EES12 — Applied Biomedical
Signal Processing

Infroduction to neural
networks

Clémentine AGUET
CSEM Signal Processing & Al Group

=PFL =Cséem



Content

=PrL

Intfroduction

Perceptron

Multilayer perceptron (MLP)
Loss function

Gradient descent
Backpropagation
Convolutional neural network
Recurrent neural network
Bias-variance trade-off

Data

2 Csem




Intfroduction — What is deep learning?

=PrL

-1

RAVT
Moy

el |

Artificial
Intelligence

Ability to mimic
intelligent human
behavior

Rule-based systems
Depth-first search algorithm
Breadth-first search algorithm
Propositional calculus
Predicate calculus logic

Examples — Non-exhaustive list

Linear regression
Logistic regression
Support vector machine
Decision trees
Gradient boosting
Principal component analysis
K-means clustering

Recurrent neural networks
Convolutional neural networks
Deep reinforcement learning
Generative adversarial networks



Infroduction — Brief history

McCulloch and Pitts Widrow and Hoff Rumelhart, Hinton, Williams Krizhevsky, Sutskever, He et al.

First mathematical model ADALINE Multilayer perceptron (MLP) Hinton ResNet
of arfificial neuron Single layer artificial NN Backpropagation AlexNet Skip connection
| | | | |
1943 1960 1986 2012 2015
1958 1969 1989 2014
| | | |
Rosenblatt  Minsky and Papert LeCun et al. Goodfellow

Perceptron XOR problem Convolutional NN Generative adversarial networks

Deep learning era

=PrL :=Csem



Infroduction — Interest

NGRAM — Frequency of words found in printed sources

0.000400% -

0.000350% -

machine learning

0.000300% -
neural network

0.000250% -
0.000200% -
0.000150% -
deep learning

0.0007100% -

0.000050% -

0.000000% T T T T T T
1940 1950 1960 1970 1980 1950 2000 2010

Backpropagation Deep learning era

=PrL :=Csem



Infroduction - Why Now?e

Neural networks date back decades. What has changede

Big Data Hardware Software
Larger datasets Graphics processing Improved techniques
Easier collection and units (GPUs) New models
storage Parallelization Toolboxes

)9 - PYTORCH

g 1F TensorFlow
s Gaffe

=PrL :=Csem



Content

=PrL

Intfroduction

Perceptron

Multilayer perceptron (MLP)
Loss function

Gradient descent
Backpropagation
Convolutional neural network
Recurrent neural network
Bias-variance trade-off

Data

2 Csem




Perceptron

=PrL

Simplest form of a neural network

Inspired by brain structure and function

Structural building block of deep learning
Developed in 1958 by Rosenblaftt

Built based on McCulloch-Pitts model of a neuron
Supervised learning

Linear binary classifier

2 Csem




Perceptron

=PrL

Inputs: x € R™ with m features
Weights and bias
Strength of connection between units

