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Motivation for fime-frequency analysis
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Motivation for fime-frequency analysis
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Motivation for fime-frequency analysis

The Fourier fransform was developed for stationary signals, i.e. for

signals whose properties (frequency, amplitude, etc.) are assumed not
to change over tfime

00

X(f) = jx(t)e‘iznftdt

— 00

When the signal is non-stationary, Fourier analysis is limited and can
produce a very incomplete and confusing picture of the signal

Intuitive solution: Split the signal into short segments in which the signal
can be assumed to be stationary and perform Fourier analysis on each
segment. This is the short-time Fourier transform (STFT).

=PrL :=Csem



Short-term Fourier Transtorm (STFT)

The STFT of a signal x(t) is given by:

00)

Xn(z,f) = j x(t)h(t — 1)e 2T tqt

(©)

where h(t — 1) Is a window function centered around t = 7. The window
of length L is zero everywhere outside the interval T + L/2.

Example of a non-stationary signal and its 6-second Hann window of analysis
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Short-term Fourier Transtorm (STFT): Example on a chirp signal
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Motivation for fime-frequency analysis

x1(t) = cos(2m - 2t) + cos(2m - 5t) + noise
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Motivation for fime-frequency analysis

x1(t) = cos(2m - 2t) + noise
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Spectrograms in practice: Main parameters

Window length '|

Window function J

Overlap

Number of FFT points l

v A4
In Matlab: spectrogram(x, window, noverlap, nfft, fs)

| |

Signal Sampling frequency
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Spectrograms in practice: Main parameters
Window length

Longer = Better frequency resolution & Lower tfime resolution

Uncertainty

| principle
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Spectrograms in practice: Main parameters
Window length

In theory, window length must be short enough for the stationarity
assumption to always be true. In practice, guaranteeing stationarity at all
times is rarely possible, particularly in transitory parts of the signal.

In theory, window length must be long enough to include at least one period
of the lowest frequency in the band of inferest. In practice, it is often
preferrable to chose windows long enough o include at least a few periods

of the lowest frequency for improved frequency resolution.
<>

pd I N
~ 7

If there are still several possible choices for the window length after that, the
frequency vs. time resolution considerations presented in the last slide come
intfo play.
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Spectrograms in practice: Main parameters
Window function

Windowed 16- Hz sine wave
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Spectrograms in practice: Main parameters
Window function

X(t) = sin(27r-20t+1.4) + sin(27-21t+0.6) + 0.005 sin(27-28t-1.6)
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The overlap determines the

Spectrograms in practice: Main parameters / samplingrafe o th fime
Overlap

Higher overlap - avoids missing fransient phenomena,
but requires a higher computational cost
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Xn(t,f) = f x()h(t — 1)e 2/ tqt
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Spectrograms in practice: Main parameters
Number of FFT points

Discrete Fourier transform (DFT)
(Windowed) signal x is N samples long = DFT(x) is N samples long
Implementation using the FFT

Windowed signal
X is zero-padded so that N is the next power of 2 W\WWWWW of length 409g '

Increasing the zero padding (using an even larger |||~ Z&ro padding fo the
. . next power of 2 (512)
power of 2) improves virtually the frequency

resolution but does not add new information ~ot) o~ Zero padding to an even

Number of FFT points = 512 10 Number of FFT points = 1024 10 Number of FFT points = 2048 Iorger power Of 2 (] 024)
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Frequency (Hz)
Frequency (Hz)
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Spectrograms in practice: Main parameters

In Matlab: spectrogram(x, window, noverlap, nfft, fs)
window: window function or window length using default window function
hann(512) - Uses a Hann window of length 512
512 - Uses a Hamming window (Matlab’s default) of length 512
[] =2 Uses a Hamming window with a length such that x is divided into 8 segments
noverlap: number of overlapping samples between consecutive windows
492 - Corresponds to 95% overlap for a window of length 512
[ ] = Uses a number that produces 50% overlap (Matlab's default)
nfft: number of FFT points or vector of a specific frequency range
2711 > Zero pads each window such that it uses 2" points for the FFT
[1] = Uses the next power of 2 equal or higher than the window length, but at least 256 (28) points

linspace(2, 5, 2711) -> Specific frequency range. Matlab’s default: 1inspace(0, fs/2, nfft/2+1)
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Spectrograms in practice: Main parameters

