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Communication

• Next week 

• No lecture nor lab but Q&A session.

• We will be there to answer your questions on lectures, labs, etc.

• Exam

• Question on each labs + 4 exercises (similar to mid-term).

• Open book but no laptop nor smartphone.
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• Neural network recap

• Regularization 

• Different architectures

• Labs

Content
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Neural network recap

• Perceptron

• Neural network building block

• Linear binary classifier
Σ y
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w2

x1

1

x2

b

• Multilayer Perceptron (MLP)

• Feedforward NN

• Solve non-linearly separable problems 

• Each node in a layer is connected to all 
nodes in next layer 

• Series of fully connected layers

• Each connection has a weight

• Deep models = MLP with many layers
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Neural network recap

• Convolutional neural network (CNN)

• Computer vision 

• Extract features hierarchically

• Convolutional layers

• Extract features 

• Apply set of learnable filters (kernel)

• Local connectivity and parameter sharing 

• Pooling layers

• Dimensionality reduction 

• Reduce number of parameters and 

memory usage

• Invariance to transformations

• Fully connected layers 

• Flattened feature maps to 1D

• Final classification or regression task
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Neural network recap

• Recurrent neural network (RNN)

• Natural language processing, 

speech recognition

• Sequential input data 

• Capture temporal representation

• Weights are shared across time 

• Each neuron has an internal memory

• Long Short-Term Memory units (LSTM)

• Gated Recurrent Unit (GRU)
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Neural network recap 

• Find the network weights and bias that minimize the empirical loss

𝑊∗, 𝑏∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑊,𝑏𝐿 𝑊, 𝑏  

1. Calculate cost function 

2. Compute gradient through backpropagation

𝜕𝐿 𝑊,𝑏

𝜕𝑊
   and   

𝜕𝐿 𝑊,𝑏

𝜕𝑏

3. Update parameters

𝑊 ← 𝑊 − 𝜂
𝜕𝐿 𝑊,𝑏

𝜕𝑊
  

𝑏 ← 𝑏 − 𝜂
𝜕𝐿 𝑊,𝑏

𝜕𝑏
  

How neural networks are trained?
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Neural network recap – Compute gradient 
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Neural network recap

• Applications

Speech recognition Autonomous driving cars Natural language processing

Stock market prediction HealthcareFraud detection
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• Neural network recap

• Regularization 

• Different architectures

• Labs 

Content
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Regularization  

• Neural networks are prone to overfitting

• Model does not generalize well on unseen data 

• Low training error but high validation error 

Why?
Classification

Regression

Underfitting Optimal Overfitting

• Regularization

• Slight modifications to learning algorithm such that the model generalizes better

• Lower the complexity

• Combine multiple techniques 
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Regularization – Dropout 

• Avoid relying too much on particular nodes → Learn robust and generalized features

• At every training iteration, randomly remove some nodes

• Each iteration has a different set of nodes 

• Each node has a probability 𝑝 > 0 to be turned off

• 𝑝 is an hyperparameter (typically between 0.2 and 0.5)

• Full capacity during inference →  All nodes used to make predictions

• More efficient in fully connected layers than convolutional layers

• PyTorch: torch.nn.Dropout(p=0.5)
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Regularization – Dropout 

+ Efficient in large networks

+ Easy to implement

+ Computationally efficient

+ Robustness in feature learning

– Stochasticity → Slower convergence

– Not as effective in small networks

– Hyperparameter to tune
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Regularization – L1 & L2 regularization 

• Add regularization term to the cost function 

• Used as penalty

𝐿𝑜𝑠𝑠 =  𝐿𝑜𝑠𝑠 +  𝑅𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑡𝑒𝑟𝑚 

• Ensure that the weights are not too large 

• Smaller weights lead to simpler models → Avoid overfitting

L1 regularization L2 regularization
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Regularization – L1 & L2 regularization 