Weighted sum

Z=W1'X1+ +Wm’xm+b

m W
=Y o:
1 Wm

z=wlx+b

w1 X1
Wi, Xm
Activation function
y=0(z)
2 Csem

Q-

Error




Perceptron — Activation function

=PrL

Determine whether neuron fires or not

Map weighted sum into desired range
Introduce non-linearity

A

Step function
|0 ifz <0
o(z) = {1 if z>0

2 Csem

Sign function

o(z) = {

—1
1

ifz <0
ifz>0

—

S

Sigmoid function

1
o(z) = 1+e7 %




Perceptron example — Logic gates

Building blocks of digital system - AND

0. -
@ I O
o

Z=Wqi X1 +Wy-x,+Db

Example with b = —-0.8, w; = 0.5, w, = 0.5 @

x,=0,x,=0
z=05-04+05-0+(—-08)=-08<0
y=0(z) =0(-0.8)=0

— O O O|I<

(0. 1) x1=0,x,=1
z=05-0+05-14+(-08)=-03<0

y=0(z) =0(-03)=0

x,=1,x,=1
(0, 0) (1. 0) z=05-1+05-1+(—0.8) = 0.2 > 0
y=0(z) =0(02)=1

=PrL :=Csem



Perceptron example — Logic gates

=PrL

Building blocks of digital system - OR

2 Csem

0. -
@ I O
o

Z=Wqi X1 +Wy-x,+Db

Example with b = —-0.3, w; = 0.5, w, = 0.5

x,=0,x,=0
z=05-04+05-0+(—-03)=-03<0
y=0(z)=0(-03)=0

x1=0,x,=1
z=05:-04+05-14+(-03)=02>0
y=0(z) =0(02)=1

x,=1,x,=1
z=05-1+05-1+(=03)=0.7>0
y=0(z)=0(07)=1

(2)



Perceptron algorithm

Perceptron Learning Algorithm

Input: D = {x;,y;}}-, training set of n samples with x; € R™ (m features)
# Weights and bias inifialization

w® =0
p© =
Learn weights fo draw t<0

While no convergence do

for every (x;,y;) € D do
# Compute prediction
_')7] = O'(x]'TW(t) + b)

decision boundary

Converge if there exists

a separafing # Compute error
hyperplane between error = y; =3,

# Update weights and bias
the two classes if error ! = 0 then
wtD « w® + 5. error - x;
b*D « p® 4 p . error
else
wE+D) C p@®
b(t+1) - b(t)
—tet+1

Output: w, b

=PrL :=Csem



=PrL

Perceptron limitations

Only solve linearly separable problems

Cannot solve XOR problem

X

X
N

2 Csem

- O — O

(0, 1)®

(0. 0)

O

?

1,1
O( )

o
(1. 0)



Content

=PrL

Intfroduction

Perceptron

Multilayer perceptron (MLP)
Loss function

Gradient descent
Backpropagation
Convolutional neural network
Recurrent neural network
Bias-variance trade-off

Data

2 Csem




Multilayer perceptron (MLP)

Solve non-linear problems
Feedforward artificial neural network
3 types of layers:

Input layer: Feed in input features

Hidden layers: Weighted sum and activation
function

Output layer

Each node in a layer is connected to all
nodes in next layer

Each connection has a weight

=PrL :=Csem

Input
layer

Hidden
layer

Output
layer



MLP — Activation function

Intfroduce non-linearity

A A A A
J > > > — >
Sigmoid Hyperbolic tangent Rectified linear Leaky RelLU
(tanh) (ReLU)
1 1 —e 22 fz<0
T e N < I vl
L@-o@(-0)  Fo-0-0@)  Fo-{] 1230 To-{{ 1
PyTorch torch.nn.Sigmoid () torch.nn.Tanh () torch.nn.ReLU () torch.nn.LeakyReLU /()

=PrL :=Csem



Content

=PrL

Intfroduction

Perceptron

Multilayer perceptron (MLP)
Loss function

Gradient descent
Backpropagation
Convolutional neural network
Recurrent neural network
Bias-variance trade-off

Data

2 Csem




LOSS

=PrL

Measure the cost of incorrect predictions

How close a predicted value is to the actual value — 1(y;, ¥;)
Guide the model training process towards correct predictions
Different loss functions for different problems

Empirical loss measures the total loss over the entire dataset

Also known as objective function, cost function, or empirical risk
n

1 i
LW, b= 2> 100

2 Csem



Classification loss function

Discrete values

Cross entropy loss
Classification with k classes and output probabilities
k
0090 = ) iy logF,
]=
PyTorch : torch.nn. functional.cross entropy (input, target)

Binary cross entropy loss
Binary classification with output probabilities

Ly, 9i) = —lyi-logyi + (1 —y;) - log(1 — ;)]
PyTorch : torch.nn. functional.binary cross entropy (input, target)

=PrL :=Csem



3 ' ' ' ' i i
Regression loss functions ]
Continuous values
Mean absolute error (MAE) or L1 loss O;
Ly, Y0 = |y — 3l 0

