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Communication

Next week
No lecture nor lab but Q&A session.
We will be there to answer your questions on lectures, labs, etc.

Exam
Question on each labs + 4 exercises (similar to mid-term).
Open book but no laptop nor smartphone.
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Neural network recap

Percepiron

Neural network building block
Linear binary classifier

Multilayer Perceptron (MLP)
Feedforward NN

Solve non-linearly separable problems

Each node in alayeris connected to all
nodes in next layer

Series of fully connected layers
Each connection has a weight
Deep models = MLP with many layers
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Neural network recap

Convolutional neural network (CNN)

Computer vision
Extract features hierarchically

Convolutional layers
Extract features
Apply set of learnable filters (kernel)
Local connectivity and parameter sharing

Pooling layers
Dimensionality reduction

Reduce number of parameters and
memory usage

Invariance to transformations

Fully connected layers
Flattened feature maps to 1D
Final classification or regression task
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Neural nhetwork recap
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Recurrent neural network (RNN)
Natural language processing,
speech recognition
Sequential input data
Capture temporal representation
Weights are shared across time
Each neuron has an internal memory

Long Short-Term Memory units (LSTM)
Gated Recurrent Unit (GRU)
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Neural network recap

How neural networks are frained?¢
Find the network weights and bias that minimize the empirical loss
W*,b* = argminy, ,L(W,b)
Calculate cost function

Compute gradient through backpropagation
oLwp) 4 OLIWb)

oW b
Update parameters
W e W — p 2LVD)
oW
b p_ g 2LV
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Neural network recap — Compute gradient

Forward pass O _z O (D
k

Q]
p a®
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b Target
Output value

W, Loss
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Backward pass
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Neural nhetwork recap

Applications

?'!'

Speech recognition

Stock market prediction Fraud detection Healthcare
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Regularization
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Whye

Neural networks are prone to overfitting
Model does not generalize well on unseen data
Low training error but high validation error

Regularization

Underfitting

Optimal

Overfitting
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Regression

Slight modifications to learning algorithm such that the model generalizes better

Lower the complexity
Combine multiple techniques
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Regularization — Dropout

Avoid relying too much on particular nodes — Learn robust and generalized features
At every fraining iteration, randomly remove some nodes

Each iteration has a different set of nodes

Each node has a probability p > 0 to be turned off

p is an hyperparameter (typically between 0.2 and 0.5)

Full capacity during inference — All nodes used to make predictions

More efficient in fully connected layers than convolutional layers

PyTorch: torch.nn.Dropout (p=0.5)
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Regularization — Dropout

+ Efficient in large networks

+ Easy fo implement

+ Computationally efficient

+ Robustness in feature learning
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— Stochasticity — Slower convergence
— Not as effective in small networks
— Hyperparameter to tune
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Regularization — L1 & L2 regularization

=PrL

Add regularization ferm to the cost function
Used as penalty

Loss = Loss + Regularization term

Ensure that the weights are not too large
Smaller weights lead to simpler models — Avoid overfitting

L1 regularization

2 Csem
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Regularization — L1 & L2 regularization

L2 regularization
Weight decay or Ridge regression
Regularization term Q(W) is defined as Euclidean norm or L2 norm

aw) = IWiE= > wj

Regularization term is weighted by a scalar A and divided by 2
A is the regularization rate

- A
L(W,b) = L(W,b) + 5 IWIi3

Compute gradient
OL(W,b) OL(W,b)

ow ow
Weights update
OL(W,b) OL(W,b)
WeW-—n W (1—-—n))W —n W
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Regularization — L1 & L2 regularization

L2 regularization
+ General regularization in most NN setups
Promoting smoothness — Penalizes large weights and generalizable model
Differentiable penalty
Computational efficiency
Handling multicollinearity
Unique solution

+ + + + +

— Hyperparameter to tune (regularization rate)
— Lack of sparsity — No feature selection
— Sensitivity to irrelevant features
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Regularization — L1 & L2 regularization

L1 regularization
Lasso regression
Regularization term Q(W) is defined as L1 norm (Manhattan distance)

aw) = Wl =) D |w,

Regularization term is weighted by a scalar A
A is the regularization rate
L(W,b) = L(W,b) + A||W]l,

Compute gradient
OL(W,b) OL(W,b)

