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Introduction – What is deep learning? 

Artificial 

Intelligence

Machine 

Learning

Deep 

Learning

Ability to mimic 

intelligent human 

behavior

Ability to automatically 

learn and improve from 

experience

Machine learning 

based on deep 

neural networks

Rule-based systems

Depth-first search algorithm

Breadth-first search algorithm

Propositional calculus

Predicate calculus logic

Linear regression

Logistic regression

Support vector machine

Decision trees

Gradient boosting

Principal component analysis

K-means clustering

Recurrent neural networks

Convolutional neural networks

Deep reinforcement learning

Generative adversarial networks

Examples – Non-exhaustive list
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Introduction – Brief history

1943

McCulloch and Pitts

First mathematical model 

of artificial neuron

1958

Rosenblatt

Perceptron

1960

Widrow and Hoff

ADALINE                 

Single layer artificial NN

1969

Minsky and Papert

XOR problem

Rumelhart, Hinton, Williams

Multilayer perceptron (MLP)

Backpropagation

1986

1989

LeCun et al.

Convolutional NN

2012

Krizhevsky, Sutskever, 

Hinton

AlexNet

2014

Goodfellow

Generative adversarial networks

2015

He et al.

ResNet

Skip connection

Deep learning era
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Introduction – Interest

NGRAM – Frequency of words found in printed sources

Deep learning eraBackpropagation
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Introduction – Why Now?

Neural networks date back decades. What has changed?

Big Data

• Larger datasets

• Easier collection and 
storage

Hardware

• Graphics processing 

units (GPUs)

• Parallelization

Software

• Improved techniques

• New models

• Toolboxes
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Perceptron

• Simplest form of a neural network

• Inspired by brain structure and function

• Structural building block of deep learning

• Developed in 1958 by Rosenblatt

• Built based on McCulloch-Pitts model of a neuron

• Supervised learning

• Linear binary classifier 

y

x
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Perceptron

1. Inputs: 𝒙 ∈ ℝ𝑚 with 𝑚 features

2. Weights and bias

Strength of connection between units

3. Weighted sum

4. Activation function

𝑧 = 𝑤1 ∙ 𝑥1 + … + 𝑤𝑚 ∙ 𝑥𝑚 + 𝑏

𝑧 = ෍
1

𝑚

𝑤𝑖 ∙ 𝑥𝑖 + 𝑏

𝑧 = 𝒘𝑇𝒙 + 𝑏

𝒘 =

𝑤1

⋮
𝑤𝑚

  𝒙 =

𝑥1

⋮
𝑥𝑚

 

ො𝑦 = 𝜎 𝑧

x1

1

x2

xm

y

w1

w2

wm

Error

σ
b

z
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Perceptron – Activation function

• Determine whether neuron fires or not

• Map weighted sum into desired range

• Introduce non-linearity

Step function Sign function Sigmoid function

𝜎 𝑧 = ቊ
0 𝑖𝑓 𝑧 ≤ 0
1 𝑖𝑓 𝑧 > 0

 𝜎 𝑧 = ቊ
−1 𝑖𝑓 𝑧 ≤ 0

1 𝑖𝑓 𝑧 > 0
 𝜎 𝑧 =

1

1 + 𝑒−𝑧
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Perceptron example – Logic gates

x1 x2 y

0 0 0

0 1 0

1 0 0

1 1 1

(0, 0)

(0, 1)

(1, 0)

(1, 1)

AND y
x1

x2

• Building blocks of digital system - AND

Example with 𝑏 = −0.8, 𝑤1 = 0.5, 𝑤2 = 0.5

𝑥1 = 0, 𝑥2 = 0 

𝑧 = 0.5 ∙ 0 + 0.5 ∙ 0 + −0.8 = −0.8 < 0

ො𝑦 = 𝜎 𝑧 = 𝜎 −0.8 = 0

𝑥1 = 1, 𝑥2 = 1 

𝑧 = 0.5 ∙ 1 + 0.5 ∙ 1 + −0.8 = 0.2 > 0

ො𝑦 = 𝜎 𝑧 = 𝜎 0.2 = 1

𝑥1 = 0, 𝑥2 = 1 

𝑧 = 0.5 ∙ 0 + 0.5 ∙ 1 + −0.8 = −0.3 < 0

ො𝑦 = 𝜎 𝑧 = 𝜎 −0.3 = 0

𝑧 = 𝑤1 ∙ 𝑥1 + 𝑤2 ∙ 𝑥2 + 𝑏

Σ y

w1

w2

x1

1

x2

b
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(0, 0)

(0, 1)

(1, 0)

