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• Motivation for time-frequency analysis

• The short-time Fourier transform (STFT)

• Spectrograms in practice

• Examples

• Alternative to the STFT: Wavelet analysis

Outline



3

Motivation for time-frequency analysis

𝑥1 𝑡 = cos(2𝜋 ∙ 2𝑡) + cos 2𝜋 ∙ 5𝑡 + noise

𝑥2 𝑡 = ൜
2 cos(2𝜋 ∙ 2𝑡) 0𝑠 ≤ 𝑡 < 10𝑠
2 cos(2𝜋 ∙ 5𝑡) 10𝑠 ≤ 𝑡 < 20𝑠

+ noise
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Motivation for time-frequency analysis

𝑥2 𝑡 = ൜
2 cos(2𝜋 ∙ 2𝑡) 0𝑠 ≤ 𝑡 < 10𝑠

0 10𝑠 ≤ 𝑡 < 20𝑠
+ noise

𝑥1 𝑡 = cos(2𝜋 ∙ 2𝑡) + noise
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• The Fourier transform was developed for stationary signals, i.e. for 

signals whose properties (frequency, amplitude, etc.) are assumed not 

to change over time

• When the signal is non-stationary, Fourier analysis is limited and can 

produce a very incomplete and confusing picture of the signal

• Intuitive solution: Split the signal into short segments in which the signal 

can be assumed to be stationary and perform Fourier analysis on each 

segment. This is the short-time Fourier transform (STFT).

Motivation for time-frequency analysis

𝑋 𝑓 = න

−∞

∞

𝑥 𝑡 𝑒−𝑖2𝜋𝑓𝑡𝑑𝑡
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• The STFT of a signal 𝑥 𝑡 is given by:

where ℎ 𝑡 − 𝜏  is a window function centered around 𝑡 = 𝜏. The window 

of length 𝐿 is zero everywhere outside the interval 𝜏 ± 𝐿/2.

Short-term Fourier Transform (STFT)

𝑋ℎ 𝜏, 𝑓 = න

−∞

∞

𝑥 𝑡 ℎ 𝑡 − 𝜏 𝑒−𝑖2𝜋𝑓𝑡𝑑𝑡

𝐿
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Short-term Fourier Transform (STFT): Example on a chirp signal

…
𝜏 = 5

…
𝜏 = 18

𝜏 = 2

Spectrogram of 

the chirp signal
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Motivation for time-frequency analysis

𝑥2 𝑡 = ൜
2 cos(2𝜋 ∙ 2𝑡) 0𝑠 ≤ 𝑡 < 10𝑠
2 cos(2𝜋 ∙ 5𝑡) 10𝑠 ≤ 𝑡 < 20𝑠

+ noise

𝑥1 𝑡 = cos(2𝜋 ∙ 2𝑡) + cos 2𝜋 ∙ 5𝑡 + noise



9

Motivation for time-frequency analysis

𝑥2 𝑡 = ൜
2 cos(2𝜋 ∙ 2𝑡) 0𝑠 ≤ 𝑡 < 10𝑠

0 10𝑠 ≤ 𝑡 < 20𝑠
+ noise

𝑥1 𝑡 = cos(2𝜋 ∙ 2𝑡) + noise
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• Window length

• Window function

• Overlap

• Number of FFT points

• In Matlab: spectrogram(x, window, noverlap, nfft, fs)

Spectrograms in practice: Main parameters

Signal Sampling frequency
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• Longer → Better frequency resolution & Lower time resolution

• Shorter → Lower frequency resolution & Better time resolution

Spectrograms in practice: Main parameters

Window length

L = 3s

L = 6s

L = 9s

L = 3s

Uncertainty 

principle 
→ Trade-off 

required

𝑥 𝑡 = cos(2𝜋 ∙ 3𝑡)
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• In theory, window length must be short enough for the stationarity 

assumption to always be true. In practice, guaranteeing stationarity at all 

times is rarely possible, particularly in transitory parts of the signal.

• In theory, window length must be long enough to include at least one period 

of the lowest frequency in the band of interest. In practice, it is often 

preferrable to chose windows long enough to include at least a few periods 

of the lowest frequency for improved frequency resolution.

• If there are still several possible choices for the window length after that, the 

frequency vs. time resolution considerations presented in the last slide come 

into play.

Spectrograms in practice: Main parameters

Window length
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Spectrograms in practice: Main parameters

Window function

➢ Frequency resolution: ability to distinguish 

frequencies that are close to each other

➢ Dynamic range: ability to distinguish 

frequencies of different strengths
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Spectrograms in practice: Main parameters

Window function
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• Higher overlap → avoids missing transient phenomena, 

but requires a higher computational cost 

Spectrograms in practice: Main parameters

Overlap
𝑋ℎ 𝜏, 𝑓 = න

−∞

∞

𝑥 𝑡 ℎ 𝑡 − 𝜏 𝑒−𝑖2𝜋𝑓𝑡𝑑𝑡

0% overlap

50% overlap

95% overlap

The overlap determines the 
sampling rate of the time 

variable of the STFT
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• Discrete Fourier transform (DFT)

