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Digital vs analog processing
Signal sampling
Fourier fransform

Digital filters
Finite impulse response filters (FIR)
Infinite impulse response filters (lIR)

Z fransform
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Digital vs analog signal processing

Digital processing
N = sum of quartz oscillations @ f,
§ =mod(N/f,.60)

M = mod(floor(N/f,/60), 60)
H = mod(floor(N/f,/3600), 24)

if (month == February)
if (leap year)
if (day == 30)
month = March
day =1
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Analog processing
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Signal processing schemes

Filter

SENsS0r

physical signal e physical -> curmrent | voltage

analog to digital

digital to analog

Analysis
Sensor
physical signal > physical -= current | voltage
Synthesis
signal model
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>

analog to digital

features

actuator
curmrent | voltage -= physical

physical signal

digital to analog

actuator
current | voltage -= physical

physical signal




Analog to digital conversion (ADC)

cPEL

“Pick” the value of the signal at
time intervals (sampling)

Electronic circuits that performs
sample-and-hold

Capacitor + switch

Convert the analog value into a
digital number (quantization)

Integer values (binary values)
Resolution of the ADC in bits

Produce quantization noise
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Quantization

L

Quantization is obtained by iteratively
comparing the analog value with
reference

Each comparison results in one bit that
is eitherQ or 1

The result consists in a binary value x,
with relationship
input voltage range
ZN
Quantization produces and error of

2 LSB that can be neglected if N is
large enough

vaXb'
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current bitn_ b =N
X = input signal

yes

> x> ref/2 p—p

bitn bl =1
X = X - ref/2

T

bitin_ b] =0

output binary code




Sampling

cPEL

Sampling consist in Ypicking” the signal value at
different sampling times

Generally, the time intervals are constant
(uniform sampling)

Non uniform sampling can / must be used in some specific
cases, but it makes calculation more complex

Non uniform sampled signal can be transformed into
uniformly sampled signal by interpolation

When sampling is uniform it is defined by
sampling period T;

The dual of the sampling period is the sampling
frequency or sampling rate:
1

fs=i
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amplitude (a.u.)
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Sampling: fast sampling

Cos signal with f, = 1 Hz
fs =20 Hz

fa << 5
High sompling frequency

High number of values in the
numerical series

Increase required memory and
computational power

Oversampling can be used to improve
accuracy and reduce noise
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Sampling: “normal” sampling

cPEL

Cos signal with f, = 1 Hz
fs=5Hz

fs
fa <3

“Normal” sampling

The samples in the digital series
represents unambiguously the analog
signal
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amplitude (a.u.)
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Sampling: critical sampling

cPEL

Cos signal with f, = 1 Hz
fs=2Hz

fa = %
Limit sampling frequency

Analog signal is unambiguously
represented by the digital series

Limit case for perfect reconstruction
of the signal
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Sampling: aliasing

cPEL

Cos signal with f, = 1 Hz
fe=1.5Hz

fs
fa >3

Sampling frequency is too low, and
signal cannot be reconstructed
unambiguously

Alternative solution if called an alias
and the phenomenon aliasing
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Spectral representation of aliasing

Time domain

A

®
|
0 T, 2T time
Frequency domain
®
b S
|
0 1/Ts 2/ T, frequency

m
1
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Frequency mapping

L

1/2

4 fd: fa/fs

frequencies producing aliasing

fs/2

3fs/2 2f8 5fs/2

All analogic frequencies (f,) > f,/2 are aliased after sampling

fis an alias frequency if

2 Ccsem

mod(If — k- fol.7s/;) = If — k- fsl.k €N’



Aliasing example (chirp)

xq(t) = cos(2m(t/50) - 8000 - t)

fs = 8 kHz:
fa > 4KHzZ > fo - fs = fs — Ja
fs = 4 kHz:

2kHz < f, <4kHz-> fy-f; = f: — [,
ARKHz < f, < 6kHz—> f; - fi = [, — [
6kHz< f, <8kHz-> fy-f,=2-f; — [,
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fs = 32000 Hz

time (s)

fs = 16000 Hz

time (s)
fs = 4000 Hz




Aliasing example (spaftial frequency)