3 -2 -1 0 1 2

PyTorch: torch.nn. functional.1l loss (input, target) _

Mean square error (MSE) or L2 loss
1y 9) = i — 90)°

Sensitive to outliers

PyTorch : torch.nn. functional.mse loss (input, target)
Smooth L1 loss
0.5- (v —¥)?/B iflyi =%l <B
lyi —y;| —0.5-F otherwise
Combines benefits of MSE loss and MAE loss

Beta (B): threshold at which to switch between L1 and L2 |oss
PyTorch : torch.nn. functional.smooth 11 loss (input, target, beta=1.0)

l(yirj}i) —

=PrL :=Csem



Loss optimization

Find the network weights and bias that achieve the lowest loss

1 n
W*, b* = argminy, —z (y;, f(x; W, b)) = argminy, ,L(W, b)
n i1=0

=PrL :=Csem



Content

=PrL

Intfroduction

Perceptron

Multilayer perceptron (MLP)
Loss function

Gradient descent
Backpropagation
Convolutional neural network
Recurrent neural network
Bias-variance trade-off

Data

2 Csem




Gradient descent

Proposed by Cauchy in 1847

A
Iterative first-order optimization Initial e
. il Weight i ’I/ radient

algorithm Cost | | \
lteratively adjusts parameters to incremental
minimize the cost function - \
Function requirements L/

Differentiable — has a derivative for / /‘/ .

each point in its domain Derivative of Cost ™ —|——— e THAIESES

Convex — line connecting two points o >

does not cross the curve

=PrL :=Csem



Gradient descent

=PrL

Initialize parameters (weights and biases) with random
values

Calculate the empirical loss
LW, b) = 31 L(yi, 9))

Calculate the derivative of the empirical loss (gradient)
dL(W,b) d JdL(W,b)
ow db

Make a step in the opposite direction of the gradient.
Update parameters

Wew—n 6Lg/lwll,b)
b b dL(W,b) :
e —
g db 30,,0,).

Repeat steps 2, 3 and 4 until convergence

2 Csem

0,



=PrL

Gradient descent - Variants

Batch gradient descent
Update parameters after all fraining samples
Long processing time for large training dataset
Stable gradient and convergence but can be stuck in local
minimum instead of global one
Stochastic gradient descent (SGD)

Updates parameters after each training sample
Faster but loss in computational efficiency

Noisy gradient due to frequent updates but can escape
local minimum
Mini-batch gradient descent

Combination of batch gradient descent and stochastic
gradient descent

Split training dataset into small batches and updates
parameters on each of these batches.

Balance between computational efficiency and speed

2 Csem




Gradient descent - Variants

Momentum
Reduce high variance in SGD
Faster convergence in relevant direction
Reduce fluctuation in irrelevant direction
Exponential moving average over the past gradients
Assign greater weights on most recent values

Adam (adaptive moment estimation)
Works with momentum of first and second order
Adaptive learning rate for each parameter
Reduce speed to avoid jumping over minimum

=PrL :=Csem



Gradient descent - Variants

=PrL

Gradient Convergence | Computational | Noise in Memory
Variant Best svited for
computation (] o11113% cost updates usage

Batch GD

Stochastic GD

Mini-Batch GD
Momentum

ADAM

2 Csem

Entire dataset

Single data
point

Small batch of
data
History +
gradient
Adaptive per
parameter

Stable

Noisy

Moderate

Stable

Stable

High

Low per
iteration

Moderate

Moderate

Moderate to
high

High

Moderate

Reduced

Low

High

Low

Moderate

Moderate

Moderate

Small datasets

Large
datasets,
online learning

Most practical
applications

Problems with
oscillations

Deep learning,

large dataset



Gradient descent — Learning rate (n)

fiw) fiw)
Size of steps taken to reach the
minimum
Must be chosen carefully! _ _
Too high value — Large steps, risk of " W
overshoofing minimum Too small Too large