(1, 1)

y
x1

x2

OR

Perceptron example – Logic gates

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 1

• Building blocks of digital system - OR

Example with 𝑏 = −0.3, 𝑤1 = 0.5, 𝑤2 = 0.5

𝑥1 = 0, 𝑥2 = 0 

𝑧 = 0.5 ∙ 0 + 0.5 ∙ 0 + −0.3 = −0.3 < 0

ො𝑦 = 𝜎 𝑧 = 𝜎 −0.3 = 0

𝑥1 = 1, 𝑥2 = 1 

𝑧 = 0.5 ∙ 1 + 0.5 ∙ 1 + −0.3 = 0.7 > 0

ො𝑦 = 𝜎 𝑧 = 𝜎 0.7 = 1

𝑥1 = 0, 𝑥2 = 1 

𝑧 = 0.5 ∙ 0 + 0.5 ∙ 1 + −0.3 = 0.2 > 0

ො𝑦 = 𝜎 𝑧 = 𝜎 0.2 = 1

𝑧 = 𝑤1 ∙ 𝑥1 + 𝑤2 ∙ 𝑥2 + 𝑏

Σ y

w1

w2

x1

1

x2

b
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Perceptron algorithm

• Learn weights to draw 

decision boundary

• Converge if there exists 

a separating 

hyperplane between 

the two classes

Perceptron Learning Algorithm

Input: 𝐷 = {𝒙𝑗 , 𝑦𝑗}𝑗=1
𝑛  training set of 𝑛 samples with 𝒙𝑗 ∈ ℝ𝑚 (𝑚 features)

# Weights and bias initialization

𝒘(0) = 𝟎
𝑏(0) = 0
𝑡 ← 0

While no convergence do
 for every (𝒙𝑗 , 𝑦𝑗) ∈ 𝐷 do

  # Compute prediction

  ො𝑦𝑗 = 𝜎 𝒙𝑗
𝑇𝒘(𝑡) + 𝑏

  # Compute error
   𝑒𝑟𝑟𝑜𝑟 = 𝑦𝑗 − ො𝑦𝑗

  # Update weights and bias

  if 𝑒𝑟𝑟𝑜𝑟 ! = 0 then

   𝒘(𝑡+1) ← 𝒘(𝑡) + 𝜂 ∙ 𝑒𝑟𝑟𝑜𝑟 ∙ 𝒙𝑗

    𝑏(𝑡+1) ← 𝑏(𝑡) + 𝜂 ∙ 𝑒𝑟𝑟𝑜𝑟
  else

   𝒘(𝑡+1) ← 𝒘(𝑡)

   𝑏(𝑡+1) ← 𝑏(𝑡)

  𝑡 ← 𝑡 + 1

Output: 𝒘, 𝑏
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Perceptron limitations

• Only solve linearly separable problems

• Cannot solve XOR problem

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0

y
x1

x2

XOR

(0, 0)

(0, 1)

(1, 0)

(1, 1)

?
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Multilayer perceptron (MLP)

• Solve non-linear problems 

• Feedforward artificial neural network

• 3 types of layers: 

• Input layer: Feed in input features

• Hidden layers: Weighted sum and activation 

function 

• Output layer

• Each node in a layer is connected to all 

nodes in next layer

• Each connection has a weight

…

…

Input 
layer

Hidden 
layer

Output 
layer
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MLP – Activation function 

• Introduce non-linearity

Sigmoid Hyperbolic tangent 
(tanh)

𝜎 𝑧 =
1

1 + 𝑒−𝑧 𝜎 𝑧 =
1 − 𝑒−2𝑧

1 + 𝑒−2𝑧
𝜎 𝑧 = max(0, 𝑧)

𝜕𝜎

𝜕𝑧
𝑧 = 𝜎 𝑧 1 − 𝜎 𝑧

𝜕𝜎

𝜕𝑧
𝑧 = 1 − 𝜎 𝑧

2

Rectified linear
(ReLU)

Leaky ReLU

𝜎 𝑧 = ቊ
𝛼𝑧 𝑖𝑓 𝑧 < 0
𝑧 𝑖𝑓 𝑧 ≥ 0

 

𝜕𝜎

𝜕𝑧
𝑧 = ቊ

𝛼 𝑖𝑓 𝑧 < 0
1 𝑖𝑓 𝑧 ≥ 0

 
𝜕𝜎

𝜕𝑧
𝑧 = ቊ

0 𝑖𝑓 𝑧 < 0
1 𝑖𝑓 𝑧 ≥ 0

 

torch.nn.Sigmoid() torch.nn.Tanh() torch.nn.ReLU() torch.nn.LeakyReLU()PyTorch
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Loss

• Measure the cost of incorrect predictions

• How close a predicted value is to the actual value → 𝑙 𝑦𝑖 , ො𝑦𝑖

• Guide the model training process towards correct predictions

• Different loss functions for different problems

• Empirical loss measures the total loss over the entire dataset 

• Also known as objective function, cost function, or empirical risk

𝐿 𝑊, 𝑏 =
1

𝑛
෍

𝑖=0

𝑛

𝑙 𝑦𝑖, ො𝑦𝑖
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Classification loss function 