W - W + Asign(W)
Weights update
WeW-—n 9L, b) =W —nisign(W) —n OLW, b)
ow ow
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Regularization — L1 & L2 regularization
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L1 regularization
+ Feature selection through sparsity

+ + + + + +

Remove irrelevant features — Simpler model
Enhance interpretability

Robust to outliers

Handling high-dimensional data
Computational efficiency

Simple and widely applicable

Hyperparameter to tune (regularization rate)

Unstable feature selection

Correlated features

Non-differentiability — Complicate optimization (sub-gradient methods)
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Regularization — L1 & L2 regularization
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Regularization rate (1)
Hyperparameter to fune

Should be chosen carefully
Too high value — Model simpler but increased risk of underfitting
Too small value — Model more complex and increased risk of overfitting

Lambda 0 Lambda 0.5 Lambda 1000
MSE Test= 1.04e+01 MSE Test= 6.84e-02 MSE Test= 4.93e-01
MSE Train= 4.99e-03 MSE Train= 7.59e-02 MSE Train= 4.27e-01
— Model| —  Model — Model
True function True function True function
e Samples e Samples e Samples




Regularization — L1 & L2 regularization
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L1 regularization

Sum of absolute value of weights

Sparse solution
Built in feature solution
Multiple solutions
Robust to outliers

WZ

2 Csem

L2 regularization

Sum of square of weights

Non-sparse solution
No feature selection
One solution
Not robust to outliers




Regularization — Early stopping

=PrL

Training for too many epochs can lead to overfitting

Stop training at maximum generalization

Make sure the model does not learn the noise in the training data

Kind of cross-validation strategy

After each epoch, compute error on unseen data (validation dataq)

Stop training as soon as the validation loss reached a plateau or starts to increase

A
Error

Validation

Training

: >
early stopping Epochs
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Regularization — Early stopping

+ Computational efficiency
+ No architecture modification
+ Simplicity

— Dependency on validation set

— Hyperparameter to tune (patience)
— Potential underfitting
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Regularization — Batch normalization

040 4

Internal covariate shift 035 -
Shift in input distribution over layers .
Slow learning E
Deeper network — Amplified effect o0

005 1

000 A
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Regularization — Batch normalization
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Batch Norm

Reduce internal covariate shift
Smooth the loss landscape
Improve speed, performance and stability of NN
Normalize inputs of each layer

Mean activation output zero and unit variance
Run over batch axis

) BTy

After a fully connected or convolutional layer and before non-linearity layer
(activation function)

PyTorch: torch.nn.BatchNormld (num features, eps=1e-05)
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Regularization — Batch normalization

Input: Values of z over a mini-batch: B = {z1._.,, };
Parameters to be learned: v,
Output: {y; = BNW,B(%‘)} Batch Norm
1 «— -
Up & — Z i oF // mini-batch mean
gt
2 1 = 2 — )
op — z:(xz — UB) // mini-batch variance
i=1
T; — i // normalize
\/ 0?3 -+ i€
yi < vx; + B = BN, g(x; // scale and shift
v,B

Loffe and Szegedy (2015), Batch normalization: accelerating
deep network training by reducing internal covariate shift
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Regularization — Batch normalization

Accelerate training — Faster convergence

Higher learning rate

Improved gradient flow — Reduced vanishing/exploding gradients
Reduce sensitivity to inifialization

+ + + +

— Dependency on mini-batch size

— Increase computational overhead

— Inconsistent behavior between training and inference
— Complexity in recurrent networks
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Regularization — Data augmentation

NNs need a lot of data to be properly trained
More information can be extracted from original data through augmentation
Increase amount of data

Synthetic data — Generated artificially (GANs for example)
Augmented data — Derived from original images @

Data augmentation
Mostly used with images
Get more data from existing ones
Make minor changes
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Regularization — Data augmentation

Data augmentation for images

Flip Rotation
Crop Add noise
Others
Color shift

Information loss
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Regularization — Data augmentation

Data augmentation for images
Interpolation to preserve image size

Constant Edge Reflect
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Regularization — Data augmentation

PyTorch function:

import torch
from torchvision import transform

transform = transforms.Compose (/[

transforms.RandomHorizontalFlip (p=0.5),
transforms.RandomVerticalFlip (p=0.5),
transforms.RandomRotation (degrees, interpolation),
transforms.Resize (size, interpolation),
tranforms.RandomCrop (size, padding),
transforms.ToTensor ()