• L2 regularization

• Weight decay or Ridge regression

• Regularization term Ω 𝑊  is defined as Euclidean norm or L2 norm

Ω 𝑊 = 𝑊 2
2 = ෍

𝑖
෍

𝑗
𝑤𝑖𝑗

2

• Regularization term is weighted by a scalar 𝜆 and divided by 2

• 𝜆 is the regularization rate 

෠𝐿 𝑊, 𝑏 = 𝐿 𝑊, 𝑏 +
𝜆

2
𝑊 2

2

• Compute gradient 
𝜕෠𝐿 𝑊, 𝑏

𝜕𝑊
=

𝜕𝐿 𝑊, 𝑏

𝜕𝑊
+ 𝜆𝑊

• Weights update

𝑊 ← 𝑊 − 𝜂
𝜕෠𝐿 𝑊, 𝑏

𝜕𝑊
= 1 − 𝜂𝜆 𝑊 − 𝜂

𝜕𝐿 𝑊, 𝑏

𝜕𝑊
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Regularization – L1 & L2 regularization 

• L2 regularization

+ General regularization in most NN setups

+ Promoting smoothness → Penalizes large weights and generalizable model

+ Differentiable penalty 

+ Computational efficiency

+ Handling multicollinearity

+ Unique solution 

– Hyperparameter to tune (regularization rate)

– Lack of sparsity → No feature selection

– Sensitivity to irrelevant features 
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Regularization – L1 & L2 regularization 

• L1 regularization

• Lasso regression

• Regularization term Ω 𝑊  is defined as L1 norm (Manhattan distance)

Ω 𝑊 = 𝑊 1 = ෍
𝑖

෍
𝑗

𝑤𝑖𝑗

• Regularization term is weighted by a scalar 𝜆 

• 𝜆 is the regularization rate

෠𝐿 𝑊, 𝑏 = 𝐿 𝑊, 𝑏 + 𝜆 𝑊 1

• Compute gradient 
𝜕෠𝐿 𝑊, 𝑏

𝜕𝑊
=

𝜕𝐿 𝑊, 𝑏

𝜕𝑊
+ 𝜆𝑠𝑖𝑔𝑛 𝑊

• Weights update

𝑊 ← 𝑊 − 𝜂
𝜕෠𝐿 𝑊, 𝑏

𝜕𝑊
= 𝑊 − 𝜂𝜆𝑠𝑖𝑔𝑛 𝑊  − 𝜂

𝜕𝐿 𝑊, 𝑏

𝜕𝑊
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Regularization – L1 & L2 regularization 

• L1 regularization

+ Feature selection through sparsity

+ Remove irrelevant features → Simpler model

+ Enhance interpretability 

+ Robust to outliers

+ Handling high-dimensional data 

+ Computational efficiency

+ Simple and widely applicable

– Hyperparameter to tune (regularization rate)

– Unstable feature selection

– Correlated features 

– Non-differentiability → Complicate optimization (sub-gradient methods)
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Regularization – L1 & L2 regularization 

• Regularization rate (𝝀)

• Hyperparameter to tune

• Should be chosen carefully

• Too high value → Model simpler but increased risk of underfitting

• Too small value → Model more complex and increased risk of overfitting 
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Regularization – L1 & L2 regularization 

L1 regularization L2 regularization

Sum of absolute value of weights Sum of square of weights

Sparse solution Non-sparse solution

Built in feature solution No feature selection

Multiple solutions One solution

Robust to outliers Not robust to outliers



21

Regularization – Early stopping  

• Training for too many epochs can lead to overfitting

• Stop training at maximum generalization

• Make sure the model does not learn the noise in the training data

• Kind of cross-validation strategy

• After each epoch, compute error on unseen data (validation data)

• Stop training as soon as the validation loss reached a plateau or starts to increase
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Regularization – Early stopping  

+ Computational efficiency

+ No architecture modification

+ Simplicity

– Dependency on validation set 

– Hyperparameter to tune (patience)

– Potential underfitting 
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Regularization – Batch normalization 

• Internal covariate shift 

• Shift in input distribution over layers 

• Slow learning 

• Deeper network → Amplified effect 
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Regularization – Batch normalization 

