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• Singular Value Decomposition overview

• Mathematical overview

• Noise reduction

• Singular spectrum analysis

• Least square solution using SVD

Outline
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• SVD is a matrix factorization technique which provides a systematic way 
to determine a low-dimensional approximation to high-dimensional data 
in terms of dominant patterns.

• Mathematical mapping to a new coordinate system, similar to Fourier 
transform, based on data. “Tailored” solution to a specific problem. 

• Based on simple linear algebra, interpretable and scalable. 

Introduction (1): SVD overview
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• One of the most widely used technique in data processing, 
dimensionality reduction and high-dimensional statistics.

Introduction (3): SVD applied examples

= +• Noise reduction

• Filterless signal decomposition

• Robust approach for least square estimation problems

• Image compression

Truncation val =124 Truncation val =31
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Mathematical overview: SVD central theorem

SVD central theorem: any matrix X of size K× M and of rank r can be
decomposed as:

X = USVT

with U an orthogonal K× K matrix, V an orthogonal M× M matrix, and S
a specific K× M matrix. 
S can be seen as the generalization of a diagonal matrix, with:

Sij = 0, i ≠ j   and Sii = σi > 0, i = 1, 2, …, r

• In Matlab:
[U, S, V] = svd(X);

• In python:
U, S, V = numpy.linalg.svd(X)
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Mathematical overview (2): «Slim» or «economy» SVD

• In the product X = USVT, the K – r last lines of S and
the K – r last columns of U are useless because they
interact only with null blocks of S. One may use the
˝slim˝ SVD:

𝑿𝑿 = �𝑼𝑼�𝚺𝚺𝑽𝑽𝑻𝑻
�𝑼𝑼 formed with the first r columns of U.
�𝚺𝚺 formed with first r lines of 𝚺𝚺.

In Matlab: [U, S, V] = svd(X, ‘econ’);
In python: U, S, V = numpy.linalg.svd(X, full_matrices=False)
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Mathematical overview (2): Geometrical interpretation

X = USVT

• U, and V are unitary matrices rotating vectors (preserve angle and 
length).

• S is rectangular diagonal matrix scaling vectors.
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Mathematical overview (3): Dominant correlation interpretation

𝑋𝑋 = 𝑈𝑈𝑈𝑈𝑉𝑉𝑇𝑇 ⇒ �𝑋𝑋𝑋𝑋
𝑇𝑇𝑈𝑈 = 𝑈𝑈𝑆𝑆2

𝑋𝑋𝑇𝑇𝑋𝑋𝑋𝑋 = 𝑉𝑉𝑆𝑆2

• Columns of 𝑈𝑈 are the eigenvectors of the correlation matrix 𝑋𝑋𝑋𝑋𝑇𝑇

• Columns of 𝑉𝑉 are the eigenvectors of the correlation matrix 𝑋𝑋𝑇𝑇𝑋𝑋

• Columns of 𝑈𝑈 are hierarchically ordered by how much correlation 
they capture in the columns of 𝑋𝑋; 𝑉𝑉 similarly captures correlation in 
the rows of 𝑋𝑋.

• The amount of correlation / information captured by 𝑈𝑈 or 𝑉𝑉 
component is characterized by their corresponding singular values.
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Mathematical overview (4): Low rank approximation

• The SVD provides an optimal low-rank p approximation to the matrix X by 
keeping the leading p singular values and vectors and discarding the 
rest.

�𝑋𝑋 = �
𝑖𝑖=1

𝑝𝑝

𝜎𝜎𝑖𝑖𝑢𝑢𝑖𝑖𝑣𝑣𝑖𝑖𝑇𝑇
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SVD application: Data compression

Truncation val =124 Truncation val =31
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SVD application: Face recognition example

http://databookuw.com/databook.pdf
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SVD application: Face recognition example

http://databookuw.com/databook.pdf
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SVD application: Face recognition example

http://databookuw.com/databook.pdf
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SVD application: Face recognition example

http://databookuw.com/databook.pdf
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SVD application: Noise reduction

https://www.researchgate.net/publication/13194658_SVD-based_on-line_ECG_signal_orthogonalization

• We fill the matrix X with one lead signal of m
samples in each column, giving X, a matrix 
m x 8. 

• One observation / measurement
corresponds to one lead signal of m
samples. 𝑥𝑥1,1 ⋯ 𝑥𝑥1,8

⋮
.
. .. .
. .
.