Too small value — Small steps, take )
more fime and computations to
reach minimum

loss

low learning rate

high learning rate

good learning rate

\

epoch

=PrL :=Csem



Gradient descent — Challenges

Local minima and saddle points

Learning stops when slope of cost function is
at or close to O

Gradient descent can struggle to find the
global minimum

‘\\\\\\‘4 77

Vanishing gradient descent ,‘“\\\5': S
/’//{.‘ RS
Gradients get smaller and smaller, and J = "/"/ "';‘:‘\\‘\\\%S\ e

approach 0
Parameters updates become insignificant
Stop learning and never converges

Exploding gradients
Gradients get larger and larger Saddle point
Big parameter updates
Gradient descent diverges

Local Minima

Global Minima

=PrL :=Csem



PyTorch — Gradient-based optimization algorithm

Stochastic gradient descent (SGD)
torch.optim.SGD (params, 1r)

ADAM

torch.optim.Adam (params, 1r)

Taking an optimization step

for 1nput, target in dataset:
optimizer.zero grad()
output = model (input)
loss = loss fn(output, target)
loss.backward()
optimizer.step()

=PrL :=Csem



Content

=PrL

Intfroduction

Perceptron

Multilayer perceptron (MLP)
Loss function

Gradient descent
Backpropagation
Convolutional neural network
Recurrent neural network
Bias-variance trade-off

Data

2 Csem




Backpropagation
How to compute the gradient?

TWO main passes

Forward pass

Compute the predicted values from input data
Backward pass

Essential part in the training

Compare predicted and target values
Compute the gradient of the loss function with respect to each parameter

Adjust model parameters to decrease error and get closer to target values

=PrL :=Csem



Backpropagation

Forward pass

Target

Wi o Output value

W, Loss
(OO |t [ O

dw dz dL Derivative
of loss

—

Backward pass

=PrL :=Csem



Backpropagation

Forward pass

X8 (D G, gL ;@) 9, @) .08 W) I, M) = fw, b) =

D O O D gD

Layer vi=1,..,L
Weighted sum  z® = w®gl=D 4 p©
Activation a® = o‘(z(l))

a©® = x

fO;w,b) = al)

=PrL :=Csem



Backpropagation

Forward pass

B L@ 9y gywh

7 = z ](,?a,(cl Doy b(l)

0’ =0 (Zj(l))

=PrL :=Csem

;@ 9, ()

@ooo @@@
s N
o~
—/




Backpropagation

. L(W,b)

=PrL :=Csem



Backpropagation — Weight update

; )
Update one weight Wi
Compute derivative of cost function with respect to this parameter %
ij

Apply chain rule to break a large problem into smaller ones
aL(W,b) OL(W,b) 07"

O Q) Q)
awjk azj awjk
aLW,b)  AL(W,b)da;’ az{"
( ) ) — ( ) ) ] ]

Q) Q) Q) Q)
awjk aa]. azj awjk

l l

dL(W,b) Z ALW,b) 924D\ da” az”
D 1+1 l l l D _ E: D _(1-1) )
aWj(k) m 32751+) aa;) azj()awj(k) > Zj = ijk a +bj

l l
AL(W,b) ALW,B)  aen)\ L/ @\ (1) o = (2")
Ol D Wmj |9 (Zj )ak
6ij m 0z,

=PrL :=Csem



Backpropagation — Weight update

Error signal of neuron j in layer [

dL(W,b dL(W,b
6]_(1) _ 9L( & ) _ Z ((z+1))W$;1) (z) (Z 50D, (z+1)) ( (z))
0z; m 0z,

JdL(W,b _
W.b) _ NOMCEY
owH ;oK

ik

Update weight ij(k)<_wj(k) n - 5(1) (l 1)

=PrL :=Csem



Backpropagation — Bias update

Update one bias bj(l)