• Reduce internal covariate shift 

• Smooth the loss landscape 

• Improve speed, performance and stability of NN

• Normalize inputs of each layer

• Mean activation output zero and unit variance 

• Run over batch axis

• After a fully connected or convolutional layer and before non-linearity layer 

(activation function)

• PyTorch: torch.nn.BatchNorm1d(num_features, eps=1e-05)



25

Regularization – Batch normalization 

Loffe and Szegedy (2015), Batch normalization: accelerating 

deep network training by reducing internal covariate shift
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Regularization – Batch normalization 

+ Accelerate training → Faster convergence

+ Higher learning rate

+ Improved gradient flow → Reduced vanishing/exploding gradients

+ Reduce sensitivity to initialization

– Dependency on mini-batch size

– Increase computational overhead

– Inconsistent behavior between training and inference 

– Complexity in recurrent networks 
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Regularization – Data augmentation 

• NNs need a lot of data to be properly trained

• More information can be extracted from original data through augmentation

• Increase amount of data 

• Synthetic data → Generated artificially (GANs for example)

• Augmented data → Derived from original images 

• Data augmentation 

• Mostly used with images 

• Get more data from existing ones

• Make minor changes
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Regularization – Data augmentation 

• Others
• Color shift 

• Information loss 

Flip Rotation

Crop Add noise

• Data augmentation for images
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Regularization – Data augmentation 

• Data augmentation for images

• Interpolation to preserve image size

Constant Edge Reflect Symmetric Wrap
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Regularization – Data augmentation 

PyTorch function:

import torch 

from torchvision import transform

transform = transforms.Compose([

  transforms.RandomHorizontalFlip(p=0.5),

transforms.RandomVerticalFlip(p=0.5),

transforms.RandomRotation(degrees, interpolation),

transforms.Resize(size, interpolation),

tranforms.RandomCrop(size, padding),

transforms.ToTensor()

])
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Regularization – Data augmentation 

• Data augmentation for time series 

• Some geometric transformations might change the signal properties

• Less investigations
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Regularization – Data augmentation 

+ Introduction of invariance and robustness

+ Reduced need for costly data collection

+ No modification to the model architecture

– Potential introduction of noise and irrelevant variations

– Risk of label inconsistency

– Domain-specific design and expertise required 

– Increased computational overhead

– Not universally applicable across all data types
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• Neural network recap

• Regularization

• Different architectures

• Labs 

Content
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• Different architectures

• Siamese network

• Generative adversarial network

• Explainable neural network

Content
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Siamese network

• Two or more identical subnetworks sharing the same parameters and weights

• Compare two inputs → How similar or dissimilar they are

• Learn representations to compare inputs similarity 

1. Inputs are passed into twin networks simultaneously

2. Each subnetwork extracts features from its respective input

3. Features are combined to measure distance/similarity between inputs

+ Learning from few examples

+ Weight sharing 

– Training complexity

– Distance function sensitivity 
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Siamese network - Applications

Face recognition Signature verification One-shot learning

Text similarity Image matching
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Siamese network

• GOAL 

• Estimate blood pressure (BP) from 

photoplethysmography (PPG) signal

• Feature learning approach 

→ Automatic feature extraction

• Siamese architecture 

Schlesinger et al. 2020, Blood pressure estimation from PPG signals 

using convolutional neural networks and Siamese network 
IEEE International Conference on Acoustics, Speech and Signal 

Processing (ICASSP)
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Siamese network – Blood pressure (BP)

• #1  risk factor of cardiovascular diseases

• 1.28 billon people affected

• 46% no noticeable symptoms 

• Occlusive 

• Intermittent

• Uncomfortable

Cuff-based BP measurement
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Siamese network – Photoplethysmography (PPG)

• Measure of changes in light absorption 

• Related to blood volume variations

• Light source to illuminate tissue

• Photodetector to measure changes in 

light intensity

• Information on cardiovascular system

• Blood oxygen saturation

• Heart rate

• Blood pressure 
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Siamese network – Data