Usage example: Suppose we have a 20-second-long chirp signal sampled at 400 Hz and we
want to use windows of 4 seconds with 97.5% overlap to analyze it

fs = 400;

t = (0:1/fs:20-1/fs)"';

x = chirp(t, 1, t(end), 10);
window = round(4 * fs);

R

Sampling frequency in Hz

20-second time vector

Linear chirp from to 1 to 10 Hz

Window length (1600 samples)

noverlap = round(0.975 * 4 * fs); Overlap between consec. windows (1560 samples)
nfft = []; Default number of FFT points (2711 = 2048)
spectrogram(x, window, noverlap, nfft, fs, 'yaxis'); % 'yaxis': frequencies on y axis
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Example: PPG signal in anesthesia

Photoplethysmography (PPG) 1L Lign source
Other
An LED emits light through the finger Voo oo
and a photodiode (PD) measures the “nmgb'logf
portion of the light that has not been component of
absorbed by the fissue. At each s,;/ggm{} ¥ asiic T.nlm N

heartbeat, the pressure wave E
generated by the heart dilates the small

LED PD

AC
Pulsatile part

—h————

DC:
Steady part

PPG waveform

vessels in the finger. More light is
absorbed, thereby creating pulses in
the PPG signal measured by the PD.

Tlme

«108 Example of a PPG signal

Routinely used in clinical practice for B I | | A
the non-invasive monitoring of oxygen = '
' 0
saturation and heart rate. R | . ]
11 12 13 14

Time (s)
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Example: PPG signal in anesthesia

PPG signal (au)
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Example: PPG signal in anesthesia
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Example: PPG signal in anesthesia
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Example: PPG signal in anesthesia
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Entire PPG signal
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Spectrograms in practice: Baseline attenuation

In many biomedical applications, the DC (0 Hz) component — or the low
frequency components in general — are of litfle to no interest, but are
unfortunately of large magnitude, and therefore ‘drown’ lower-
amplitude frequency components in the spectral leakage of the baseline

106 No baseline aftenuation With baseline attenuation @
5.5 ' - . 20 140 20
— PPG signal =
CHS Low-freq. (<0.05 Hz) components <197 % <15 %
L L T I o
= = 100 3 )
545 2 10 s 210 o
= [0 > QO >
@ =) g 2 g
Y I ‘\‘ g |- s 8 <
a Ll I !MMW L sl I g
NIW WHW & E
3.5k 0 - - . - 40 0 I . T e e o
0 1.5 2 0 0.5 1 1.5 2 0 0.5 1 1.5 2
Tlme (mlnutes) Time (minutes) Time (minutes)

=PrL :=Csem



Spectrograms in practice: Baseline attenuation

DC subtraction: Simplest, but not always sufficient

6
X = X-mean(x); 55 X10 |
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Spectrograms in practice: Baseline attenuation

=PrL

Trend subtraction: Generally sufficient, but requires careful
supervision (visual inspection) for higher-order fits that may

lead to unexpected results

d = 4; 7% Degree of the polynomial fit

X = detrend(x,d);
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Spectrograms in practice: Baseline attenuation

Average envelope subtraction: Efficient, but requires

careful supervision (visual inspection) for a proper 108

5.5

parameterization and to avoid unexpected results

[xu,x1] = envelope(x, round(@.4*fs), ‘'peak');

—  PPG signal

(\, | — Upper envelope
Lower envelope
Average envelope

X = X-(xu+x1)/2;
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Spectrograms in practice: Baseline attenuation

Filtering: Efficient, but requires prior knowledge about the
signal o set the cut-off frequency. For instance, for PPG-
based heart rate monitoring, one can consider a minimal > PG signal

physiological heart rate of 30 bpm (0.5 Hz). 5 o TE0 150 T comeenen®

[b,a] = butter(2, ©0.5/(fs/2), 'high'); -
= filtfilt(b,a,x); | il
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Spectrograms in practice: Limitation of the colormap range

=PrL

Without limitation of the colormap range, the
spectrogram of the baseline-attenuated PPG
signal actually looks like this 1 D
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The highest (barely visible) harmonic of the PPG
signal has a power of 41.63 dB/Hz - 40 dB/Hz is @
good threshold choice to consider anything

below that value as noise
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Spectrograms in practice: Window length influence