In sampling the independent
variable is fime but it can also
be space

In the example the spatial
frequency of the lines on the
door is higher than the sensor
resolution

Production of aliasing (called
Moiré for pictures)
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Sampling: summary

fa<3fs

max(f,) is known

select f; > 2 - max(fy)

f is imposed

analog low-pass filter signal with a
cut-off frequency below %fg

cp

-1
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Analog <« digital

Analog domain
fs = sampling frequency f
S
fo=fa fs=fu-%

T; — sampling period

fa — analog frequency

n

t, — analog time ta =n-Ts = 7o
Digital domain

fq — digital frequency [—%,ﬂ Wq = fd 2T = fN "T

wy4 — digital angular frequency [—m; 7T |
n — digital time fn =2 fq

fy — Nyquist frequency [—1; 1]
(Matlab, Python : filter design)
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Typical exam questions

cPEL

An unknown signal is sampled
at 6 Hz and its digital frequency
corresponds to 1Hz. What are
the four frequencies that can
be aliased to this frequency?

2 Ccsem

In a movie, with 25 frame per
second, the wheel of a car is
observed as rotating in reverse-
to-normal direction at 1rpse
What are the two first real
rotation speeds that can
produce this effecte
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Basics signals

Impulse (dirac)

1,n=20
o(n) = {Onio

Step

1,n=>0
£(n) = {On<0

Exponential
e(n)-a™
Sine and cosine

cos(2m - f -n)
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Complex exponentials (Euler’'s notation)

Processing of signals in spectral
domain requires a projection on w=2m-f
sine and cosine function

Euler notation permits a more el @k = cos(w - k) +j - sin(w

compact formulation of

eqguations pir @k 4 o=jwk
. cos(w - k) =

Euler notation permits @ 2

separation of amplitude and o)k _ p—jwrk

phase sin(w + k) = 2
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Fourier fransform

+oo Sampling in time domain and frequency domain
X

X(N) = [17 x(t) - e T2t

time: continuous

frequency: continuous [ [ [ [ [ :

Convergence condition:

Time domain

f_-l-ozo (x(t))?dt < oo Frequency domain
Properties [ [ *
h(t) = x(6) > H(f) - X(f) g

0 1/7Ts 2/Ts frequency

h(t) - x(t) = H(f) * X(f)
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Fourier Series Fourier seriesK =1
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Discrete Fourier transform (DFT)

. 2T

X(k)=YN-1x(n)-e I Wk
time: discrete

frequency: discrete

ke|[OON—-1]nkeN,

k
fa =7

fim = fs

x(n) = ~SNZ3X(K) - e’ ke

Complexity:
N # 2F -5 DFT - 0(N?)

N =2F - FFT - O(N - log(N))
(Fast Fourier Transform)
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Discrete Fourier fransform: properties

Convolution
h(n) *x(n) » H(k) - X(k)
h(n)-x(n) » H(k) * X(k)

Time shift

DFT(x(n —ny)) = eI kMo . X(k)

x(n) eR

X(=k) = X*(k)

| X(=k)| = [X (k)
Linearity

DFT(a -x(n) +b - y(n)) =a-X(k)+b-Y(k)
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Amplitude spectrum

(XUl = VXU - X* (k)
Phase spectrum

@(X(k)) = angle(X(k))



Hilbert Transform

Fourier transform:

x(t) > X(f) = [17x(t) - e J 2 bt - x(t) = - [ X (w) - /27 tdt
cos(w - t) > = (8(—w) + 8(w)) = cos(w - t)

sin(w - £) = ~j(6(~w) — 8(w)) - sin(w - t)

Hilbert transform:

x(t) > X(F) = [0 x(t) - e T2 At - xy (1) =~ [ X (w) - eI 2 e
cos(w - t) = > (6(~w) + 8(w)) > cos(w - ) +j - sin(w - t)

sin(w - t) - %j(d(—w) - 6(a))) — sin(w - t) —j-cos(w - t)
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Hiloert Transform Properties

x(t) =a-cos(w:t)