• Discrete values

• Cross entropy loss

• Classification with 𝑘 classes and output probabilities 

𝑙 𝑦𝑖 , ො𝑦𝑖 = ෍
𝑗=1

𝑘

 𝑦𝑖𝑗∙ 𝑙𝑜𝑔 ො𝑦𝑖𝑗

• PyTorch : torch.nn.functional.cross_entropy(input, target)

• Binary cross entropy loss

• Binary classification with output probabilities 

𝑙 𝑦𝑖 , ො𝑦𝑖 = −  𝑦𝑖∙ 𝑙𝑜𝑔 ො𝑦𝑖 + 1 − 𝑦𝑖 ∙ 𝑙𝑜𝑔 1 − ො𝑦𝑖

• PyTorch : torch.nn.functional.binary_cross_entropy(input, target)
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Regression loss functions

• Continuous values

• Mean absolute error (MAE) or L1 loss 

𝑙 𝑦𝑖 , ො𝑦𝑖 = 𝑦𝑖 − ො𝑦𝑖

• PyTorch : torch.nn.functional.l1_loss(input, target)

• Mean square error (MSE) or L2 loss

𝑙 𝑦𝑖 , ො𝑦𝑖 = 𝑦𝑖 − ො𝑦𝑖
2

• Sensitive to outliers 

• PyTorch : torch.nn.functional.mse_loss(input, target)

• Smooth L1 loss

𝑙 𝑦𝑖 , ො𝑦𝑖 = ൝
0.5 ∙ 𝑦𝑖 − ො𝑦𝑖

2/𝛽 𝑖𝑓 𝑦𝑖 − ො𝑦𝑖 < 𝛽

𝑦𝑖 − ො𝑦𝑖  − 0.5 ∙ 𝛽 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

• Combines benefits of MSE loss and MAE loss

• Beta (𝛽): threshold at which to switch between L1 and L2 loss

• PyTorch : torch.nn.functional.smooth_l1_loss(input, target, beta=1.0)
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Loss optimization

• Find the network weights and bias that achieve the lowest loss

𝑊∗, 𝑏∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑊,𝑏

1

𝑛
෍

𝑖=0

𝑛

𝑙 𝑦𝑖 , 𝑓 𝑥𝑖; 𝑊, 𝑏 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑊,𝑏𝐿 𝑊, 𝑏
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Gradient descent

• Proposed by Cauchy in 1847

• Iterative first-order optimization 

algorithm

• Iteratively adjusts parameters to 

minimize the cost function 

• Function requirements 

• Differentiable – has a derivative for 

each point in its domain 

• Convex – line connecting two points 

does not cross the curve
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Gradient descent

1. Initialize parameters (weights and biases) with random 

values

2. Calculate the empirical loss

𝐿 𝑊, 𝑏 =
1

𝑛
σ𝑖=0

𝑛 𝑙 𝑦𝑖 , ො𝑦𝑖  

3. Calculate the derivative of the empirical loss (gradient) 
𝜕𝐿 𝑊,𝑏

𝜕𝑊
   and   

𝜕𝐿 𝑊,𝑏

𝜕𝑏

4. Make a step in the opposite direction of the gradient. 

Update parameters

𝑊 ← 𝑊 − 𝜂
𝜕𝐿 𝑊,𝑏

𝜕𝑊
 

𝑏 ← 𝑏 − 𝜂
𝜕𝐿 𝑊, 𝑏

𝜕𝑏

5. Repeat steps 2, 3 and 4 until convergence
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Gradient descent - Variants

1. Batch gradient descent
• Update parameters after all training samples

• Long processing time for large training dataset

• Stable gradient and convergence but can be stuck in local 

minimum instead of global one 

2. Stochastic gradient descent (SGD)
• Updates parameters after each training sample

• Faster but loss in computational efficiency

• Noisy gradient due to frequent updates but can escape 

local minimum 

3. Mini-batch gradient descent 
• Combination of batch gradient descent and stochastic 

gradient descent 

• Split training dataset into small batches and updates 

parameters on each of these batches.