O

PyTorch

1)
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Regularization — Data augmentation

Data augmentation for time series
Some geometric transformations might change the signal properties

Less investigations

(b) lJittering

(f) Permutation
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(a) Original

(c) Flipping

(g) Window Slicing

(d) Scaling

(h) Time Warping

(e) Magnitude Warping

(i) Window Warping



Regularization — Data augmentation
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+ Introduction of invariance and robustness
+ Reduced need for costly data collection
+ No modification to the model architecture

Potential introduction of noise and irrelevant variations
Risk of label inconsistency

Domain-specific design and expertise required
Increased computational overhead

Not universally applicable across all data types
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Siamese network

Two or more identical subnetworks sharing the same parameters and weights
Compare two inputs — How similar or dissimilar they are
Learn representations to compare inputs similarity

Inputs are passed into twin networks simultaneously

Each subnetwork extracts features from its respective input

Features are combined to measure distance/similarity between inputs

Image #1
Encodings

—

H
Image #1 h(image1)

. ConvMet
+ Learning from few examples m_'

+ Weight sharing N
— Training complexity image #2

— Distance function sensifivity E—»l Conviet }--

Image #2
Encodings

euclidean_distance(hl, hz) ——= sigmoid —= 0,98

] / similarity

hlimage2)

e
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Siamese network - Applications

B4 4
JA §a

2 u S
g 9 5
? A A

Rt ¢ o M

Face recognifion Signature verification One-shot learning

King
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Siamese network
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Schlesinger et al. 2020, Blood pressure estimation from PPG signals
using convolutional neural networks and Siamese network
IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP

GOAL

Estimate blood pressure (BP) from
photoplethysmography (PPG) signal

Feature learning approach
— Automatic feature extraction

Siamese architecture

2 Csem

BLOOD PRESSURE ESTIMATION FROM PPG SIGNALS USING CONVOLUTIONAL
NEURAL NETWORKS AND SIAMESE NETWORK

Oded Schlesinger™, Nitai Vigderhouse™, Danny Eytan', Yair Moshe

"Signal and Image Processing Laboratory (SIPL)
Andrew and Ema Viterbi Faculty of Elcctrical Engincering
Technion  Israel Institute of Technology
http://sipl.technion ac il/

ABSTRACT

Blood pressure (BP) is a vital sign of the human body and
an important parameter for early detection of cardiovascular
discases. It is usually measured using cuff-based devices or
monitored invasively in critically-ill patients. This paper
presents two techniques that enable continuous and
noninvasive  cuffless  BP  cstimation  using
photoplethysmography (PPG) signals with Convolutional
Neural Networks (CNNs). The first technique is calibration-
free. The second technique achieves a more accurate
measurement by estimating BP changes with respect to a
paticnt's PPG and ground truth BP values at calibration time.
For this purpose, it uses Siamese network architecture. When
trained and tested on the MIMIC-II database, it achieves
mean absolute difference in the systolic and diastolic BP of
5.95 mmHg and 341 mmHg respectively. These results
almost comply with the AAMI recommendation and are as
accurate as the values estimated by many home BP measuring
devices

Index Terms— Blood pressure, convolutional neural
network (CNN), noninvasive, photoplethysmography (PPG)
Siamese network

1. INTRODUCTION

Blood pressure (BP) i the result of force exerted in the
arteries by blood as it circulates. It is usually expressed in
terms of systolic pressure (when the heart beats and B is at
its highest) and diastolic pressure (between heart beats, when
BP is at its lowest) and measured in millimeters of mercury
(mmHg). Normal resting BP inan adult is approximately 120
mmHg systolic and 80 mmHg diastolic. BP is an important

TRuth and Bruce Rappaport Faculty of Medicine
Technion — Israc! Instifute of Technology

orheartattack. Low BP, hypotension, can cause dizziness and
fainting or may indicate serious heart, endocrine
or neurological disorders. Therefore, it is highly important to
measure BP routinely. Continuous monitoring of BP, along
with monitoring of other vital signs. allows an accurate
cvaluation of the patient’s physiological state. prompt
detection of deteriorations and their prediction. The current
widespread BP monitoring methods are divided into invasive
and noninvasive methods. Invasive arterial line is a clinical
standard for continuous high accuracy BP measurement
However, it has adverse effects associated with invasive
measurements, such as potential infection, all of them are
associated with an increased morbidity. Noninvasive BP
measurement methods typically use an oscillometry
inflatable arm or wrist cuff. These methods are not feasible
for long-term ambulatory BP monitoring due to discomfort
caused by repeated inflation and deflation and mobility
limitations caused by the measuring device.