• MIMIC-II database [1]

• 1459 patients in intensive care unit (ICU)

[1] M. Saeed et al., "Multiparameter Intelligent Monitoring in Intensive Care II (MIMIC-II): a 

public-access intensive care unit database," Critical Care Medicine, vol. 39, no. 5, p. 952, 2011.

https://archive.physionet.org/mimic2/

spectrogram 

of 30-second PPG window

PPG BP arterial line
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Siamese network

• Preprocessing 

• Remove unreliable windows

• Remove unreliable patients

• Remove outliers 
No physiological BP BP fluctuation 

within 30s window

Noisy PPG and 

ABP signals

~105 30s windows 

from 304 patients
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Siamese network

• Calibration 

• PPG waveform variability due to individual-specific characteristics or 

external factors 

• Measure taken at the doctor office

• Using subject mean value

• Partly or completely retraining the model
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Siamese network

• Calibration 

• First available 30s window

• Using Siamese network

• 2 identical subnetworks with same architecture and parameters 

• Working in parallel on two different inputs (calibration and current PPG) to 

compute feature vectors

• Compare inputs by computing the difference between feature vectors. 
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Siamese network

• CNN architecture

• Inspired by AlexNet 

• Regularization with batch normalization 

• L1 loss function 

• Regression problem → Linear layer  at the end 

AlexNet
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Siamese network

• Similar approach

• C. Aguet et al. - Feature learning for blood 

pressure estimation from 

photoplethysmography (2021)

• Ensemble average pulse over 20s 

window of PPG and its derivatives

• Siamese CNN

• F.M. Dias et al. - Exploring the limitations of 

blood pressure estimation using the 
photoplethysmography signal (2024)

• 24s PPG segments

• Siamese ResNet
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• Different architectures

• Siamese network

• Generative adversarial network 

• Explainable neural network

Content



47

Generative adversarial network

• Proposed by Ian Goodfellow in 2014

• Generating new samples from scratch

• Learning by comparison 

• Generator

• Generate realistic-looking synthetic data

• Try to fool discriminator

• From noise to sample

• Low to high dimensional space

• Discriminator

• Distinguish generated and real samples

• Binary classifier 

• From sample to decision

• High to low dimensional space 
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Generative adversarial network

Counterfeiter
Generator 

Police
Discriminator 

Fake 

money

Real

money
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Generative adversarial network

• GAN training 

• Approximating data distribution and sampling from such approximation 

• Adversarial learning → Two network fight against each other 

• Simultaneous training → Alternating Generator and Discriminator updates

• Discriminator 

• Maximize probability of assigning correct class → Maximize 𝑙𝑜𝑔𝐷 𝑋

• Generator 

• Maximize Discriminator uncertainty → Minimize 𝑙𝑜𝑔 1 − 𝐷 𝐺 𝑋  

𝑚𝑖𝑛𝐺𝑚𝑎𝑥𝐷 𝔼𝑋~𝜇 𝑙𝑜𝑔𝐷 𝑋 + 𝔼𝑋~𝜇𝑍
𝑙𝑜𝑔 1 − 𝐷 𝐺 𝑋

𝑚𝑖𝑛𝐺𝑚𝑎𝑥𝐷 𝔼𝑋~𝜇 𝑙𝑜𝑔𝐷 𝑋 + 𝔼𝑋~𝜇𝐺
𝑙𝑜𝑔 1 − 𝐷 𝑋
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Generative adversarial network

• Applications

Image-to-image 

translation

Text-to-image 

synthesis

Face aging
New poses 

generation
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Generative adversarial network

Sarkar and Etemad 2020, CardioGAN: Attentive generative 

adversarial network with dual discriminators

AAAI conference on artificial intelligence 

• GOAL

• Use of ECG device for continuous heart rate (HR) 
monitoring 

• PPG to ECG translation  
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Generative adversarial network

• Electrocardiogram (ECG) 

• Electrical measurement of cardiac activity

• Continuous health monitoring

• Complicated integration into wearables 

→ Non-continuous and sporadic measure ECG

PPG

• Photoplethysmogram (PPG)