⋱ ⋮

𝑥𝑥𝑚𝑚,1 ⋯ 𝑥𝑥𝑚𝑚,8
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SVD application: Noise reduction

https://www.researchgate.net/publication/13194658_SVD-based_on-line_ECG_signal_orthogonalization

Projections of signal leads (matrix X)

in the SVD components (columns of matrix U)

subspace
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SVD application: Noise reduction
• Example of 8-leads ECG decomposition: 

https://www.researchgate.net/publication/13194658_SVD-based_on-line_ECG_signal_orthogonalization

ECG leads’ signals  at rest
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SVD application: Noise reduction

https://www.researchgate.net/publication/13194658_SVD-based_on-line_ECG_signal_orthogonalization

ECG leads’ signals during exercise ECG leads’ signals at rest

Noise : ECG with baseline wandering (DI)
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SVD application: Noise reduction

https://www.researchgate.net/publication/13194658_SVD-based_on-line_ECG_signal_orthogonalization

𝑋𝑋 = 𝑈𝑈𝑈𝑈𝑉𝑉𝑇𝑇SVD decomposition of X: 
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SVD application: Noise reduction

https://www.researchgate.net/publication/13194658_SVD-based_on-line_ECG_signal_orthogonalization

«Slim» SVD Truncated SVD

= �𝑋𝑋

Select 3 first components
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SVD application: Noise reduction

https://www.researchgate.net/publication/13194658_SVD-based_on-line_ECG_signal_orthogonalization

ECG leads’ signals during exercise

Noise : ECG with electromyogram noise 

ECG leads’ signals at rest
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SVD application: Noise reduction

https://www.researchgate.net/publication/13194658_SVD-based_on-line_ECG_signal_orthogonalization

«Slim» SVD Truncated SVD

= �𝑋𝑋

Select 2 first components
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• Often, one truncates the SVD at an effective rank 
re as the smallest i such that: 

𝜎𝜎12+𝜎𝜎22+𝜎𝜎32+⋯+𝜎𝜎𝑖𝑖2

𝜎𝜎12+𝜎𝜎22+𝜎𝜎32+⋯+𝜎𝜎𝑟𝑟2
> 𝑡𝑡 , with 𝑡𝑡 = 0.98 for instance

SVD application: Truncation techniques

Other techniques involve identifying “elbows” or 
“knees” in the singular value distribution.
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SVD application: Non parametric spectral estimation

• Singular spectrum analysis (SSA) is a principal component analysis that 
is very suitable for the study of one-dimensional nonlinear time-series 
data. 

• It provides a decomposition of a signal into bandpass components 
without the need to define passbands a priori.
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• The SVD can be expressed as follow with r the rank of matrix X:

X =�
𝑖𝑖=1

𝑀𝑀

𝜎𝜎𝑖𝑖𝐮𝐮𝑖𝑖𝐯𝐯𝑖𝑖T = �
𝑖𝑖=1

𝑟𝑟

𝜎𝜎𝑖𝑖𝐮𝐮𝑖𝑖𝐯𝐯𝑖𝑖T

�
𝑖𝑖=1

𝑟𝑟

𝜎𝜎𝑖𝑖

SVD application: Non parametric spectral estimation
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• Dimensionnality reduction => Noise reduction

• Each 𝑢𝑢𝑖𝑖𝑣𝑣𝑖𝑖𝑇𝑇 is a basis direction of the matrix X, and 𝜎𝜎𝑖𝑖 the coordinate in
this basis.

• The amount of X pointing in 𝑢𝑢𝑖𝑖𝑣𝑣𝑖𝑖𝑇𝑇 direction is characterized by 𝜎𝜎𝑖𝑖.

• Considering a white noise (same in all direction), the first components
have higher SNR than the last components.

X = 𝜎𝜎1𝑢𝑢1𝑣𝑣1𝑇𝑇 + 𝜎𝜎2𝑢𝑢2𝑣𝑣2𝑇𝑇 + … + 𝜎𝜎𝑟𝑟−1𝑢𝑢𝑟𝑟−1𝑣𝑣𝑟𝑟−1𝑇𝑇 + 𝜎𝜎𝑟𝑟𝑢𝑢𝑟𝑟𝑣𝑣𝑟𝑟𝑇𝑇

SVD application: Non parametric spectral estimation
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• From time serie signal to a matrix:

• Matrix X has Hankel-type structure:  it has the same values on all its
anti-diagonals