Compute derivative of cost function with respect to this parameter %

Apply chain rule to break a large problem into smaller ones
aL(W,b) oL(W,b) 0z

o (l) (z)
o 9b; 2O = Z wOal=D 4 pO
OL(W,b) aL(W b) @
O )
ob; 0z, ) S _ 0L, b) “o
oLW.b) _ j 720
o 9
ob|
Update bias bj(l) - bj(l) —n. 5j(l)

=PrL :=Csem



Content

=PrL

Intfroduction

Perceptron

Multilayer perceptron (MLP)
Loss function

Gradient descent
Backpropagation
Convolutional neural network
Recurrent neural network
Bias-variance trade-off

Data

2 Csem




Convolutional neural network (CNN)

3 main types of layers
Convolutional layers
Pooling layers
Fully connected layers

Fully-
. connected
Convolution layer
layer 1 Convolution
layer 2
d j7 3.
Prd he N -::';
3 12 & , 4’,’::"' ,.\ e X
3§_:_ SECER W 4 RS ig @ ,,,,, @[
il ) 7 0' ----- 6 \:\‘1:==..‘ - 4 t"\:\: 3
36 1217 : > o @
9 Max pooling @
Max pooling PR
layer 1 Output

Input Layer

=PrL :=Csem




CNN - Convolutional layer

Core building block of a CNN

Use filters that perform convolution operations as it is scanning the input
Weight sharing

Generalize to multidimensional input — Convolution 1D, 2D, or 3D

Preserve signal structure
1D signal remains a 1D signal after convolutional layer

2D signal remains a 2D signal after convolutional layer
Efc.

Kernel — Field of view of the convolution
Activation map or output feature map
Receptive field — Area of the input that the kernel can see

=PrL :=Csem



CNN - Convolutional layer

Input 511103 |-1]13]0 -]
) ]
Kernel 1 {110
|
QOutput
) L—1+1

=PrL :=Csem



CNN - Convolutional layer

Input

Kernel

QOutput

=PrL :=Csem

3:-2+1-0+0-1+3-1=9



CNN - Convolutional layer

Input

Kernel

QOutput

=PrL :=Csem

1

1

1-240-0+3-1+(-1)-1=4




CNN - Convolutional layer

Input

Kernel

QOutput

=PrL :=Csem

0

1

1

0:2+3-04+(-1)-14+3-1=2

2




CNN - Convolutional layer

Input 311103 |-1]13]0

Kernel

2

0

1-2+(-1D)-0+0-1+4-1=2

Output 9 4 2 9 0 9

=PrL :=Csem

0O 3



CNN - Padding

How the border of a sample is handled.
Padded convolution keeps the output of same length as the input
Unpadded convolution with kernel >1 crops some border of the sample

H"_"‘\ |
Input 5 6 0 raddne

Kernel

Ox2 + 1x2 + 2x2

Output

=PrL :=Csem



CNN - Stride

Step size when moving kernel across signal
By default, slide the kernel by 1 step a time
Increase stride to downsample the input vector

1x2 + 2x2 + 3x2

=PrL :=Csem



CNN - Dilatation

Insert spaces between kernel elements
Expansion of the receptive field while preserving resolution
Same computational and memory costs

Input

Kernel

1x2 + 3x2 + 5x2

Output

=PrL :=Csem



CNN - Convolutional layer PyTorch

Convolutional layer 1D

torch.nn.Convld(in channels, out channels, kernel size, stride, padding, dilatation)

Input: (N, Ciyy, Lin)
Output: (N, Couts Loyt)

Lin, + 2 - padding — dilation - (kernel_size — 1) — 1
Lour = stride +1

Convolutional layer 2D @

torch.nn.Conv2d(in channels, out channels, kernel size, stride, padding, dilatation)

|npUT: (N, Cin' Hin' Win)
Output: (N, Cout. Houtr Wout)
H;, + 2 - padding|[0] — dilation|0] - (kerne_size[0] — 1) — 1

H,,:= 1
out stride[0] T
W - Wi, + 2 - padding[1] — dilation[1] - (kerne_size[1] — 1) — 1

out = stride[1]