• Balance between computational efficiency and speed
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Gradient descent - Variants

4. Momentum
• Reduce high variance in SGD

• Faster convergence in relevant direction 

• Reduce fluctuation in irrelevant direction 

• Exponential moving average over the past gradients

• Assign greater weights on most recent values 

5. Adam (adaptive moment estimation)
• Works with momentum of first and second order 

• Adaptive learning rate for each parameter 

• Reduce speed to avoid jumping over minimum 
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Gradient descent - Variants

Variant
Gradient 

computation
Convergence 

stability
Computational 

cost
Noise in 
updates

Memory 
usage

Best suited for

Batch GD Entire dataset Stable High Low High Small datasets

Stochastic GD
Single data 

point
Noisy

Low per 
iteration

High Low 
Large 

datasets, 
online learning

Mini-Batch GD
Small batch of 

data
Moderate Moderate Moderate Moderate 

Most practical 
applications

Momentum
History + 
gradient

Stable Moderate Reduced Moderate 
Problems with 

oscillations

ADAM
Adaptive per 

parameter
Stable

Moderate to 
high

Low Moderate 
Deep learning, 
large dataset



29

Gradient descent – Learning rate (𝜂) 

• Size of steps taken to reach the 

minimum

• Must be chosen carefully!

• Too high value → Large steps, risk of 

overshooting minimum

• Too small value → Small steps, take 

more time and computations to 

reach minimum 

Too small Too large



30

Gradient descent – Challenges 

1. Local minima and saddle points
• Learning stops when slope of cost function is 

at or close to 0

• Gradient descent can struggle to find the 

global minimum 

2. Vanishing gradient descent 
• Gradients get smaller and smaller, and 

approach 0 

• Parameters updates become insignificant 

• Stop learning and never converges

3. Exploding gradients 
• Gradients get larger and larger 

• Big parameter updates

• Gradient descent diverges
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PyTorch – Gradient-based optimization algorithm 

• Stochastic gradient descent (SGD)

• torch.optim.SGD(params, lr)

• ADAM

• torch.optim.Adam(params, lr)

• Taking an optimization step

for input, target in dataset:

 optimizer.zero_grad()

 output = model(input)

 loss = loss_fn(output, target)

 loss.backward()

 optimizer.step()
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Backpropagation

• Two main passes

• Forward pass

• Compute the predicted values from input data

• Backward pass

• Essential part in the training 

• Compare predicted and target values 

• Compute the gradient of the loss function with respect to each parameter

• Adjust model parameters to decrease error and get closer to target values 

How to compute the gradient?
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Backpropagation

x1

1

x2

xn

w1

w2

wn

Input

σ
b

ො𝑦 𝑦

Output
Target 
value

Σ
Loss 

function 

Derivative 
of loss

dLdzdw

Forward pass

Backward pass
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Backpropagation

𝑥 ⟶ 𝑧 1 ⟶ 𝑎 1 ⟶ 𝑧 2 ⟶ 𝑎 2 ⟶ ⋯ ⟶ 𝑧 𝐿 ⟶ 𝑎 𝐿 = 𝑓 𝑥; 𝑤, 𝑏 = ො𝑦
𝜎 𝜎 𝜎𝑤, 𝑏 𝑤, 𝑏 𝑤, 𝑏

• Forward pass

Layer       ∀ 𝑙 = 1, … , 𝐿

Weighted sum  𝑧(𝑙) = 𝑤(𝑙)𝑎(𝑙−1) + 𝑏(𝑙)

Activation     𝑎(𝑙) =  𝜎 𝑧(𝑙)

𝑎(0) = 𝑥

𝑓 𝑥; 𝑤, 𝑏 = 𝑎 𝐿

⋯⋯

𝑎(𝑙−1)

𝑎1
(𝑙−1)

𝑎2
(𝑙−1)

𝑎𝑘
(𝑙−1)

⋮

𝑎(𝑙) 𝑎(𝑙+1)𝑊(𝑙) 𝑊(𝑙+1)

⋮

𝑎1
(𝑙)

𝑎2
(𝑙)

𝑎𝑘
(𝑙)

⋮

𝑎1
(𝑙+1)

𝑎2
(𝑙+1)

𝑎𝑘
(𝑙+1)

⋮

⋮ ⋮
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Backpropagation

𝑥 ⟶ 𝑧 1 ⟶ 𝑎 1 ⟶ 𝑧 2 ⟶ 𝑎 2 ⟶ ⋯ ⟶ 𝑧 𝐿 ⟶ 𝑎 𝐿 = 𝑓 𝑥; 𝑤, 𝑏 = ො𝑦
𝜎 𝜎 𝜎𝑤, 𝑏 𝑤, 𝑏 𝑤, 𝑏

𝑧𝑗
(𝑙)

= ෍
𝑘

𝑤𝑗𝑘
(𝑙)

𝑎𝑘
(𝑙−1)

+ 𝑏𝑗
(𝑙)

𝑎𝑗
(𝑙)

= 𝜎 𝑧𝑗
(𝑙)

• Forward pass

𝑧𝑗
(𝑙)

𝑎𝑗
(𝑙)

𝑤𝑗1
(𝑙)

σ
𝑤𝑗2

(𝑙)

𝑤𝑗3
(𝑙)

𝑏𝑗
(𝑙)

𝑤𝑗𝑘
(𝑙)