• (Windowed) signal x is N samples long → DFT(x) is N samples long

• Implementation using the FFT 

• x is zero-padded so that N is the next power of 2

• Increasing the zero padding (using an even larger 

power of 2) improves virtually the frequency 

resolution but does not add new information

Spectrograms in practice: Main parameters

Number of FFT points

Windowed signal x 

of length 409

Zero padding to the 

next power of 2 (512)

Zero padding to an even 

larger power of 2 (1024)
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• In Matlab: spectrogram(x, window, noverlap, nfft, fs)

• window: window function or window length using default window function

• hann(512) → Uses a Hann window of length 512

• 512 → Uses a Hamming window (Matlab’s default) of length 512

• [] → Uses a Hamming window with a length such that x is divided into 8 segments

• noverlap: number of overlapping samples between consecutive windows

• 492 → Corresponds to 95% overlap for a window of length 512

• [] → Uses a number that produces 50% overlap (Matlab’s default)

• nfft: number of FFT points or vector of a specific frequency range

• 2^11 → Zero pads each window such that it uses 211 points for the FFT

• [] → Uses the next power of 2 equal or higher than the window length, but at least 256 (28) points

• linspace(2, 5, 2^11) → Specific frequency range. Matlab’s default: linspace(0, fs/2, nfft/2+1)

Spectrograms in practice: Main parameters



18

Usage example: Suppose we have a 20-second-long chirp signal sampled at 400 Hz and we 

want to use windows of 4 seconds with 97.5% overlap to analyze it

fs = 400;  % Sampling frequency in Hz

t = (0:1/fs:20-1/fs)'; % 20-second time vector

x = chirp(t, 1, t(end), 10); % Linear chirp from to 1 to 10 Hz

window = round(4 * fs); % Window length (1600 samples)

noverlap = round(0.975 * 4 * fs); % Overlap between consec. windows (1560 samples)

nfft = []; % Default number of FFT points (2^11 = 2048)

spectrogram(x, window, noverlap, nfft, fs, 'yaxis'); % 'yaxis': frequencies on y axis

Spectrograms in practice: Main parameters
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• Photoplethysmography (PPG)

• An LED emits light through the finger 

and a photodiode (PD) measures the 

portion of the light that has not been 

absorbed by the tissue. At each 

heartbeat, the pressure wave 

generated by the heart dilates the small 

vessels in the finger. More light is 

absorbed, thereby creating pulses in 

the PPG signal measured by the PD.

• Routinely used in clinical practice for 

the non-invasive monitoring of oxygen 

saturation and heart rate.

Example: PPG signal in anesthesia

Tamura T, et al. Electronics. 2014; 3(2):282-302



20

Example: PPG signal in anesthesia

60 – 120 bpm
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Example: PPG signal in anesthesia

Segment 1

78 bpm
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Example: PPG signal in anesthesia

Segment 2

91 bpm

Segment 1
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Example: PPG signal in anesthesia

Segment 3

101 bpm

Segment 1 Segment 2



24

Example: PPG signal in anesthesia

Segment 3Segment 1 Segment 2
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• In many biomedical applications, the DC (0 Hz) component – or the low 

frequency components in general – are of little to no interest, but are 

unfortunately of large magnitude, and therefore ‘drown’ lower-

amplitude frequency components in the spectral leakage of the baseline

Spectrograms in practice: Baseline attenuation

No baseline attenuation With baseline attenuation
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Spectrograms in practice: Baseline attenuation

• DC subtraction: Simplest, but not always sufficient

 x = x-mean(x);
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Spectrograms in practice: Baseline attenuation

• Trend subtraction: Generally sufficient, but requires careful 

supervision (visual inspection) for higher-order fits that may 

lead to unexpected results

d = 4;  % Degree of the polynomial fit

x = detrend(x,d);
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Spectrograms in practice: Baseline attenuation

• Average envelope subtraction: Efficient, but requires 

careful supervision (visual inspection) for a proper 

parameterization and to avoid unexpected results

[xu,xl] = envelope(x, round(0.4*fs), 'peak'); 

x = x-(xu+xl)/2; 



29

Spectrograms in practice: Baseline attenuation

• Filtering: Efficient, but requires prior knowledge about the 

signal to set the cut-off frequency. For instance, for PPG-

based heart rate monitoring, one can consider a minimal 

physiological heart rate of 30 bpm (0.5 Hz).