=PrL :=Csem



CNN - Pooling layer

=PrL

Downsampling operation

Grouping several activations into a more meaningful one

Sweep filter across the entire input but no weights
Typically applied after convolutional layer
Provide invariance to deformations

Most common:

Max pooling: each operation selects the maximum value of the current view
Average pooling: each operation averages the values of the current view

2 Csem

< 7 max

avg

©



CNN — Maxpooling layer

Input 311013

Kernel

Output 3

=PrL :=Csem

max(3,0) = 3



CNN — Maxpooling layer

Input 311103 -1]3]0 -]
Kernel

max(0,3) = 3
Output 313

=PrL :=Csem




CNN — Maxpooling layer

Input

Kernel

QOutput

=PrL :=Csem

3|1-1]1 3]0 2 -1
max(0,4) = 4
3 3 3 2 1




CNN - Pooling layer PyTorch

=PrL

Average pooling layer 1D

torch.nn.AvgPoolld (kernel size, stride, padding)
Input: (N, Cip. Lin)

Output: (N, Cout. Lout)

_ Ly + 2-padding — kernel_size +1

out —

stride

Average pooling layer 2D

torch.nn. AvgPoolZd (kernel size, stride, padding)
InpUT: (N, Cin' Hin' Win)
Output: (N, Cout. Houtr Wout)

Hi, + 2 - padding[0] — kernel_size[0]

H = 1
out stride[0] *
W - Wi, + 2 - padding[1] — kernel_size[1] ‘1

out = stride[1]



CNN - Fully-connected layer

Operates on flattened input

Every input influences every output
At the end of CNN architecture
PyTorch

torch.nn.Linear (in features, out features)

Input: (N, H;y,)
Output: (N, H,y¢)

=PrL :=Csem



=P

F

CNN - PyTorch

L :=CsSéem




Content

=PrL

Intfroduction

Perceptron

Multilayer perceptron (MLP)
Loss function

Gradient descent
Backpropagation
Convolutional neural network
Recurrent neural network
Bias-variance trade-off

Data

2 Csem




Recurrent neural network (RNN)

Problems dealing with sequential or time series data

Capture temporal representation

Typical applications: language translation, natural language processing,
speech recognition, image captioning

Take into account historical information

Possibility of processing input of any length

Model size not increasing with input size

Weights are shared across time

=PrL :=Csem



RNN different applications

@<1> g}<2> 1
X 1 t X t
4<0> ‘_. 4 <0> ‘_. - ——
J J
t t 1 i
R
T 2<1> 7<2> p<Te>
- o N J -
One-to-many Many-to-one
T=1T,>1 L>1.T,=1
Q<1> ﬁ<2> @<Ty> ,g<1>
o f f \ f
4<0> ‘_. ~ . 4<0> ‘_. —~ -
J J S
t f t t t
$<1> $<2> .’L‘<TE> .’L‘<1> .’L‘<TE>
o — _ - ) o/ N
Many-to-many Many-to-many

T,=T, T,=T,

=PrL :=Csem




RNN

=PrL

Empirical loss
Loss of all time steps defined based on loss at every time step
T
Ly,y) = Z " Ly<t,5<t>)
t=1
Backpropagation through time
Done at each point in time
gL T oL

oW (g OW

()

2 Csem



RNN variants

=PrL

Long Short-Term Memory units (LSTM)

Address the problem of long-term
dependency

Internal memory cell

3 gates (input gate, output gate and forget
gate) to control the flow of information

Gated Recurrent Unit (GRU)
Fewer parameters and faster training

2 gates (reset gate and update gate) to
control how much and which information to
retain

2 Csem

A
Ct—l //)‘(\ /+\ \ g!‘
(tanh)
fel i . 0t )
(o} o tanh o
ol |1 1 ) IR
J y
xtI
htI
e
e o—p