𝑎1
(𝑙−1)

𝑎2
(𝑙−1)

𝑎3
(𝑙−1)

𝑎𝑘
(𝑙−1)

⋮
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Backpropagation

⋯⋯

𝑎(𝑙−1)

⋮

𝑎(𝑙) 𝑎(𝑙+1)𝑊(𝑙) 𝑊(𝑙+1)

⋮

⋮ ⋮

⋮ ⋮

𝑎𝑗
(𝑙)

𝑧𝑗
(𝑙)

𝑤𝑗𝑘
(𝑙)

𝐿(𝑊, 𝑏)



38

Backpropagation – Weight update 

• Update one weight  𝑤𝑗𝑘
(𝑙)

• Compute derivative of cost function with respect to this parameter    
𝜕𝐿(𝑊,𝑏)

𝜕𝑤
𝑗𝑘
(𝑙)  

• Apply chain rule to break a large problem into smaller ones

𝜕𝐿(𝑊, 𝑏)

𝜕𝑤𝑗𝑘
(𝑙)

=
𝜕𝐿(𝑊, 𝑏)

𝜕𝑧𝑗
(𝑙)

𝜕𝑧𝑗
(𝑙)

𝜕𝑤𝑗𝑘
(𝑙)

𝜕𝐿(𝑊, 𝑏)

𝜕𝑤𝑗𝑘
(𝑙)

=
𝜕𝐿(𝑊, 𝑏)

𝜕𝑎𝑗
(𝑙)

𝜕𝑎𝑗
(𝑙)

𝜕𝑧𝑗
(𝑙)

𝜕𝑧𝑗
(𝑙)

𝜕𝑤𝑗𝑘
(𝑙)

𝜕𝐿(𝑊, 𝑏)

𝜕𝑤𝑗𝑘
(𝑙)

= ෍
𝑚

𝜕𝐿(𝑊, 𝑏)

𝜕𝑧𝑚
(𝑙+1)

𝜕𝑧𝑚
(𝑙+1)

𝜕𝑎𝑗
(𝑙)

𝜕𝑎𝑗
(𝑙)

𝜕𝑧𝑗
(𝑙)

𝜕𝑧𝑗
(𝑙)

𝜕𝑤𝑗𝑘
(𝑙)

𝜕𝐿(𝑊, 𝑏)

𝜕𝑤𝑗𝑘
(𝑙)

= ෍
𝑚

𝜕𝐿(𝑊, 𝑏)

𝜕𝑧𝑚
(𝑙+1)

𝑤𝑚𝑗
(𝑙+1)

𝜎′ 𝑧𝑗
(𝑙)

𝑎𝑘
(𝑙−1)

•  

𝑧𝑗
(𝑙)

= ෍
𝑘

𝑤𝑗𝑘
(𝑙)

𝑎𝑘
(𝑙−1)

+ 𝑏𝑗
(𝑙)

𝑎𝑗
(𝑙)

= 𝜎 𝑧𝑗
(𝑙)
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Backpropagation – Weight update 

• Error signal of neuron 𝑗 in layer 𝑙

𝛿𝑗
(𝑙)

=
𝜕𝐿(𝑊, 𝑏)

𝜕𝑧𝑗
(𝑙)

= ෍
𝑚

𝜕𝐿(𝑊, 𝑏)

𝜕𝑧𝑚
(𝑙+1)

𝑤𝑚𝑗
(𝑙+1)

𝜎′ 𝑧𝑗
(𝑙)

= ෍
𝑚

𝛿𝑚
(𝑙+1)

𝑤𝑚𝑗
(𝑙+1)

𝜎′ 𝑧𝑗
(𝑙)

𝜕𝐿(𝑊, 𝑏)

𝜕𝑤𝑗𝑘
(𝑙)

= 𝛿𝑗
(𝑙)

𝑎𝑘
(𝑙−1)

• Update weight         𝑤𝑗𝑘
(𝑙)

← 𝑤𝑗𝑘
(𝑙)

− 𝜂 ∙ 𝛿𝑗
𝑙

𝑎𝑘
𝑙−1
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Backpropagation – Bias update 

• Update one bias  𝑏𝑗
(𝑙)

• Compute derivative of cost function with respect to this parameter  
𝜕𝐿(𝑊,𝑏)

𝜕𝑏
𝑗
(𝑙)  

• Apply chain rule to break a large problem into smaller ones

𝜕𝐿(𝑊, 𝑏)

𝜕𝑏𝑗
(𝑙)

=
𝜕𝐿(𝑊, 𝑏)

𝜕𝑧𝑗
(𝑙)

𝜕𝑧𝑗
(𝑙)

𝜕𝑏𝑗
(𝑙)

𝜕𝐿(𝑊, 𝑏)

𝜕𝑏𝑗
(𝑙)