()
o
o

xy(t)=a-(cos(w-t)+j-sin(w-t))

xh(t)

X (®)] = a- (cos*(w - t) +sin(w - t)) = a

_q sin(wt)

£(xy(t)) = tan

cos(w-t) a

%é(x,{(t)) = %(a) t)=w £ o

HILBERT transform is useful only for narrow

band signals
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1 — % = cos((1+0.1#)*t+2pi)*expl(-(t-5)++2/10) /\/\/\/\/\/\/\/\/\/\/W\W

—— unwrap(angle(xh))

time (s)
— exp(-(t-5)%2/10)
— abs(xh)
T T T T
0 2 4 6 8 10
time (s)
= (1+0.1%t)*t*2*pi
7 — angle(xh)

time (s)

—— diffflunwrap(angle(xh)))

—— (14+0.2#t)*2%pi

time (s)



time & frequency: summary

Digital signal can be fransformed from/to frequency domain using
DFT or FFT

Convolution in one domain is multiplication in the other domain

The spectral resolution depends on the length of the DFT/FFT @

The DFT/FFT permits to analyze the amplitude and the phase of the
signal
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Typical exam question

cPEL

In an ECG signal, sampled at
100 Hz, you want to estimate
the heart rate with a resolution
of V2 bpm using a DFT. What is
the minimum length of the DFT
that ensures this resolutione

2 Ccsem

A Jjogger is using a smart watch
to measure his heart rate that is
126 bpm. He is running at a
cadence of 2 Hz. The opfical
signal is sampled at 10 Hz. With
a DFT computed on 80 samples
are you able to differentiate the
peaks of the heart rate and the
peak of the motione



Digital filters

Digital filtering is a linear operation that processes a numerical fime series in order to
attenuate some frequency intervals

Digital filters are divided into two classes

Finite Impulse response (FIR)
Impulse response of the filter is finite
Filter is always stable
Larger number of coefficients to match lIR

Infinite Impulse response (lIR)
Impulse response of the filter is infinite
Coefficients must fulfill requirements to ensure stability

Smaller number of coefficients than FIR
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Filter kinds

low-pass high-pass
1.0 - 1.0
There are four basic types of filters 05 - | 08 (
Low-pass: high frequencies are < %97 < %67
attenuated % 0.41 0.4
High-pass: low frequencies are 021 \ 021 ‘
attenuated o004 ] 00—
0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5

Band-pass: frequencies outside a fa fa

band-pass band-stop

frequency range are attenuated

1.0 A m 1.0 4 4\ {7
Band-stop: frequencies within a 0.8 1 0.8 1
frequency range are attenuated 06 06
g 0.4 o 0.4 -
0.2 4 0.2
0.0 + 4} 0.0 A

O.IO O.Il 012 013 014 015 OjO O.Il O.|2 013 014 015

fd fd
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FIR and IIR filters

FIR filter

y(n) = XiZobi - x(n — )

output y(n) depends only on the current and past values of the input x(n)

IR filter @
y(n) = Y00 b x(n— i) — %0 a; - y(n — i)

output y(n) depends on the current and past values of the input x(n) and on the
past values of the output (auto-regressive)

Cut-off frequency

The cut-off frequency is the frequency where the gain is -3dB or 1/%/5
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[ transform

z~1is defined as a delay of one sample

— Z x[”] z L I > 1
)’(n) ?Iz()bi 'x(n_ l) | " Z T _l

Y(2) = (Sobi-z7) X (@) ’ V’ V) V’

Y(z) = B(z) - X(2) @_,@_ ............. >@—>y[n]

I (Tl}

IR

y() + 308 a; - y(n—i) = X8 by - x(n— i)
A(z) - Y(Z)=B(z)-X(Z)

B(z)
A(2)
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Y(Z) =

- X(Z)




[ transform

Filter transfer function

B(Z) . b0+b1'Z_1+b2'Z_2+
A(z)  1+ai;z l4apz=2+ -

H(z) =

Numerator and denominator are polynomials of z. The
polynomials can be factorized.