Bidirectional RNN

Learning not limited to past and present

Train the network in two opposite directions
From beginning to end of a sequence

<0
a’—>
-

From end to beginning of a sequence

S

=PrL :=Csem




RNN — PyTorch

LSTM
torch.nn.LSTM (input size, hidden size, num layers, bidirectional)
Input: (L, N, Hyy) N: batch size

L: sequence length

D: 2 if bidirectional and 1 otherwise

c_0: (D * num_layers, H..j;) H,, : input_size
Output: (L, N, D * H, ;) H,.y: hidden_size

H,,:: hidden_size

h_O: (D * num_layers, H,,;)

GRU

torch.nn.GRU (input size, hidden size, num layers, bidirectional)

Input: (L, N, H;,)
h_O: (D * num_layers, H,y;)
OQutput: (L, N, D * H,,;)

=PrL :=Csem



RNN — PyTorch

torch.nn nn

RnnModel(nn.Module):

input_s
output_
.hidden_size hidden_

.recurrent_layer = nn.GRU(

.hidden_size

.output_layer = nn.Linear( .hidden_size .output_si

forward(
.recurrent_1s

.output_layer(

=PrL :=Csem



Content

=PrL

Intfroduction

Perceptron

Multilayer perceptron (MLP)
Loss function

Gradient descent
Backpropagation
Convolutional neural network
Recurrent neural network
Bias-variance trade-off

Data

2 Csem




Bias-variance tfrade-off

=PrL

Bias — Difference between average prediction of model and correct value
Variance — How much an estimate varies around its average

Simple model — High bias and low variance
Complex model — Low bias and high variance

Err() = (E[f0)] - F0)) + E[(FG0) - E[F0])*] + o2

Err(x) = bias? + variance + noise

Iy =
I Total Error
T
£ :
O
3
s
£
= £ .
7] g | Variance
m s
Bias
Model Complexity
2 Csem
[ X ]

Low Bias

High Bias

Low Variance

High Variance




Bias-variance tfrade-off

Underfitting
Model is unable fo capture the Underfitting Optimal Overfitting
underlying pattern of the data s X
High bias and low variance X
Small amount of data, or linear ;(x X Classification
model for non-linear data X XX X
High error in fraining and test sets , XX X |
Overfitting ¢ . ¢ . o Lo
Model captures the noise with the e g,:"-'-:. ',,.5' . A 7% : o
underlying pattern in data .‘:,,'!'*" ° .:',6' . "!-:j" o Regression
Low bias and high variance » i B

Complex model

Low error in training set and high
error in test set

=PrL :=Csem



Prevent overfitting

Get more data

Use a model that has the right capacity
Enough to fit data
Not oo much to fit noise
Parameter tuning

Average many different models
Models with different forms
Trained on different subsets

Use specific regularization techniques

=PrL :=Csem



Content

=PrL

Intfroduction

Perceptron

Multilayer perceptron (MLP)
Loss function

Gradient descent
Backpropagation
Convolutional neural network
Recurrent neural network
Bias-variance trade-off

Data

2 Csem




Data

Very data hungry
Rule-based and neural network both need data
Why is so much fraining data necessary for neural networke

Large
Dataset
size
Small
Less More
Domain
knowledge

=PrL :=Csem



Data

=PrL

Quality vs guantity
Model is as good as the data provided
Data covering the enfire solution space

2 Csem

Q0
ooO

QUANTITY






Lab — Instructions

=PrL

Submit report as single PDF file
Recommended to work in groups of 3 students

You can prepare one single report for the group
(hamel_name2_named_lab_NN.pdf)

But every member must upload the file on Moodle

Python code is given and provided as Jupyter notebooks

This practical session is not focused on coding but on questions
testing your understanding and interpretation of the results.