[b,a] = butter(2, 0.5/(fs/2), 'high'); 

x = filtfilt(b,a,x); 
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• Without limitation of the colormap range, the 

spectrogram of the baseline-attenuated PPG 

signal actually looks like this

• The highest (barely visible) harmonic of the PPG 

signal has a power of 41.63 dB/Hz → 40 dB/Hz is a 

good threshold choice to consider anything 

below that value as noise

Spectrograms in practice: Limitation of the colormap range
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Spectrograms in practice: Window length influence 
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Spectrograms in practice: Window function influence
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Spectrograms in practice: Overlap influence
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Spectrograms in practice: Number of FFT points
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Spectrograms in practice: Summary

• Baseline attenuation: Always attenuate the low frequencies of the signal 

prior to computing the spectrogram, if they are of no interest

• Colormap range: Set the lower limit at the noise level

• Window length: Trade-off between good frequency resolution (long 

window) and good time resolution (short window)

• Window function: Trade-off between good frequency resolution (e.g. 

rectangular window) and good dynamic range (e.g. flat top window)

• Overlap: The higher the better if computational cost acceptable

• Number of FFT points: The higher the better if computational cost 

acceptable, but default value (next power of 2 ≥ window length) is 

usually perfectly sufficient
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• In real signals, low frequency components often span over a longer time than 

high frequency components: a longer time window is therefore required to 

properly capture their frequency

• High frequency components often occur as very short bursts, discontinuities, 

or transient phenomena in real signals: a shorter time window is therefore 

required to properly capture the instant at which they occur

• With the STFT, the length of the window is fixed and therefore fixing its length is 

always a trade-off between poor frequency resolution at low frequencies and 

poor time resolution at high frequencies

Wavelet analysis: Motivation

𝐿2

𝐿1

Low-frequency component

High-frequency component

➢ The window of length 𝐿1 is well suited for the 

LF component, but affects the time resolution 

of the HF component

➢ The window of length 𝐿2 is well suited for the 

HF component, but affects the frequency 

resolution of the LF component
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• The STFT projects the signal onto 

an orthogonal basis of windowed

sinusoids: the length of the window

is the same for all frequencies

• Wavelet analysis projects the 

signal onto a more general

orthogonal basis of functions with

limited time support (no prior

windowing required as in the STFT) 

inversely related to frequency, 

and therefore often better suited

to decompose the signal 

Wavelet analysis

Time

F
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q
u

e
n

c
y

Acceptable time resolution
Poor frequency resolution

Poor time resolution

Acceptable frequency resolution

Time

F
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q
u
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n

c
y

Poor time resolution

High frequency resolution

High time resolution
Poor frequency resolution
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• The wavelet transform is a time-scale 𝜏, 𝑠  rather than a time-frequency 𝜏, 𝑓  

representation, but can be used for time-frequency analysis with 𝑓 = Τ𝑓0 𝑠, 

where 𝑓0 is the central frequency of the wavelet in the frequency domain

Wavelet analysis

STFT Wavelet transform

𝑋ℎ 𝜏, 𝑓 = න

−∞

∞

𝑥 𝑡 ℎ 𝑡 − 𝜏 𝑒−𝑖2𝜋𝑓𝑡𝑑𝑡 𝑋𝜓 𝜏, 𝑠 =
1

𝑠
න

−∞

∞

𝑥 𝑡 ത𝜓
𝑡 − 𝜏

𝑠
𝑑𝑡

Im{ℎ 𝑡 − 𝜏 𝑒−𝑖2𝜋𝑓𝑡}

Re{ℎ 𝑡 − 𝜏 𝑒−𝑖2𝜋𝑓𝑡}

Im{ ത𝜓 𝑡 − 𝜏 /𝑠 }

Re{ ത𝜓 𝑡 − 𝜏 /𝑠 }

𝑓0
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• Formally speaking, the wavelet transform projects the signal 𝑥 𝑡 onto a set of 

zero-mean oscillatory functions (wavelets 𝜓𝑠,𝜏 ∙ ), created from a basic function

(mother wavelet 𝜓 ∙ ) by translations and dilations

• The parameter 𝑠 is a scale factor (𝑠 > 0): if 𝑠 > 1, the wavelet is dilated, and if 

𝑠 < 1, it is compressed

• The parameter 𝜏 is the time value around which the wavelet is centered

Wavelet analysis

𝜓𝑠,𝜏 𝑡 =
1

𝑠
𝜓

𝑡−𝜏

𝑠
=

2

3𝑠𝜋1/4
1 −

𝑡−𝜏

𝑠

2
𝑒
−
1

2

𝑡−𝜏

𝑠

2

Example of the Mexican hat wavelet
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STFT vs. Wavelet analysis
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STFT Wavelets

STFT Wavelets
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• Wavelets provide a more flexible framework (choice of basis function) and are 

generally computationally more efficient 

• In many applications – particularly audio/image compression/processing, but also in 

the biomedical field (electroencephalography, electrocardiography, etc.) – wavelets 

can better capture the morphologies/patterns of some signals, and better cope with 

the trade-off between time and frequency resolution

• However, in practice, the simplicity of use and interpretation of the STFT, and the fact 

that it produces very similar results as wavelet analysis in the vast majority of cases, 

makes it a perfectly reasonable default choice for time-frequency analysis

STFT vs. Wavelet analysis: In practice, which to choose?

Sharp transition 

between black 

and white regions

Haar wavelet

+1 -1

+1

-1
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• M. Akay, Ed., Time-Frequency and Wavelets in Biomedical Signal 

Processing, IEEE Press, Piscataway, NJ, 1998.

• B. Boashash, Ed., Time-Frequency Signal Analysis, Wiley, NY, 1992.

• S. Mallat, A Wavelet Tour of Signal Processing, Academic Press, 

London, 1998.

• And for other sources, check Moodle FAQ
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