The Association for the Advancement of Medical
Instrumentation (AAMI) recommends that the mean absolute
difference (MAD) of noninvasive BP measurement
technologies should not be greater than 5 mmHg and the
standard deviation should not be greater than 8 mmHg
compared to a reference method [1] Home BP measuring
devices may be inaccurate in 5% to 15% of patients, and a
difference of 5 mmHg or higher is common [2, 3]. Therefore,
BP of other are
expected to have at least similar accuracy. so they are at least
as reliable as home BP measuring devices.
Photoplethysmography (PPG) is an optically obtained signal
that can be used to detect blood volume changes in the
microvascular bed of tissue. It is obtained by illuminating the
skin and measuring changes in light absorption. In a clinical
setting, this signal is often obtained by a pulse oximeter while

parameter of the human body whose for
the early detection of medical issues, especially
cardiovascular diseases, which are a leading cause of
mortality and morbidity worldwide. High BP, hypertension,
is a major risk for dangerous health conditions such as stroke

inan ¥ setting, this signal can be obtained by a
smartwatch or other mobile devices. PPG signals contain
information on cardiovascular parameters such as heart rate,
blood oxygen saturation and BP. Since PPG is noninvasive,
simple and low-cost, it has wide potential for clinical



Siamese network — Blood pressure (BP)

H#1 risk factor of cardiovascular diseases

1.28 billon people affected 0)
46% no noticeable symptoms 4

Cuff-based BP measurement
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Occlusive
Intermittent
Uncomfortable



Siamese network — Photoplethysmography (PPG)

=PrL

Measure of changes in light absorption
Related to blood volume variations

Light source to illuminate fissue

Photodetector to measure changes in
light infensity

Information on cardiovascular system
Blood oxygen saturation
Heart rate
Blood pressure

2 Csem

Emitted light (LED+ambient light)
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Siamese network — Data

MIMIC-II database [1]
1459 patients in intensive care unit (ICU)

Frequency [Hz] 5

0

Time [sec]

PPG BP arterial line spectrogram
of 30-second PPG window

[1] M. Saeed et al., "Multiparameter Intelligent Monitoring in Intensive Care Il (MIMIC-II): a

public-access intensive care unit database," Critical Care Medicine, vol. 39, no. 5, p. 952, 2011.

https://archive.physionet.org/mimic2/
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Siamese network

. :E.d- :E““ 3
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Siamese network

Calibration
PPG waveform variability due to individual-specific characteristics or

external factors

Muscle ———
WV

LED PD

Measure taken at the doctor office
Using subject mean value
Partly or completely retraining the model
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Siamese network
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Calibration

First available 30s window

Using Siamese network

2 identical subnetworks with same architecture and parameters

Working in parallel on two different inputs (calibration and current PPG) to
compute feature vectors

Compare inputs by computing the difference between feature vectors.

[ —— B
CNN Model

Patient’s

Calibration PPG | Same
| architecture  Feature Values @_ .

—'[HELLI l | Hegresslon]
- Layer

I and parameters l
= r— Calibrated Estimated BP
CNN Model Feature Values difference from
o calibration BP value

Curren: PPG ' " * ‘ current

Feature Values

Cal |bra tion |
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Siamese network
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CNN architecture

Inspired by AlexNet

Regularization with batch normalization

L1 loss function

Regression problem — Linear layer at the end

dense dense

dense
13 13

224 55
27
13
Ng. 55 5 3 3 3
& 9 — —> —>
11 5 7 Wi W3 I
384 384 256 1000
224 256 Max Max 40% 40%
9% Max poaling pocling
pooling

Stride
3 of 4

AlexNet
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Siamese network

Similar approach

C. Aguet et al. - Feature learning for blood
pressure estimation from

EA pulse +

photoplethysmography (2021) dermvatives

Calibration

Ensemble average pulse over 20s
window of PPG and its derivatives £A pulse +

derivatives
Siamese CNN

N-PPG

F.M. Dias et al. - Exploring the limitations of gy S
blood pressure estimation using the M_)
photoplethysmography signal (2024) t