2 Csem



Labs

Aim
Define different NN architectures (MLP, CNN, RNN)
Train model
Evaluate model
Interpret results
2 exercises in this lab session on real-life biomedical problems
Aftrial fibrillation classification from interbeat intervals (IBls)
Gait classification from stride infervals (duration between steps when walking)

RR-interval

R

R
P T
ECG
S

Q
=1

peak

PPG \\/\\/\\

foot

=PrL :=Csem



=P

F

Labs

L

Process locally with a virtual environment rather than using noto

Uncompress the compressed file with the experiments.
Open a terminal in the uncompressed directory.

Create a Python virtual environment to avoid package conflicts.
python —-m venv venv

Acftivate if.
LinUX: source venv/bin/activate

Windows: venv\Scripts\activate

Install the requirements with pip.
python -m pip install --upgrade pip
python -m pip install -r requirements.txt

Start JupyterLab.
python -m jupyter lab

2 Csem


https://jupyterlab.github.io/jupyterlab/

	Slide 1: EE512 – Applied Biomedical Signal Processing  Introduction to neural networks
	Slide 2: Content
	Slide 3: Introduction – What is deep learning? 
	Slide 4: Introduction – Brief history
	Slide 5: Introduction – Interest
	Slide 6: Introduction – Why Now?
	Slide 7: Content
	Slide 8: Perceptron
	Slide 9: Perceptron
	Slide 10: Perceptron – Activation function 
	Slide 11: Perceptron example – Logic gates
	Slide 12: Perceptron example – Logic gates
	Slide 13: Perceptron algorithm
	Slide 14: Perceptron limitations
	Slide 15: Content
	Slide 16: Multilayer perceptron (MLP)
	Slide 17: MLP – Activation function 
	Slide 18: Content
	Slide 19: Loss
	Slide 20: Classification loss function 
	Slide 21: Regression loss functions
	Slide 22: Loss optimization
	Slide 23: Content
	Slide 24: Gradient descent
	Slide 25: Gradient descent
	Slide 26: Gradient descent - Variants
	Slide 27: Gradient descent - Variants
	Slide 28: Gradient descent - Variants
	Slide 29: Gradient descent – Learning rate (eta) 
	Slide 30: Gradient descent – Challenges 
	Slide 31: PyTorch – Gradient-based optimization algorithm 
	Slide 32: Content
	Slide 33: Backpropagation
	Slide 34: Backpropagation
	Slide 35: Backpropagation
	Slide 36: Backpropagation
	Slide 37: Backpropagation
	Slide 38: Backpropagation – Weight update 
	Slide 39: Backpropagation – Weight update 
	Slide 40: Backpropagation – Bias update 
	Slide 41: Content
	Slide 42: Convolutional neural network (CNN)
	Slide 43: CNN – Convolutional layer
	Slide 44: CNN – Convolutional layer
	Slide 45: CNN – Convolutional layer
	Slide 46: CNN – Convolutional layer
	Slide 47: CNN – Convolutional layer
	Slide 48: CNN – Convolutional layer
	Slide 49: CNN – Padding
	Slide 50: CNN – Stride
	Slide 51: CNN – Dilatation
	Slide 52: CNN – Convolutional layer PyTorch
	Slide 53: CNN – Pooling layer
	Slide 54: CNN – Maxpooling  layer
	Slide 55: CNN – Maxpooling  layer
	Slide 56: CNN – Maxpooling  layer
	Slide 57: CNN – Pooling layer PyTorch 
	Slide 58: CNN – Fully-connected layer
	Slide 59: CNN – PyTorch
	Slide 60: Content
	Slide 61: Recurrent neural network (RNN)
	Slide 62: RNN different applications 
	Slide 63: RNN
	Slide 64: RNN variants
	Slide 65: Bidirectional RNN
	Slide 66: RNN – PyTorch
	Slide 67: RNN – PyTorch
	Slide 68: Content
	Slide 69: Bias-variance trade-off   
	Slide 70: Bias-variance trade-off   
	Slide 71: Prevent overfitting
	Slide 72: Content
	Slide 73: Data
	Slide 74: Data
	Slide 75
	Slide 76: Lab – Instructions 
	Slide 77: Labs
	Slide 78: Labs