=
𝜕𝐿(𝑊, 𝑏)

𝜕𝑧𝑗
(𝑙)

∙ 1

𝜕𝐿(𝑊, 𝑏)

𝜕𝑏𝑗
(𝑙)

= 𝛿𝑗
(𝑙)

• Update bias                𝑏𝑗
(𝑙)

← 𝑏𝑗
(𝑙)

− 𝜂 ∙ 𝛿𝑗
𝑙

𝛿𝑗
(𝑙)

=
𝜕𝐿(𝑊, 𝑏)

𝜕𝑧𝑗
(𝑙)

𝑧𝑗
(𝑙)

= ෍
𝑘

𝑤𝑗𝑘
(𝑙)

𝑎𝑘
(𝑙−1)

+ 𝑏𝑗
(𝑙)
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Convolutional neural network (CNN)

• 3 main types of layers

• Convolutional layers

• Pooling layers

• Fully connected layers 
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CNN – Convolutional layer

• Core building block of a CNN

• Use filters that perform convolution operations as it is scanning the input

• Weight sharing

• Generalize to multidimensional input → Convolution 1D, 2D, or 3D

• Preserve signal structure 

• 1D signal remains a 1D signal after convolutional layer

• 2D signal remains a 2D signal after convolutional layer

• Etc.

• Kernel → Field of view of the convolution

• Activation map or output feature map

• Receptive field → Area of the input that the kernel can see
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CNN – Convolutional layer

5 1 0 3 -1 3 0 2 1 -1 0 4

1 1 0 2

Input

Kernel

Output

L

L – l + 1

l
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CNN – Convolutional layer

3 1 0 3 -1 3 0 2 1 -1 0 4Input

Kernel

9Output

2 0 1 1

3 ∙ 2 + 1 ∙ 0 + 0 ∙ 1 + 3 ∙ 1 = 9
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CNN – Convolutional layer

3 1 0 3 -1 3 0 2 1 -1 0 4Input

Kernel

9 4Output

2 0 1 1

1 ∙ 2 + 0 ∙ 0 + 3 ∙ 1 + −1 ∙ 1 = 4
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CNN – Convolutional layer

3 1 0 3 -1 3 0 2 1 -1 0 4Input

Kernel

9 4 2Output

2 0 1 1

0 ∙ 2 + 3 ∙ 0 + −1 ∙ 1 + 3 ∙ 1 = 2
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CNN – Convolutional layer

3 1 0 3 -1 3 0 2 1 -1 0 4Input

Kernel

9 4 2 9 0 9 0 3 6Output

2 0 1 1

1 ∙ 2 + −1 ∙ 0 + 0 ∙ 1 + 4 ∙ 1 = 2
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CNN – Padding

Input

Kernel

Output

• How the border of a sample is handled.

• Padded convolution keeps the output of same length as the input

• Unpadded convolution with kernel >1 crops some border of the sample 
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CNN – Stride

Input

Kernel

Output

• Step size when moving kernel across signal

• By default, slide the kernel by 1 step a time

• Increase stride to downsample the input vector
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CNN – Dilatation

Input

Kernel

Output

• Insert spaces between kernel elements

• Expansion of the receptive field while preserving resolution

• Same computational and memory costs
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CNN – Convolutional layer PyTorch

• Convolutional layer 1D

• torch.nn.Conv1d(in_channels, out_channels, kernel_size, stride, padding, dilatation) 

• Input: (𝑁, 𝐶𝑖𝑛, 𝐿𝑖𝑛) 

• Output: (𝑁, 𝐶𝑜𝑢𝑡, 𝐿𝑜𝑢𝑡) 

𝐿𝑜𝑢𝑡 =
𝐿𝑖𝑛 + 2 ∙ 𝑝𝑎𝑑𝑑𝑖𝑛𝑔 − 𝑑𝑖𝑙𝑎𝑡𝑖𝑜𝑛 ∙ 𝑘𝑒𝑟𝑛𝑒𝑙_𝑠𝑖𝑧𝑒 − 1 − 1

𝑠𝑡𝑟𝑖𝑑𝑒
+ 1

• Convolutional layer 2D

• torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, dilatation) 

• Input: (𝑁, 𝐶𝑖𝑛, 𝐻𝑖𝑛, 𝑊𝑖𝑛) 

• Output: (𝑁, 𝐶𝑜𝑢𝑡, 𝐻𝑜𝑢𝑡, 𝑊𝑜𝑢𝑡) 