24s PPG segments [ MePpG

inference

Siamese ResNet N\}\'\ 5

t

Predictions

—>0—> P

DBP

-

Siamese ResNet

—> concat
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Generative adversarial network
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Proposed by lan Goodfellow in 2014
Generating new samples from scratch
Learning by comparison

Generator
Generate realistic-looking synthetic data
Try to fool discriminator
From noise to sample
Low to high dimensional space

Discriminator
Distinguish generated and real samples
Binary classifier
From sample to decision
High to low dimensional space

Real images

Random input

Generator

y

Sample

> Sample

Discriminator

SSO|
Jojeulwiniosiq

sso|
Jojelauan)




Generative adversarial network

Counterfeiter
Generator
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Police
Discriminator




Generative adversarial network
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GAN fraining

Approximating data distribution and sampling from such approximation
Adversarial learning — Two network fight against each other

Simultaneous training — Alternating Generator and Discriminator updates
Discriminator

Maximize probability of assigning correct class — Maximize logD (X)
Generator

Maximize Discriminator uncertainty — Minimize log (1 - D(G(X)))

mingmaxp Ex.,[logD(X)] + Ex.,, [log (1 — D(G(X)))]
mingmaxp Ex.,[logD(X)] + Ex., [109(1 - D(X))]

2 Csem



Generative adversarial network

L] L]
A | I C G 'I'I O n S The bird is A bird with a This small
This bird isred  short and medium orange  black bird has

and brown in stubby with bill white body  a short, slightly
color, with a yellow on its gray wings and  curved bill and

stubby beak

.

body webbed feet long legs
! ¥ - N

Image-to-image
translation

0-18 19-29 30-39 40-49 50-59

New poses
generation
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synthesis

Face aging



Generative adversarial network
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Sarkar and Etemad 2020, CardioGAN: Attentfive generative
adversarial network with dual discriminators

AAAIl conference on artificial intelligence

AL

Use of ECG device for continuous heart rate (HR)
monitorin

PPG to ECG translation

csem

CardioGAN: Attentive Generative Adversarial Network with Dual Discriminators
for Synthesis of ECG from PPG

Pritam Sarkar, Ali Etemad
Dept. of ECE & Ingenuity Labs Research Institute
Queen’s University, Kingston, Canada
{pritam sarkar, ali.etemad } @queensu.ca

Abstract

Electrocardiogram (ECG) is the clectrical measurement of
candiac activity, whereas Photoplethysmogram (PPG) is the
optical measurcment of volumetric changes in blood circula
tion. While both signals are used for heart rate monitoring,
from a medical perspective, ECG is more useful as it car-
ries additional cardiac information. Despite many attempts
towerd incorporaieg B scsing in starwachesor s
lar

itoring, PPG sensors are the main o sensing solution
available. In order to tackle this problem, we propose Car-
dioGAN, an adversarial model which takes PPG as input and
generates ECG as output. The proposed network utilizes an
attention-based generator to leam local salient features, as
well as dual discriminators to preserve the integrity of gen-
erated data in both time and frequency domains. Our cxperi
‘meats show that the ECG gencrated by CardioGAN provides
‘more reliable heart rate measurements. cl:ll\purcd 1o the origi-
nal input PG, reducing the error from 9.74 beats per minute
(measured from the PPG) 10 2.89 (measured from the gener-
ated ECG).

1 Introduction

According to the World Health Organization (WHO) in
2017, Cardiovascular Deceases (CVDs) are npun«] as the
leading causes of death worldwide (WHO 2017). The re-
port indicates that CVDs cause 31% of global deaths, out
of which at least lhmc -quarters of deaths occur in the low
or medium-income countries. One of the primary reasons
behind this is the lack of primary healthcare support and
the inaccessible on-demand health monitoring infrastruc-

Electrocardiogram (ECG) is considered as onc of the

most important attributes for continuous health monitoring
required for identifying those who arc at serious risk of fu-
ture cardiovascular events or death. Vast amount of research
is being conducted with the goal of developing wearable de-
vices capable of continuous ECG monitoring and feasible
for daily life use, largely to no avail. Currently, very few
wearable devices provide wrist-based ECG monitoring, and
those who do, require the user to stand still and touch the
watch with both hands in order 0 close the circuit in order
Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.ong). All rights reserved.

to record an ECG segment of limited duration (usually 30
seconds), making these solutions non-continuous and spo-
radic.