• Optical measurement of volumetric 
changes in blood circulation

• Simple, wearable-friendly, and low-cost
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Generative adversarial network

• Popular ECG-PPG datasets

• BIDMC database – 53 ICU subjects, 8min

• CAPNO database – 42 subjects, 8mim

• DALIA database – 15 subjects, ~2h during daily life activities 

• WESAD database – 15 subjects, >1h performing specific tasks

• EGC and PPG preprocessing

1. Resampling to 128 Hz

2. Filtering – band-pass FIR filter

3. Z-score normalization on recording (zero mean and unit variance)

4. Segmentation into 4s windows (512 data points)

5. Min-max normalization on window [-1, 1]
ECG

PPG



54

Generative adversarial network

• Generator (G) 

• Forward mapping: 𝐺𝐸: 𝑃 → 𝐸

• Fake ECG: 𝐸′ = 𝐺𝐸 𝑃

• Reconstructed PPG: 𝑃′′ = 𝐺𝑃 𝐺𝐸 𝑃

• Discriminator (D)

• Time-domain: 𝐷𝐸
𝑡 : 𝐸 𝑣𝑠 𝐸′

• Frequency-domain: 𝐷𝐸
𝑓

: 𝑓 𝐸  𝑣𝑠 𝑓 𝐸′

• With 𝑓 𝑥 = 𝑆𝑇𝐹𝑇 𝑥

• Short-Time Fourier Transform

Learn the mapping between PPG (P) and ECG (E)
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Generative adversarial network

• Adversarial loss

• Forward 

• Time-domain → 𝐿𝑎𝑑𝑣 𝐺𝐸 , 𝐷𝐸
𝑡 = 𝐸𝑒~𝐸 𝑙𝑜𝑔 𝐷𝐸

𝑡 𝑒 + 𝐸𝑝~𝑃 𝑙𝑜𝑔 1 − 𝐷𝐸
𝑡 𝐺𝐸 𝑝

• Frequency-domain → 𝐿𝑎𝑑𝑣 𝐺𝐸 , 𝐷𝐸
𝑓

= 𝐸𝑒~𝐸 𝑙𝑜𝑔 𝐷𝐸
𝑓

𝑓 𝑒 + 𝐸𝑝~𝑃 𝑙𝑜𝑔 1 − 𝐷𝐸
𝑓

𝑓 𝐺𝐸 𝑝

• Backward 

• Time-domain → 𝐿𝑎𝑑𝑣 𝐺𝑃, 𝐷𝑃
𝑡

• Frequency-domain → 𝐿𝑎𝑑𝑣 𝐺𝐸 , 𝐷𝐸
𝑓
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Generative adversarial network

• Cycle loss

𝐿𝑐𝑦𝑐𝑙𝑒 𝐺𝐸 , 𝐺𝑃 = 𝐸𝑒~𝐸 𝐺𝐸 𝐺𝑃 𝑒 − 𝑒
1

+ 𝐸𝑝~𝑃 𝐺𝑃 𝐺𝐸 𝑝 − 𝑝
1

• 𝑝 → 𝐺𝐸 𝑝 → 𝐺𝑃 𝐺𝐸 𝑝 ≈ 𝑝

• 𝑒 → 𝐺𝑃 𝑒 → 𝐺𝐸 𝐺𝑃 𝑒 ≈ 𝑒

• Final loss

𝐿𝐶𝑎𝑟𝑑𝑖𝑜𝐺𝐴𝑁 = 𝛼𝐿𝑎𝑑𝑣 𝐺𝐸 , 𝐷𝐸
𝑡 + 𝛼𝐿𝑎𝑑𝑣 𝐺𝑃, 𝐷𝑃

𝑡 + 𝛽𝐿𝑎𝑑𝑣 𝐺𝐸 , 𝐷𝐸
𝑓

+ 𝛽𝐿𝑎𝑑𝑣 𝐺𝑃, 𝐷𝑃
𝑓

+ 𝜆𝐿𝑐𝑦𝑐𝑙𝑒 𝐺𝐸 , 𝐺𝑃

• 𝛼 and 𝛽 are adversarial loss coefficients

• 𝜆 cycle consistency loss coefficient 



57

Generative adversarial network

                    