𝐻𝑜𝑢𝑡 =
𝐻𝑖𝑛 + 2 ∙ 𝑝𝑎𝑑𝑑𝑖𝑛𝑔 0 − 𝑑𝑖𝑙𝑎𝑡𝑖𝑜𝑛 0 ∙ 𝑘𝑒𝑟𝑛𝑒_𝑠𝑖𝑧𝑒 0 − 1 − 1

𝑠𝑡𝑟𝑖𝑑𝑒 0
+ 1

𝑊𝑜𝑢𝑡 =
𝑊𝑖𝑛 + 2 ∙ 𝑝𝑎𝑑𝑑𝑖𝑛𝑔 1 − 𝑑𝑖𝑙𝑎𝑡𝑖𝑜𝑛 1 ∙ 𝑘𝑒𝑟𝑛𝑒_𝑠𝑖𝑧𝑒 1 − 1 − 1

𝑠𝑡𝑟𝑖𝑑𝑒 1
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CNN – Pooling layer

• Downsampling operation 

• Grouping several activations into a more meaningful one

• Sweep filter across the entire input but no weights 

• Typically applied after convolutional layer

• Provide invariance to deformations

• Most common: 

• Max pooling: each operation selects the maximum value of the current view

• Average pooling: each operation averages the values of the current view
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CNN – Maxpooling  layer

3 1 0 3 -1 3 0 2 1 -1 0 4Input

Kernel

3Output

max 3, 0 = 3
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CNN – Maxpooling  layer

3 1 0 3 -1 3 0 2 1 -1 0 4Input

Kernel

3 3Output

max 0, 3 = 3
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CNN – Maxpooling  layer

3 1 0 3 -1 3 0 2 1 -1 0 4Input

Kernel

3 3 3 2 1 4Output

max 0, 4 = 4
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CNN – Pooling layer PyTorch 

• Average pooling layer 1D

• torch.nn.AvgPool1d(kernel_size, stride, padding) 

• Input: (𝑁, 𝐶𝑖𝑛, 𝐿𝑖𝑛) 

• Output: (𝑁, 𝐶𝑜𝑢𝑡, 𝐿𝑜𝑢𝑡) 

𝐿𝑜𝑢𝑡 =
𝐿𝑖𝑛 + 2 ∙ 𝑝𝑎𝑑𝑑𝑖𝑛𝑔 − 𝑘𝑒𝑟𝑛𝑒𝑙_𝑠𝑖𝑧𝑒

𝑠𝑡𝑟𝑖𝑑𝑒
+ 1

• Average pooling layer 2D

• torch.nn. AvgPool2d(kernel_size, stride, padding) 

• Input: (𝑁, 𝐶𝑖𝑛, 𝐻𝑖𝑛, 𝑊𝑖𝑛) 

• Output: (𝑁, 𝐶𝑜𝑢𝑡, 𝐻𝑜𝑢𝑡, 𝑊𝑜𝑢𝑡) 

𝐻𝑜𝑢𝑡 =
𝐻𝑖𝑛 + 2 ∙ 𝑝𝑎𝑑𝑑𝑖𝑛𝑔 0 − 𝑘𝑒𝑟𝑛𝑒𝑙_𝑠𝑖𝑧𝑒 0

𝑠𝑡𝑟𝑖𝑑𝑒 0
+ 1

𝑊𝑜𝑢𝑡 =
𝑊𝑖𝑛 + 2 ∙ 𝑝𝑎𝑑𝑑𝑖𝑛𝑔 1 − 𝑘𝑒𝑟𝑛𝑒𝑙_𝑠𝑖𝑧𝑒 1

𝑠𝑡𝑟𝑖𝑑𝑒 1
+ 1
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CNN – Fully-connected layer

• Operates on flattened input

• Every input influences every output

• At the end of CNN architecture 

• PyTorch

• torch.nn.Linear(in_features, out_features) 

• Input: (𝑁, 𝐻𝑖𝑛) 

• Output: (𝑁, 𝐻𝑜𝑢𝑡) 

⋮

⋮

⋮ ⋮

⋮ ⋮
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CNN – PyTorch
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Recurrent neural network (RNN)

• Problems dealing with sequential or time series data

• Capture temporal representation

• Typical applications: language translation, natural language processing, 

speech recognition, image captioning 

• Take into account historical information 

• Possibility of processing input of any length

• Model size not increasing with input size

• Weights are shared across time 
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RNN different applications 

One-to-many
Tx = 1, Ty > 1

Many-to-one
Tx > 1, Ty = 1

Many-to-many

Tx = Ty

Many-to-many

Tx ≠ Ty
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RNN

• Empirical loss

• Loss of all time steps defined based on loss at every time step 

𝐿 𝑦, ො𝑦 = ෍
𝑡=1

𝑇𝑦

𝐿 𝑦<𝑡>, ො𝑦<𝑡>

• Backpropagation through time 

• Done at each point in time 

𝜕𝐿(𝑇)

𝜕𝑊
= ෍

𝑡=1

𝑇

ቤ
𝜕𝐿

𝜕𝑊
(𝑡)
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RNN variants

• Long Short-Term Memory units (LSTM)