X =

𝑥𝑥(1) 𝑥𝑥(2) 𝑥𝑥(3) ⋯ 𝑥𝑥(𝐿𝐿)
𝑥𝑥(2) 𝑥𝑥(3) 𝑥𝑥(4) ⋯ 𝑥𝑥(𝐿𝐿 + 1)
𝑥𝑥(3) 𝑥𝑥(4) 𝑥𝑥(5) ⋯ 𝑥𝑥(𝐿𝐿 + 2)
⋮ ⋮ ⋮

𝑥𝑥(𝑁𝑁 − 𝐿𝐿 + 1) 𝑥𝑥(𝑁𝑁 − 𝐿𝐿) ⋯ ⋯ 𝑥𝑥(𝑁𝑁)

SVD application: Non parametric spectral estimation
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• Let’s decompose X using SVD:

• The exterior products 𝐮𝐮𝑖𝑖𝐯𝐯𝑖𝑖T correspond to matrices with the same size 
as X, that is (N-L+1)×L…

…However, these matrices do not necessarily have a Hankel-type 
structure.

𝑋𝑋 = �
𝑖𝑖=1

𝐿𝐿

𝜎𝜎𝑖𝑖𝐮𝐮𝑖𝑖𝐯𝐯𝑖𝑖T

SVD application: Non parametric spectral estimation
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• Singular spectrum analysis central idea: Transform 𝐮𝐮𝑖𝑖𝐯𝐯𝑖𝑖T matrices in 
Hankel-type matrices, with the weighted sum of the matrices equal
to X.  

Replace each coefficient on the anti-diagonal in each matrix by the 
average of the coefficients on this anti-diagonal, and one still gets X.

5 10
10 6
6 3

=
2 2
4 2
4 3

+
3 8
6 4
2 0

=
2 3
3 3
3 3

+
3 7
7 3
3 0

SVD application: Non parametric spectral estimation
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• Now the transformed matrices are Hankel-type, and signals 𝑤𝑤𝑖𝑖(𝑛𝑛), 𝑖𝑖 = 1, 
…L, can be extracted. One has:

• Note that in the resulting decomposition the component variances 
depend on the singular values of X. The less vi, ui, ‘explain’ X, the smaller
the component.

𝑥𝑥(𝑛𝑛) = �
𝑖𝑖=1

𝐿𝐿

𝜎𝜎𝑖𝑖𝑤𝑤𝑖𝑖(𝑛𝑛)

SVD application: Non parametric spectral estimation
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• The only parameter to select is L, the number of columns of X. This 
choice is mostly based on trial-and-error.

• The components yi(.) are usually presented in decreasing order of 
variance, which directly follows the decreasing order of the singular
values.

• These components are usually bandpass signals, and their peak
frequency can be estimated using non-parametric or parametric
spectral estimation.

SVD application: Non parametric spectral estimation
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• Example: 200-sample signal

x(n) = sin(2π*0.0025*n+π/3) + sin(2π*0.05*n) + white noise σ2 = 0.04

𝑋𝑋 = �
𝑖𝑖=1

𝐿𝐿

𝜎𝜎𝑖𝑖𝐮𝐮𝑖𝑖𝐯𝐯𝑖𝑖T

SVD application: Non parametric spectral estimation
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• With L = 20, components variance versus frequency:

𝑥𝑥(𝑛𝑛) = �
𝑖𝑖=1

𝐿𝐿

𝜎𝜎𝑖𝑖𝑤𝑤𝑖𝑖(𝑛𝑛)

𝑋𝑋 = �
𝑖𝑖=1

𝐿𝐿

𝜎𝜎𝑖𝑖𝐮𝐮𝑖𝑖𝐯𝐯𝑖𝑖T𝑿𝑿 =

𝒙𝒙(𝟏𝟏) 𝒙𝒙(𝟐𝟐) 𝒙𝒙(𝟑𝟑) ⋯ 𝒙𝒙(𝑳𝑳)
𝒙𝒙(𝟐𝟐) 𝒙𝒙(𝟑𝟑) 𝒙𝒙(𝟒𝟒) ⋯ 𝒙𝒙(𝑳𝑳+ 𝟏𝟏)
𝒙𝒙(𝟑𝟑) 𝒙𝒙(𝟒𝟒) 𝒙𝒙(𝟓𝟓) ⋯ 𝒙𝒙(𝑳𝑳+ 𝟐𝟐)
⋮ ⋮ ⋮

𝒙𝒙(𝑵𝑵− 𝑳𝑳 + 𝟏𝟏) 𝒙𝒙(𝑵𝑵− 𝑳𝑳) ⋯ ⋯ 𝒙𝒙(𝑵𝑵)

