction
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SVD application: Noise reduction
Truncated SVD

N
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«Slim» SVD
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SVD application: Noise reduction

Noise : ECG with electromyogram noise

ECG leads’ signals during exercise ECG leads’ signals at rest
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SVD application: Noise reduction
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«Slim» SVD Truncated SVD
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SVD application: Truncation techniques

Often, one truncates the SVD at an effective rank
r, as the smallest i such that:

01%24+0,°+03%++0;%
01%+02%+03%+-+ 0,2

>t , With t = 0.98 for instance

Other tfechniques involve identitying “elbows” or
“knees” in the singular value distribution.
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SVD application: Non parametric spectral estimation

Singular spectrum analysis (SSA) is a principal component analysis that

Is very suitable for the study of one-dimensional nonlinear time-series
data.

It provides a decomposition of a signal into bandpass components
without the need to define passbands a priori.
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SVD application: Non parametric spectral estimation

_Economy SVD

N ' ' ' Wl !

) A% r
&S 2,7 |
=1

\_-

The SVD can be expressed as follow with rthe rank of matrix X:

r

M
X =z O'illiVlT = z O'iuiVlT

=1 =1
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SVD application: Non parametric spectral estimation

* Dimensionnality reduction => Noise reduction

X = oqu ¥ + ouvl + ot o _qu_vl_ + ou vl

« Each u;v/ is a basis direction of the matrix X, and ¢; the coordinate in @
this basis.

-« The amount of X pointing in u;v; direction is characterized by o;.

« Considering a white noise (same in all direction), the first components
have higher SNR than the last components.
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SVD application: Non parametric spectral estimation

From time serie signal to a matrix:

Moisy data

) X-=

B0 100 180 200 280

x(1) x(2)
x(2) x(3)

x(3) x(4)

X(N—L+1) x(N-L)

x(3)
x(4)
x(5)

x(L) 7

- x(L+1)
- x(L+2)

x(:N) ]

Matrix X has Hankel-type structure: it has the same values on all its

antfi-diagonals
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SVD application: Non parametric spectral estimation
Let’'s decompose X using SVD:

T

X = al-ul-vl

L
i=1

The exterior products u;v] correspond to matrices with the same size
as X, thatis (N-L+1)xL...

...However, these matrices do not necessarily have a Hankel-type
structure.
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SVD application: Non parametric spectral estimation

Singular spectrum analysis central idea: Transform u;v; matrices in
Hankel-type matrices, with the weighted sum of the matrices equal
to X.

Replace each coefficient on the anti-diagonal in each matrix by the
average of the coefficients on this anti-diagonal, and one sfill gets X.

5 10 2 2 3 8
[106=4/2+6/4]
6 3 3 270
2 3 3 7
:[33+73]
3 3 3 0
EPEL = CSem



SVD application: Non parametric spectral estimation

Now the transformed matrices are Hankel-type, and signals w;(n), i = 1,
...L, can be extracted. One has:

L

x(n) = ) aiwi(n)

=1 @

Note that in the resulting decomposition the component variances
depend on the singular values of X. The less v, u;, ‘explain’ X, the smaller
the component.
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SVD application: Non parametric spectral estimation

L

The only parameter to select is L, the number of columns of X. This
choice is mostly based on trial-and-error.

The components y(.) are usually presented in decreasing order of
variance, which directly follows the decreasing order of the singular
values.

These components are usually bandpass signals, and their peak
frequency can be estimated using non-parametric or parametric
spectral estimation.
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SVD application: Non parametric spectral estimation

Example: 200-sample signal
x(n) = sin(27*0.0025*n+71/3) + sin(2*0.05%n) + white noise o2 = 0.04

3

25 |

L
X = O'iuiV;-T
0.5 i=1
ol - >>[Uhat, Shat,V] = svd(X,’econ’);

| | |
0 50 100 150 200 250
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SVD application: Non parametric

spectral estimation

With L = 20, components variance versus frequency:

x(1) x2)  x@3) - x(l) ] SvD L
x(2) x(3) x(4) - x(L+1) T
X=| x@3) x(4)  x(5) - x(L+2) ‘ X = o;u; V;
: : : =~
x(N-L+1) x(N-L) - - x(N) |
o '.‘Felch I':‘uwerISpecttl'al Derllsity Elstimatle w; (1|1) 1 SSA
% oF |I | L
g .l |
S T x(n) = Z 0w, (1)
JEIVaNy IVAYER SN i—1

