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Deterministic vs random

Deterministic - past and future can be
predicted from a small set of measurements

y(n) =2-cos(w) -y(n—1) —y(n—2)

y(=1) = cos(w)
y(=2) = cos(2w)

y(n) = [cos(w - )]

(y(n) - y(n = k) = Scos(w - k)
White Gaussian noise

y(m) ~ N (u, %)

u mean of the Gaussian

a2 variance of the Gaussian

(y(n)-y(n—k)) =p*Vn+k

(y() - y(n)) = u® + o2
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amplitude (a.u.)
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(cos(w - n) - cos(w - (n—k)))

—— y[n] = 2*np.cos(0.05*2*pi)*y[n-1] - y[n-2], y[0] = cos(0.05*2*pi), y[1] =1
= y[n] = 2*np.cos(0.02*2*pi)*y[n-1] - y[n-2], y[0] = cos(0.02*2*pi), y[1] = 1

CI] 2I0
=(cos(w - n) - (cos(w - n) - cos(w - k) + sin(w - n) - sin(w - k)))

={(cos?*(w-n))-cos(w- k) = %cos(w - k)
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Example of stochastic signals
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White Gaussian noise

2
3’(”) N(ﬂ:0' ) ' 34.1% 34.1%
1 _m-p?

pdf(y(n)) — \/E.O_e 202

(y(n)) = u

(Y (W)2) = 02 + 2 B

(y() - y(n—k)) = p*vk #0 A

P(w)
all the samples are independents " YR

(Y (@) V" (@)) = 02 + 8(w) - u?
Mean of Gaussian processes

1 1

k=1 N (0% ~ N (u,;az) 0 M
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Stochastic processes

Relationship between consecutive
measurements exists but it can only be
analyzed statistically

Tools developed for the analysis of
deterministic signals are poorly suitable
for the analysis of stochastic signals

In order to geft relevant information
from the fime series averaging is
mandatory

FFT transform n samples to n samples

Increasing the number of samples does not P() I
s

improve the estimation

FFT of white Gaussian noise N (0, 1)

number of samples: 100

;\AA/\ Y

— FFT
—— theory

"\/\/\J WW

A

number of samples 1000

T
0.4 0.5

— FFT
—— theory

power (a.u.)

M| . AT |
A T T Y (Y 1 "

0.0 0.1 0.2 0.3
fu

number of samples: 10000

0.4 0.5

FFT is a non-consistent estimator
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Mean and variance

y(n) is a stochastic variable

mean operator
—~ 1
Ay(N) = - Xn=1y(n)

My (N) N (:u_’y; O-y)
the estimator is non biased:

(fy (N)) =

the estimator is consistent:

lim ]\f(uy, Gy) N (uy,0)

N—>o00
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variance operator

53<N> = ﬁmﬂym) ~ i (N))?

the estimator is consistent:

. N-1 2:0
lim N(Tayz, Ny) N(02,0)

asymptotically non biased



Auto correlation
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x(n) is a realization of a stochastic
process

Its auto correlation is given by
Ryx(n, k) = (x(n) - x(n + k))
X is a stationary process

R,y (n, k) = Ry, (k)

The estimation of the auto correlation
for several realization of the process at

time n is equivalent to the estimation
of the auto correlation on one
realization independently of the time
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Auto correlation of a stationary process

Ryx (k) = %Zﬁ;& x(n) - x(n + k) Rurlh

Rxx(o) — .uazc + 0-9?

power of the signal

R,,.(=k) = R (k) s ) OO | O L ¢

symmetry of the autocorrelation I I

kl—i>r—|_poo Ryx (k) = .uazc

with exception of sustained oscillations

|Rxx (k)| < Ry (0)
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AUtO covariance of a stationary process

Can (k) = T ENZ3(x(n) — 1) - (x(n + k) — o)

Crx (O) — 0-9?