Window length of 3 seconds
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Spectrograms in practice: Overlap influence
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Spectrograms in practice: Number of FFT points
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Spectrograms in practice: Summary

Baseline attenuation: Always attenuate the low frequencies of the signal
prior to computing the spectrogram, if they are of no interest

Colormap range: Set the lower limit af the noise level

Window length: Trade-off between good frequency resolution (long
window) and good time resolution (short window) @

Window function: Trade-off between good frequency resolution (e.g.
rectangular window) and good dynamic range (e.g. flat top window)

Overlap: The higher the better if computational cost acceptable

Number of FFT points: The higher the better if computational cost
acceptable, but default value (next power of 2 2 window length) is
usually perfectly sufficient
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Wavelet analysis: Motivation

In real signals, low frequency components often span over a longer time than
high frequency components: a longer time window is therefore required 1o
properly capture their frequency

High frequency components often occur as very short bursts, discontinuities,
or fransient phenomena in real signals: a shorter time window is therefore
required to properly capture the instant at which they occur

With the STFT, the length of the window is fixed and therefore fixing its length is
always a frade-off between poor frequency resolution at low frequencies and

poor time resolution at high frequencies

L
< . > » The window of length L, is well suited for the

Low-frequency component N\/\AM/\/\/. LF component, but affects the time resolution
of the HF component

. > The window of length L, is well suited for the
High-frequency component Y HF component, but affects the frequency
«— resolution of the LF component

Ly
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Wavelet analysis
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The STFT projects the signal onto
an orthogonal basis of windowed
sinusoids: the length of the window
is the same for all frequencies

~
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Frequency

Wavelet analysis projects the
signal onto a more general
orthogonal basis of functions with
limited time support (no prior
windowing required as in the STFT)
inversely related to frequency,
and therefore often better suited
to decompose the signal
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Wavelet analysis

STFT Wavelet tfransform

Re{h(t — 7)e~127/t}
Im{h(t — 7)e ™t} \V
00 E

X, (1, f) = f x()h(t —1)e 2/t Xy(t,5) = % f x ()Y (t _ T) dt

Re{t@((t —1)/s)}
Im{y((t — 1)/s)}

S

— 00

The wavelet transform is a time-scale (z, s) rather than a time-frequency (z, f)
representation, but can be used for time-frequency analysis with f = f, /s,
where f, is the cenftral frequency of the wavelet in the frequency domain

fo
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Wavelet analysis

Formally speaking, the wavelet tfransform projects the signal x(¢) onto a set of
zero-mean oscillatory functions (wavelets g .()), created from a basic function
(mother wavelet y(-)) by translations and dilations

( Example of the Mexican hat wavelet

P () = %l/) (t;_r) — @11/4 (1 _ (t—T‘L’)Z) e_%(%)z

The parameter s is a scale factor (s > 0): if s > 1, the wavelet is dilated, and if
s <1, itis compressed

The parameter 7 is the time value around which the wavelet is centered

1.5 T T I T T | T T | ¢1,0(t)
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STFT vs. Wavelet analysis: In practice, which to choose?

Wavelets provide a more flexible framework (choice of basis function) and are
generally computationally more efficient

In many applications — particularly audio/image compression/processing, but also in

the biomedical field (electroencephalography, electrocardiography, etc.) — wavelets

can better capture the morphologies/patterns of some signals, and better cope with

the trade-off between time and frequency resolution

r =

ope v | T T T T T LT 1 ] 1 1 |
"N Sharp fransition Haar wavele oal ECG signal 1 04 ECG signal
be’rwegn b|O.Ck +_]'— > Mexican hat wavelet | | < — — — LF component
and white regions r g02f I 1€ 02 ‘
. -1 0 /N ya\ ya) 0 m B AL A Al gl A A A A Al atl ol
\_J \/_/ A ———— \J \/ W Ay U
+'| L L L -0.2 . :

- - 0 05 1 15 2 0 5 10 15

Time (s) Time (s)

However, in practice, the simplicity of use and interpretation of the STFT, and the fact
that it produces very similar results as wavelet analysis in the vast majority of cases,
makes it a perfectly reasonable default choice for time-frequency analysis
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