MNormalized Frequency (= rad/sample)
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SVD application: Non parametric spectral estimation

components variance versus frequency:

low-frequency

— 0.

component 41
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SVD application: Non parametric spectral estimation

20
Decomposition: x(n) = z yi (n)
i=1

y;:sin(21*0.0025*n+m/3) \—\

st

»ty; o si(2n*0.05%n) {\/\/V\/\/\/\/\/W

V...t v, white noise
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SVD application: Least square solution

We can use SVD to obtain low-rank approximations to matrices and
to perform pseudo-inverses of non-square matrices to solve with

respect to ¢ the equation Xe =y in the least-squares sense.

¢’ = min ||Xc -yl
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SVD application: Least square solution

¢’ = min|[Xc —y|3
C

Solution is :

with X* the pseudo-inverse of X from the exact tfruncated SVD:

r

L~ 1 s —1
Xt=VsStU= ) —vu] withSt = F 0
= O 0 0
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SVD application: Least square solution

Example: Estimate blood pressure from PPG.

Other
tissues

Venous blood

Non-pulsatile
component of
artery blood

Pulsatile
component of
artery blood

Systolic Diastolic  Time
phase !

phase

AC:
Pulsatile part ‘

DC:
Steady part

5%
Ak

PPG waveform

Ty
Time
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SVD application: Least square solution

=PrL

Example: Estimate blood pressure using PPG.
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Xc=y

Xy oo — S1: Pulse wave features
Xy cvvnn-
st
PP
dP, T .
MPP
i SBP
______ rJ MSBP
k 5 ESBP
5 MAP
x SPTI DPTI MDBP
m H
DBP | ;
T
'
«—LVET—> DT
e HP [R-R]

y:

y1 4—— S1: Systolic blood pressure

ym 4—— Sm: Systolic blood pressure
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SVD application: Least square solution

L

Example: Estimate blood pressure using PPG.

Systolic (mmHg)

Subjects

2 Ccsem

Reference systolic (y)
- Regression (Xc')

Significance

123 456 7 8 910111213
Attribute
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SVD application: Least square solution

In practice, what happens is that X has columns almost linearly
dependent, so XTX is ill-conditioned. Theoretically, the rank of X is r =
M, but one or several singular values are very small. Consequently, in
the computation of:

Some denominators are very small, which leads to numerical instability |
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SVD data pre-processing: Data alignment

 The alignment of data significantly impacts the rank of the SVD
approximation. The SVD essentially relies on a separation of variables
between the columns and rows of a data matrix. In many situations,
such as when analyzing misaligned data, this assumption breaks
down, resulting in an artificial rank inflation.

Example 1: Face Images Example 2: ECG signals Example 3: Pulse wave features

I I e e e B e B e e
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SVD data pre-processing: Data normalization

« SVD is sensitive to the average value of the input signals. When the
derivations contain a nonzero average SVD algorithm decomposes
these as orthogonal components which increases the rank of the
data matrix and dimension of the signal space.

 Normalization, i.e. all signals scaled to unit varionce, suppresses
effects due to amplitude differences in the signals that could affect
the singular values.
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Conclusions

L

SVD provides systematic approach to reduce dimensionality and
resolve linear system of equations.

Truncation, one of the most important decisions when using the SVD,
Is based on many factors, including specifications on the desired rank
of the system, the magnitude of noise, and the distribution of the
singular values.

Singular spectrum analysis (based on SVD) provides a decomposition
of a signal info bandpass components without prior knowledge.

Data pre-processing, including alignment and normalization, is a key
step to perform a SVD.
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Lab experiment 1: 12-leads ECG

10 electrodes placement of al2-leads ECG

ra (@)

D, oo ‘

- + - -
I I I
; e os o+ | e |
- - - + + -
X ‘Ir/ aVvVF \ / aVvL \ / avR
+ _._l/\_ __47‘ _H/\H‘A

=PrL :=Csem

12-leads ECG




Lab experiment 2: Singular values and process complexi

EEG signals during brain stimulation for parkinson disease.

EEG before stimulation EEG during stimulation EEG after stimulation
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Lab experiment 3: Drift cancellation and frequency component
extraction

PPG and accelerometer signals from a running subject.

PPG signal
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