 
 
 
  
 
 
 
 

 
  
 
  
 
  
 
 
 

 
 
  
  
 
 
 

ECG generated by CardioGAN provides more reliable heart 

rate measurements compared to the original input PPG
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• Different architectures

• Siamese network

• Generative adversarial network

• Explainable neural network 

Content
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Explainable neural network
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Explainable neural network

• Critics of ML → “black-box” model

• System that can produce valuable output, but which human might not 

understand

• But carefully constructed ML model can be verifiable and understandable

• Interpretable model = can tell how the model came to a decision 

Input Output
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Explainable neural network

• Some ML methods are more 

interpretable than others

• Linear regression, decision trees, 

generative additive models are 

inherently interpretable 

• Interpretability often comes at the 

expense of power and accuracy

• Trade-off between interpretability 

and accuracy
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Explainable neural network

• Intrinsic 

• Explainability built into the model

• Achieved by restricting the model complexity 

• Examples: linear regression, decision tree, etc.

• Post-hoc 

• Interpretable techniques help to reveal how models make predictions 

• After training  

• Examples: permutation feature importance
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Explainable neural network

• Global 

• Understanding how the complete model works

• Examples: Partial dependence plot (PDP), permutation feature importance, etc.

• Local 

• Understanding how a single decision was reached

• Examples: Local surrogate model (LIME), SHAP

Global Local
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Explainable neural network

• CNN for image classification 

• Visualize features to understand what the network is seeing 

• Each layer learns a specific feature

• Higher layers learn more complex features based on simpler features learned 

by lower layers 
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Explainable neural network

Liu et al. 2022, Multiclass arrhythmia detection and 

classification from photoplethysmography signals using a deep 

convolutional neural network 

Journal of the American Heart Association

• GOAL 

• Classify multiclass arrhythmia types using PPG 

and deep CNN 
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Explainable neural network

• DATA

• 242 patients with arrhythmia receiving radiofrequency 

catheter ablation 

• At Fuwai Hospital, Chinese Academy of Medical Sciences

• fingertip PPG

• 3-lead ECG for reference
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Explainable neural network

• Preprocessing

1. Signal downsampling (250 to100 Hz)

2. Denoising with bandpass filtering 

• ECG from 0.5 to 50 Hz 

• PPG from 0.5 to 10 Hz

3. Segmentation 

• Split into 10s non-overlapping segments

4. Segment normalization 

5. Signal quality exclusion

• Remove segments with artifacts in PPG

• Remove segments with noisy ECG reference

6. Labels

• Annotation of ECG segments from 2 cardiologists

• Create labels according to ECG annotations  

ECG

PPG

118’217 labeled 10s 
PPG segments from 

228 patients
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Explainable neural network

• Each segment has only 1 identified rhythm type

Rhythm type Number of segments

Sinus rhythm 38081

Premature ventricular contraction (PVC) 11372

Premature atrial contraction (PAC) 11248

Ventricular tachycardia (VT) 5783

Supraventricular tachycardia (SVT) 12539

Atrial fibrillation (AF) 39194
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Explainable neural network

• Split data

• 60% of patients in training set

• 20% of patients in validation set

• 20% of patients in test set
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Explainable neural network

• Multiclass rhythm classification from PPG

• Model 

• Based on VGGNet-16 (deep CNN)

• Adapted for 1-dimensional input signal 

• 13 convolutional layers

• 5 max-pooling layers

• 3 fully connected layers

• Input: 10-second PPG segment 

• Output: label prediction of one of the rhythm type
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Explainable neural network
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Explainable neural network

• Visualization of proposed DCNN

• Improve understanding of model decision 

• Highlight regions in PPG important for the model prediction 

• t-distributed stochastic neighbor embedding (t-SNE)