N —
kb'Hi=b1 1-z;-z71
Na ;_,..,—1
Hi=1 1 pl, Z

z; are the zeros of transfer function

H(z) =

p; are the poles of transfer function
k, is the gain of the numerator

if a pole (zero) has complex value its complex
conjugate is also a pole (zero)

The filter is stable if |p;| <1V i
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Band-pass filter [0.1, 0.3], N, =8,N, = 8

Imag
—"—Lg— ~~~~~~~
X
N
\
/ 0.5 x \\
,’Il x x \\\\

: \
! \
O . . ©
—1‘.0 -0.5 0.5 140 Real

\ 1
\ 1
\\ x ,’
AY 7
\ —0.5x x///
7/
.. X ) ’
T N




£ fransform (frequency response) 5 oo fiter (0.1, 031, N, = 8N, = 8

Imag
B(z) x|
H 7Z) = 0s X
( ) A(2) ¥ x
—1: —?0 05 y: Real
z~ - Is a delay v
. -0sX X/
_jam x|
DFT(x(n — no)) =e N X (k) e Lo
z = el for frequency response 100 4
. 0.75 A
H(e/%d) - frequency response < 050
0.25 4
|H(e/®2)| > amplitude response 260 |
-3 -2 -1 0 1 2 3

angle (H(ef‘“d)) — phase response

wy € [—m, ] _2: \

EPEL = CSeMm to

phase (rad)
o N




/ transform (impulse response)

FIR impulse response IR impulse response
y() =ZiLob; - 6(n— 1) y() = X2 b - 8(n— 1) = Xi% a; - y(n — i)
y(n) = [by,by,++, by, 0,0 -] The computation of the impulse
The impulse response of a FIR filter response implies 1o solve the @
is given by the coefficients of the difference equation
filters

The impulse response can be directly
computed from the Z transform by
implementing the division

H(Z) _ B(Z) _ b0+b1‘Z_1+b2'Z_2+
 A(z) 14apz l+ayz24 -
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[ transform lIR impulse response (example)

cPEL

Implementing the division of the fraction
permits to get the impulse response of lIR
filters

IR filter can be approximated by a FIR by
truncating the impulse response

a < 1 - decaying exponential
stable

a =1 - step function
unstable

a > 1 - increasing exponential

unstable

2 Ccsem

1—a-z7t

l4a-z7'+a? 2724a- 273+ ...



Linear phase filters

original signal

Linear phase filters permit @

;; axial symmetry central symmetry
constant delay of all the E seay delay
% — —

components of a signal

Linear phase filter can only be U e T
Ob‘l'qined wi‘l'h FIR ﬁ"-ers signal after linear phase low-pass filter

odd length
—e
4444444—.4 - - - =
—e
rs
—e
—

)

>
FIR filters with linear phase have & os. @
to exhibit either an axial

symmeiry or a central symmeiry

amplitude

even length
-e
—e
S S
P
\J

—e
——e

N The”’ Coeff|C|enTS 80 85 90 95 100 105 1L0 115 120 : ’:
time (s) delay ‘
signal after arbitrary phase low-pass filter delay

Axial symmetry -> low-pass

u.)

(a.

Central symmetry -> high or band
pPAss

amplitude

T T T T T T T T
8.0 8.5 9.0 9.5 10.0 105 11.0 115 12.0
time (s)

=PrL :=Csem



cp

-

Lero-phase filters

L

Lero-phase filter can be obtained with any
filter

Lero-phase filtering consist in two pass filtering
with inversion of the time

z(n) = h(n) * x(—n)
y(n) = h(n) x z(—n)

After zero phase filtering all the components
of the signal have a delay of O

Zero phase filtering can only be applied for
analysis because the full time-range of the
signal has to be available

(not for real time processing)

2 Ccsem

original signal

u.)

amplitude (a.