power of the signal

Cx (=k) = Cxx (k)

symmetry of the autocovariance

kl_i)rinoo Cyry(k) =0

|Cxex (K)| < Cyx (0)
C..(k) = R, (k) if p, = 0
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Auto correlation | covariance with a fixed number of samples

L] L]
B I OS e d es -I-l I I I O -I-O r cardiac interbeat intervals biased Cyx unbiased Cyy

1 ¢N-1- 3y ]
Rxx (k) — NZ%’:& f x(n) ) x(n + k) gaoo- 0239 0.0
Non biased estimator % e @ T E T e N T
s cardiac interbeat intervals biased Cyx unbiased Cyx
1 $N-1- o
Rex(k) = ——¥pZ 7 x(m) -x(n+k) .7 |
Unbiased estimator have no bias but| 7, o pu W W

o4

in 'I'rod U C e G |O rg e O m O U n‘l‘ Of n O ise O'I' SIO l(l)(t)ime (S;SIO 260 2;0 -1600 -SIOO E 5(I)O 10I00 -l(l)OO —SIOD E S(I)D 10I00

the border values of Ry, — generally | _...

the biased estimator is preferred for | ax
practical applications

time (s) k k
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Auto correlation of a white noise

For a white Gaussian noise
Ryx(k) = of - 6(k)

4

1 2 20
o,

N

GZ(N) ~ IV (”I;

)

Fork +#0

IR, (k)| < 1.96 -
This is the 95% confidence

interval

(95% of the value must fulfil this
criteria for a WGN)
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Autocorrelation of a filtered WGN
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Difference equation of the filter
Ng Np

Yy + ) ar-ym—1)= ) by x(n—D
i=1 i=0

Z transform

Y(Z) :%-X(Z) = H(z)-X(Z)

X is a zero mean white Gaussian noise
x(n) ~N(0,0?)

Power spectral density g%y
PSD(y) =Y(2) - Y*(2) = H(z) - X(Z) - H"(2) - X*(Z)
= X(Z)-X*(Z)-H(z) - H*(2)
= 0%. H(z) -H*(2)

Autocorrelation

Ry, () = 27Y(a2 - H(2) - H*(2))
= 02(h(n) * h(—n)) = g2 - Ry (n)
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The autocorrelation of a filtered WGN is the
product of the variance of the WGN and the
auto correlation of the impulse response

Example:
Hz)=1—-a-z1
Y(z) = H(z) - X(2)

x(n) ~N(0,0?)

0c’(14+ad?, k=0
Ryy(k) = —O'Za, k +

0, |k



Typical exam question

EPEL

A white Gaussian noise x(n) of
zero mean and unit variance is
filtered by the filter

y(n) = x(n) +%-x(n— 1) +:1}-x(n—2).
Compute the non-zero values
of the autocorrelation of y.
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Power spectral density

WGN filtered with 4% order band-pass [0.15, 0.35]

FFT~! (X*(k)) = FFT! (X(—k)) = x(—n) £ o
E _q ]
FFT™Y(X (k) - X*(k)) = x(n) * x(—n) = Ry (n) N
(IJ 20600 40600 60{1)00 SO(I)OO 1001000
Rememober: o
FFT is a non consistent spectral |
estimator (increase of the point £ n
. . 3 00 oY\ A
does not decrease noise variance) *©
R, (k) is poorly defined in its e
borders due to the reduced
number of values used for ifs
estimation é Z: IFFT (R0
O\ i
— Use only the central part of R, (k) e o
0.0 == =~ N ) . : T
0.0 0.1 0.2 0.3 0.4
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Windowing

rectangular window window spectrum
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Truncation of R,, create oscillations if

R, # 0 outside to truncation interval L
(rectangular window) " o J
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In order to estimate power spectral
distribution more accurately
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Windows examples
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The selection of the windows permits @
compromise between oscillations and
spectral resolution

Generally

When small amplitude components
are mixed with large amplitude
components —» minimize oscillations

When components of same amplitude
are mixed — optimize spectral
resolution

power (o?)