• Non-linear dimensionality reduction technique 

• Embedding high-dimensional data for visualization in low dimensional space

• Guided gradient-weighted class activation mapping (Grad-CAM)

• Fine-grained guided backpropagation 

• Gradient-weighted class activation mapping 

• Create high-resolution class-discriminative heatmap from final convolutional 

layer 
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Explainable neural network

• t-distributed stochastic neighbor embedding 

Layer 2 Layer 13Layer 7
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Explainable neural network

Sinus rhythm

PVC
Premature ventricular contraction 

PAC
Premature atrial contraction 

VT
Ventricular tachycardia 

SVT
Supraventricular tachycardia 

AF
Atrial fibrillation 



75

• Neural network recap

• Regularization 

• Different architectures

• Labs 

Content
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Lab – Instructions 

• Submit report as single PDF file

• Recommended to work in groups of 3 students

• You can prepare one single report for the group 

(name1_name2_name3_lab_NN2.pdf)

• But every member must upload the file on Moodle

• Python code is given and provided as Jupyter notebooks

• This practical session is not focused on coding but on questions 

testing your understanding and interpretation of the results.

• 2 exercises in this lab session on real-life biomedical problems. 
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Lab – Heart rate classification

• GOAL: Estimate heart rate (HR) from PPG and acceleration signal

• Focus on sitting and walking 

• DATA: 

• PPG-DaLiA dataset https://archive.ics.uci.edu/ml/datasets/PPG-DaLiA

• 15 subjects

• Photoplethysmography (PPG) signals

• 3D acceleration signals

• Reference HR computed from ECG signal

https://archive.ics.uci.edu/ml/datasets/PPG-DaLiA
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Lab – Heart rate classification

Model training

Adam optimizer

Mean squared error loss

30 epochs

Batch size = 100

Learning rate = 0.0001
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Add batch normalization

Add dropout
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Lab – ECG rhythm classification 

• GOAL – Train NN to classify different cardiac rhythms from single-lead ECG signals

• Normal sinus rhythm

• Sinus bradycardia

• Sinus tachycardia 

• Atrial fibrillation 

• Atrial Flutter

• DATA 

• Subset of large scale 12-lead ECG database for arrhythmia study 

https://physionet.org/content/ecg-arrhythmia/1.0.0/

• 1500 single-lead (lead II) ECG signals of each rhythm

https://physionet.org/content/ecg-arrhythmia/1.0.0/
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Lab – ECG rhythm classification 

• ECG – Recording of the heart’s electrical activity
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Lab – ECG rhythm classification 

• Normal sinus rhythm

• P wave before QRS complex,

• Regular rhythm

• Rate = 60-100 bpm at rest

• Sinus tachycardia

• P wave before QRS complex

• Regular rhythm

• Rate > 100 bpm at rest

• Sinus bradycardia

• P wave before QRS complex

• Regular rhythm

• Rate < 60 bpm at rest
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Lab – ECG rhythm classification 

• Atrial fibrillation

• No distinct P wave before QRS complex

• Very irregular rhythm

• Atrial flutter

• “Sawtoothed” patttern of P wave

• Irregular rhythm 
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Lab – ECG rhythm classification 
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Normal sinus rhythm

Sinus bradycardia

Sinus tachycardia

Atrial fibrillation

Atrial flutter

Encoded rhythm

Model training

Adam optimizer

Cross entropy loss

50 epochs

Batch size = 100

Learning rate = 0.0001

Custom architectures

Add convolutional layers

Add fully connected layers

Add regularization

Etc.
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Labs

• Process locally with a virtual environment rather than using noto.

• (Recommended) run the experiments using last week notebooks.

1. Complete last week lab directory with the new notebooks and the new datasets.

2. Open a terminal in the directory.

3. Activate virtual environment.

• Linux: source venv/bin/activate

• Windows: venv\Scripts\activate

4. Start JupyterLab.
python –m jupyter lab

https://jupyterlab.github.io/jupyterlab/
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