T T T T T T T
8.0 8.5 9.0 9.5 10.0 105 11.0 115 12.0
time (s)

signal after arbitrary phase low-pass filter

u.)

amplitude (a.

T T T T T T T
8.0 8.5 9.0 9.5 10.0 105 11.0 115 12.0
time (s)

signal after zero phase low-pass filter

)
N

(a.u.

amplitude

T T T T T T T
8.0 8.5 9.0 9.5 10.0 105 11.0 115 12.0
time (s)



Filters: summary

Two categories of linear filters exists:

FIR filters:
Always stable
Linear phase filters (central or axial symmetry)
Larger number of coefficients to match IIR filters

IR filters:
Stable only when the radius of all poles is smaller than 1
Smaller number of coefficients
No linear phase

Lero-phase filter:
Any linear filter can be used as a zero-phase filter by applying a two-step filtering

Only for post analysis of signals but not for real-time
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Typical exam question

A digital filter is given by
1—-z2
1+1/4-z~2

H(z) =
What are the poles and zeros of
the filtere

What kind of filter is ite

What are the 4 first term of the
Impulse response?
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Labo exercises

3 exercices
I01_ecg_enhance.py
|02_breathing_estimation
I03_hand_washing_detection.py
Groups of 3 pax (2 or 4 if mod(num. people,3)+ 0)
One report for the group
Names and surnames of group’s participants
one section per exercise
discuss results
answer questions
naming: namel_name2_name3_labo1.pdf

optional: at the end of the document free
comment about curse and exercises

upload the same report for each person
individually (delay:1 week)
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numpLy np

scipy.signal

Questions —
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Figure ——
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Typical exam guestions (answer)

An unknown signal is sampled at 6 Hz and
its digital frequency is 1Hz. What are the
four frequencies that can be aliased to this
frequency?

mod(|f — k- fsl”s/,) = If —k- fsl, k€N
K=1->5Hz /Hz
K=2->11Hz, 13Hz

j'.- 2-‘”";?‘

j*iéHz

=PrL :=Csem RGN

In a movie, with 25 frame per second, the
wheel of a caris observed as rotating in
reverse-to-norm direction at 1rps¢e What
are the two first real rotation speeds that
can produce this effect?

f_k'fs:']

K=1->24rps
K=2->49 rps

pewte daechon



Typical exam question

cPEL

In an ECG signal, sampled at 100 Hz,
you want to estimate the heart rate

with a resolution of Y2 bpm using a DFT.

What is the minimum length of the DFT
that ensures this resolution?

/2 bpm =0.5/60=1/120 Hz
NFFT = 100/(1/120) = 12’000 samples

2 Ccsem

A jogger is using a smart watch to measure
his heart rate that is 126 bpm. He is running
at a cadence of 2 Hz. The optical signal is
sampled at 10 Hz. With a DFT computed on
80 samples are you able to differentiate
the peaks of the heart rate and the peak
of the motion?

126 bpm =126/60 =2.1 Hz
Frequency difference =2.1 -=2.0=0.1Hz
DFT resolution = 10/80 = 0.125 Hz

The DFT resolution is not suficcient



Typical exam question

cPEL

A digital filter is given by

H(z) = ——=
2) = 1+1/4-z72

What are the poles and zeros of the filtere

1—2z72=0 - zeros ={-1,1}

1 +i-z‘2 =0 > poles = {—%i,%i}

What kind of filter is it¢

The filter has 1 zero at 1 -> high-pass
The filter has 1 zero at -1 -> low-pass

The filter is a band-pass filter

2 Ccsem

What are the 5 first terms of the impulse
responsee

1— 22 1+1/4.272

—1-1/4.22
—5/4. 272

5/4- 22 +5/16- 2"

5/16 - 274

The first ferms of the impulse response are
[1,0,-5/4,0, 5/16]

L+0-271'=5/4- 2724022 +5/16-27%. ..
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