Photoplethysmogram (PPG), an optical method for mea-
suring blood volume changes at the surface of the skin, is
considered as a close alternative 1o ECG, which contains
il et all 2010; Schifer
and Vagedes 2013). For instance, studies have shown that
4 number of features extracted from PPG (e.g., pulse rate
variability) are highly correlated with corresponding metrics
extracted from ECG (e.g., heart rate variability) (Gil et all
2010), further illustrating the mutual information between
these two modalities. Yet, through recent advancements in
smartwatches, smartphones, and other similar wearable and
mobile devices, PPG has become the industry standard as a
simple, wearable-friendly, and low-cost solution for contin-
uous heart rate (HR) monitoring for everyday use. Nonethe-
less, PPG suffers from inaccurate HR estimation and several
other limitations in comparison to conventional ECG moni-

2020) a

i el a
diverse skin types, motion artefac
among others. Moreover, the ECG waveform carries impor-
y. For instance, the P-
wave indicates the sinus rhythm, whereas a long PR interval
is generally indicative of a first-degree heart blockage (Ash!
L oo

pcrtum\zm ¢ of the heart

Based on the above, there is a clear discrepancy between
the need for continuous wearable ECG monitoring and the
available solutions in the market. To address this, we pro-
pose CardioGAN, a gencrative adversarial network (GAN)
(Goodfellow ct all 2014), which takes PPG as inputs and
generates ECG. Our model is based on the CycleGAN ar-
chitecture ¢ZRu ¢t all [2077) which cnables the system to
be trained in an unpaired manner. Unlike CycleGAN, Car-
dioGAN is designed with attention-based gencrators and
equipped with multiple discriminators. We utilize atiention
mechanisms in the gencrators o better leam to focus on spe-
cific local regions such as the QRS complexes of ECG. To
generate high fidelity ECG signals in terms of both time
and frequency i we utilize a dual




Generative adversarial network

Electrocardiogram (ECG)
Electrical measurement of cardiac activity
Continuous health monitoring

Complicated integration into wearables
— Non-contfinuous and sporadic measure

Photoplethysmogram (PPG)

Optical measurement of volumetric
changes in blood circulation

Simple, wearable-friendly, and low-cost
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Generative adversarial network

Popular ECG-PPG datasets
BIDMC database — 53 ICU subjects, 8min

CAPNO database — 42 subjects, 8mim
DALIA database — 15 subjects, ~2h during daily life activities
WESAD database - 15 subjects, >1h performing specific tasks

EGC and PPG preprocessing
Resampling to 128 Hz

Filtering — band-pass FIR filter
/-score normalization on recording (zero mean and unit variance)

Segmentation into 4s windows (512 data points)

Min-max normalization on window [-1, 1] W
ECG
\_/\\/\\/W PG
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Generative adversarial network

Learn the mapping between PPG (P) and ECG (E)

Generator (G)

Forward mapping: Gg: P — E . JUSR '?{'_*.UF

Fake ECG: E' = Gg(P) T easgn
|

Reconstructed PPG: P" = Gp(Gz(P)) -——~E}+ R/ E——+ R/F

Discriminator (D) o

T
Time-domain: D E vs E' ”'Iu:ﬁ:“_.;mq “Lu;]p’l;
Frequency-domain: D/: f(E) vs f(E") b "‘*--...---""—I
With f(x) = STFT (x) MF___.,-G:-H

Short-Time Fourier Transform
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Generative adversarial network
Adversarial loss

3
Forward

Time-domain — Lagy(Gg, DE) = Eevg [log(DE(e) )| + Epep |log (1 - DE(GE (1))
Frequency-domain — Laay (G, Df) = Ee-g [log (DL(f(€)))] + Ep~s [log (1 - D} (f(GE(P))D]

Backward
Time-domain — Lgg,(Gp, DE)
Frequency-domain — Lggy, (G, Dg)
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Generative adversarial network