• Address the problem of long-term 

dependency

• Internal memory cell

• 3 gates (input gate, output gate and forget 

gate) to control the flow of information

• Gated Recurrent Unit (GRU)

• Fewer parameters and faster training 

• 2 gates (reset gate and update gate) to 

control how much and which information to 

retain
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Bidirectional RNN

• Learning not limited to past and present 

• Train the network in two opposite directions

• From beginning to end of a sequence

• From end to beginning of a sequence
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RNN – PyTorch

• LSTM

• torch.nn.LSTM(input_size, hidden_size, num_layers, bidirectional) 

• Input: (𝐿, 𝑁, 𝐻𝑖𝑛) 

• h_0: (𝐷 ∗ 𝑛𝑢𝑚_𝑙𝑎𝑦𝑒𝑟𝑠, 𝐻𝑜𝑢𝑡)

• c_0: (𝐷 ∗ 𝑛𝑢𝑚_𝑙𝑎𝑦𝑒𝑟𝑠, 𝐻𝑐𝑒𝑙𝑙)

• Output: (𝐿, 𝑁, 𝐷 ∗ 𝐻𝑜𝑢𝑡) 

• GRU

• torch.nn.GRU(input_size, hidden_size, num_layers, bidirectional) 

• Input: (𝐿, 𝑁, 𝐻𝑖𝑛) 

• h_0: (𝐷 ∗ 𝑛𝑢𝑚_𝑙𝑎𝑦𝑒𝑟𝑠, 𝐻𝑜𝑢𝑡)

• Output: (𝐿, 𝑁, 𝐷 ∗ 𝐻𝑜𝑢𝑡) 

𝑁: batch size

𝐿: sequence length

𝐷: 2 if bidirectional and 1 otherwise

𝐻𝑖𝑛: input_size

𝐻𝑐𝑒𝑙𝑙: hidden_size

𝐻𝑜𝑢𝑡: hidden_size



67

RNN – PyTorch
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Bias-variance trade-off

  
• Bias → Difference between average prediction of model and correct value

• Variance → How much an estimate varies around its average

• Simple model → High bias and low variance

• Complex model → Low bias and high variance

𝐸𝑟𝑟 𝑥 = 𝐸 መ𝑓 𝑥 − 𝑓 𝑥
2

+ 𝐸 መ𝑓 𝑥 − 𝐸 መ𝑓 𝑥
2

+ 𝜎𝑒
2

𝐸𝑟𝑟 𝑥 =  𝑏𝑖𝑎𝑠2 + 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 + 𝑛𝑜𝑖𝑠𝑒



70

Bias-variance trade-off

  
• Underfitting 

• Model is unable to capture the 

underlying pattern of the data

• High bias and low variance

• Small amount of data, or linear 

model for non-linear data

• High error in training and test sets

• Overfitting 

• Model captures the noise with the 

underlying pattern in data

• Low bias and high variance

• Complex model 

• Low error in training set and high 

error in test set 

Classification

Regression

Underfitting Optimal Overfitting
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Prevent overfitting

1. Get more data

2. Use a model that has the right capacity

• Enough to fit data

• Not too much to fit noise 

• Parameter tuning

3. Average many different models 

• Models with different forms

• Trained on different subsets

4. Use specific regularization techniques
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Data

• Very data hungry

• Rule-based and neural network both need data

• Why is so much training data necessary for neural network?

Large

Small

Less More

Dataset 
size

Domain 
knowledge
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Data

• Quality vs quantity

• Model is as good as the data provided

• Data covering the entire solution space



75• Labs



76

Lab – Instructions 

• Submit report as single PDF file

• Recommended to work in groups of 3 students

• You can prepare one single report for the group 

(name1_name2_name3_lab_NN.pdf)

• But every member must upload the file on Moodle

• Python code is given and provided as Jupyter notebooks

• This practical session is not focused on coding but on questions 

testing your understanding and interpretation of the results. 
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Labs

• Aim

• Define different NN architectures (MLP, CNN, RNN)

• Train model

• Evaluate model

• Interpret results  

• 2 exercises in this lab session on real-life biomedical problems

• Atrial fibrillation classification from interbeat intervals (IBIs)

• Gait classification from stride intervals (duration between steps when walking)
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Labs

• Process locally with a virtual environment rather than using noto

1. Uncompress the compressed file with the experiments.

2. Open a terminal in the uncompressed directory.

3. Create a Python virtual environment to avoid package conflicts.
python –m venv venv

• Activate it.
Linux: source venv/bin/activate

• Windows: venv\Scripts\activate

4. Install the requirements with pip.
python –m pip install --upgrade pip

python –m pip install –r requirements.txt

5. Start JupyterLab.
python –m jupyter lab

https://jupyterlab.github.io/jupyterlab/
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