1.00 1
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0.50

— VN
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0.25
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—1.00 A
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power spectral density
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o
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k
power spectrum estimated on R,.(k) with k €[-10, 10]

— [FFT(Rx)|, rectangular window
= |FFT(Rxx)|, hann window

—— |FFT(Ry)|, tukey window

—— squared response of the filter
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Infercorrelation

intercorrelation between white noise and its filtered version
Ryy(k)

0.3 -

0.2

Ruy(k) = 2 XNZ3 x(n) - y(n + k)

The intercorrelation measures o “
the similarities between two
signal

0.1 1

)

—

power (o2

T T T T T T T
-100 =75 =50 =25 0 25 50 75 100
k

The m eGS Ure iS n O.I- Sym m e.l-ric Ol _ |Rxy(k)| for the search of the main delay between the signals

max(|Ry, (k)|) gives the main

delay between the two signals )
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Power inter-spectral density
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FFT(R,,) is the power infer-
spectral density

Its value is large in frequencies
where the two signal have a
relationship and lower
elsewhere

The processing is similar o
power spectral density

windowing, central interval of the
intercorrelation, ...

2 CsSem
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Welch power spectral density

FFT(Ryy) © X - X*

Relation exists between power of the FFT and FFT of
the autocorrelation

Robust estimation of the power spectral density
implied to use the cenftral part of R,

Averaging the FFT using shorter blocks (half of the
one used for the central part of R, gives same
results) with 50% overlap

1

Nbloc . .
v Zizy (FFT(Win - Xpiock (1))

PSDyeicn (k) -

The only difference is that in Welch algorithm
shows an effect that corresponds to the
square of the window
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Summary

Stochastic signals: characteristics between deterministic signals and
noise

The analysis of such signal requires averaging

The autocorrelation permits to obtain a better estimation of the power @
spectral density than direct FFT

The selection of the window and the length of the block permits @
trade-off between speciral resolution and oscillations

Inter-correlation permits to analyses relationships between different
signals
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AUutoNnomMous nervous system
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Interaction between breathing and cardiac variability

S iNvS ARHYTHMIA

—> HRV  Griks INForH ATION
ABouT ANS CoNTRoOL
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Power spectral density of ANS control

cardiac interbeat intervals
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Cardiac arrythmias - Mechanisms

Sinus (hormal) rhythm Aftrial fibrillation

Sinus node

~

=P-L :=Csem



Electrocardiogram during cardiac arrythmias

Surface ECG during atrial fibrillation (AF or Afib)

The most common tool used for the clinical evaluation of arrythmias

Atrial activity Ventricular activity
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Electrocardiogram - signal processing applications

Simulated 12-lead ECG:

Simulated ECG with the AV node model

Ventricular Activity --JI

+

Atrial Activity WJLJ\,

ECG

— |
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Labo exercises

3 exercices

mMO3_ex1_ecg_50_hz.py

m O3_€X2_O ﬂ S_C O ﬂT I'O | . p y x = np.genfromtxtc

fs =

mMO3_atrial_fibrilation.py e
Groups of 3 pax (2 or 4 if mod(num. people,3)+ 0)
One report for the group .
o Questions
Names and surnames of group'’s participants
one section per exercise
discuss results :
Figure —,
answer questions

naming: namel_name2_name3_labo_m03.pdf

optional: at the end of the document free
comment about curse and exercises

upload the same report for each person
individually (delay:1 week)
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Typical exam question

1 H H _ ) 1 2 1 2 21
A white Gaussian noise .x(n) of R,,(0) = 12 + *+()*=1
Zero mean and unit variance is

filtered by the filter Ry, (1) =1 %+% -% =2
}’(n)=x(n)+%-x(n—1)+:1}.x(n—2). P (i2)=1-1=1
Compute the non-zero values Yy 4 4

of the autocorrelation of y.
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