SVD application: Non parametric spectral estimation

SVD

SSA𝑊𝑊𝑖𝑖(𝑛𝑛)
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• components variance versus frequency:

frequency

low-frequency
component

band-pass
components

noise

SVD application: Non parametric spectral estimation
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• Decomposition:

y1 : sin(2π*0.0025*n+π/3)

𝑥𝑥(𝑛𝑛) = �
𝑖𝑖=1

20

𝑦𝑦𝑖𝑖 (𝑛𝑛)

SVD application: Non parametric spectral estimation

y2+ y3  : sin(2π*0.05*n)

y4+…+ y20 : white noise
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SVD application: Least square solution

• We can use SVD to obtain low-rank approximations to matrices and 
to perform pseudo-inverses of non-square matrices to solve with
respect to c the equation Xc = y in the least-squares sense.

𝑐𝑐′ = min
𝑐𝑐

| 𝑋𝑋𝑋𝑋 − 𝑦𝑦 |22
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𝑐𝑐′ = min
𝑐𝑐

| 𝑋𝑋𝑋𝑋 − 𝑦𝑦 |22

Solution is : 
𝑐𝑐𝑐 = 𝑋𝑋+𝑦𝑦

with 𝑋𝑋+ the pseudo-inverse of 𝑋𝑋 from the exact truncated SVD:

𝑋𝑋+ = �𝑉𝑉𝑆𝑆+�𝑈𝑈 = �
𝑖𝑖=1

𝑟𝑟
1
𝜎𝜎𝑖𝑖
𝑣𝑣𝑖𝑖𝑢𝑢𝑖𝑖𝑇𝑇 with 𝑆𝑆+ = �Σ−1 0

0 0

SVD application: Least square solution
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• Example: Estimate blood pressure from PPG.

Sys: 120

Dia: 80

SVD application: Least square solution
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• Example: Estimate blood pressure using PPG.

𝑋𝑋𝑋𝑋 = y

S1: Pulse wave features 

S1: Systolic blood pressure

Sm: Systolic blood pressure

𝑦𝑦 =
𝑦𝑦1
⋮
𝑦𝑦𝑚𝑚

SVD application: Least square solution
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• Example: Estimate blood pressure using PPG.

𝑐𝑐𝑐 = 𝑋𝑋+y

SVD application: Least square solution
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• In practice, what happens is that 𝑋𝑋 has columns almost linearly
dependent, so 𝑋𝑋𝑇𝑇𝑋𝑋 is ill-conditioned. Theoretically, the rank of 𝑋𝑋 is r =
M, but one or several singular values are very small. Consequently, in
the computation of:

𝑋𝑋+ = �
𝑖𝑖=1

𝑟𝑟
1
𝜎𝜎𝑖𝑖
𝑣𝑣𝑖𝑖𝑢𝑢𝑖𝑖𝑇𝑇

Some denominators are very small, which leads to numerical instability !

SVD application: Least square solution
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SVD data pre-processing: Data alignment

• The alignment of data significantly impacts the rank of the SVD 
approximation. The SVD essentially relies on a separation of variables 
between the columns and rows of a data matrix. In many situations, 
such as when analyzing misaligned data, this assumption breaks 
down, resulting in an artificial rank inflation.

Example 2: ECG signals Example 3: Pulse wave features Example 1: Face Images



44

SVD data pre-processing: Data normalization

• SVD is sensitive to the average value of the input signals. When the 
derivations contain a nonzero average SVD algorithm decomposes 
these as orthogonal components which increases the rank of the 
data matrix and dimension of the signal space. 

• Normalization, i.e. all signals scaled to unit variance, suppresses 
effects due to amplitude differences in the signals that could affect 
the singular values. 
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Conclusions

• SVD provides systematic approach to reduce dimensionality and 
resolve linear system of equations.

• Truncation, one of the most important decisions when using the SVD, 
is based on many factors, including specifications on the desired rank 
of the system, the magnitude of noise, and the distribution of the 
singular values.

• Singular spectrum analysis (based on SVD) provides a decomposition
of a signal into bandpass components without prior knowledge.

• Data pre-processing, including alignment and normalization, is a key 
step to perform a SVD.
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Lab experiment 1: 12-leads ECG

10 electrodes placement of a12-leads ECG 12-leads ECG
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Lab experiment 2: Singular values and process complexity

EEG before stimulation
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EEG signals during brain stimulation for parkinson disease.
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Lab experiment 3: Drift cancellation and frequency component 
extraction
PPG and accelerometer signals from a running subject.
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