Cycle loss »
Lcycle(GEr GP) — E8~E [”GE(GP(e)) - e”l] T EPNP [”GP(GE(p)) B p”1] ‘ ‘

p - Gg(p) - GP(GE(p)) ~D
e - Gp(e) — GE(GP(e)) ~ e

Final loss
Leardiocan = @Lagy(Ge, D) + aLaay(Gp, D) + Blaay(Gr, Di) + Blaay(Ge, D)) + ALcycie Gy, Gp)
a and B are adversarial loss coefficients
A cycle consistency loss coefficient
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Generative adversarial network

Original ECG PPG Input CardioGAN
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ECG generated by CardioGAN provides more reliable heart
rate measurements compared to the original input PPG
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Different architectures
Siamese ne twork
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Explainable neural network
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Explainable neural network

=PrL

2 Csem

THIS 1S YOUR MACHINE LERRNING SYSTETM?

YUP! YOU POUR THE DATA INTD THIS BIG
PILE OF LINEAR ALGEBRA, THEN COLLECT
THE ANSLJERS ON THE CTHER SIDE.

WHAT IF THE ANSLIERS ARE LJRONG? J

JUaT STIR THE PILE UDNTIL
THEY START [OOKING RIGHT.




Explainable neural network

=P  Qutput

Input =P ?

Critics of ML — “black-box" model

System that can produce valuable output, but which human might not
understand

But carefully constructed ML model can be verifiable and understandable
Interpretable model = can tell how the model came to a decision
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Explainable neural network

=PrL

Some ML methods are more
intferpretable than others

Linear regression, decision trees,
generative additive models are
inherently interpretable

Interpretability often comes at the
expense of power and accuracy

Trade-off between interpretability
and accuracy

2 Csem

Interpretability

. Liner Regression
. Decision Trees

. K-Nearest Neighbors

. Random Forests

. Support Vector Machines

. Deep Neural Networks

Accuracy



Explainable neural network

Intrinsic
Explainability built intfo the model
Achieved by restricting the model complexity
Examples: linear regression, decision free, etc.

Post-hoc
Interpretable techniques help to reveal how models make predictions
After training
Examples: permutation feature importance
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Explainable neural network

=PrL

Global

Understanding how the complete model works
Examples: Parfial dependence plot (PDP), permutation feature importance, etc.

Local

Understanding how a single decision was reached
Examples: Local surrogate model (LIME), SHAP

|
b B

Global Local

2 Csem



Explainable neural network

CNN for image classification

Visualize features to understand what the network is seeing
Each layer learns a specific feature

Higher layers learn more complex features based on simpler features learned

by lower layers
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Explainable neural network

-

Liu et al. 2022, Multiclass arrhythmia detection and
classification from photoplethysmography signals using a deep

L Journal of the American Heart Association y

~

convolutional neural network

GOAL

Multiclass Arrhythmia Detection and
Classification From Photoplethysmography
Signals Using a Deep Convolutional Neural
Network

Zengding Liu 9, MPhil"; Bin Zhou, MD, PhD*; Zhiming Jiang, MPhil; Xi Chen, BE; Ye Li, PhD; Min Tang 2, MD, PhD';

Classity multiclass arrhythmia types using PPG

and deep CNN

Electrodes / N

BACKGROUND: Stucles have eporte! the Uss of photopletnysmograpty signls 0 dalect atrial fation; howenes, e use of
Ourstudy the feasi
neural network to classify muiticlass arhythmia types.

bility of using pho nd a doop

METHODS AND RESULTS: EGG and signals wero collocied from & group of patients who
underwent ablation for- A d il neural network was developed to classify muiple
thythms based on 10-second wavsfors. ¢ was evalualed by calculating
he area under the mi i curvo, overall accuracy. sensitity, spaciicity, and positive

and negative preciotie values against a on the rhythm of provided by 2 consulting the
EGG resulls. A total of 228 palients were included: 118 217 pairs of 10-second photoplethysmography and ECG waveforms
‘were used. When validated against an independent fest data set (23 384
the DGNN achloved an overall aceuracy of 85.0% for 6 rhythm types (sinus rhythm, premature vmtncularcummmm pre-
mature alrial contaction, ventriouiar tachycardia, SUpraventricuar tachycarda, and aira ibrilation) the microaverage area
undor th > was 0.978; thy itivity, Spocificity, and positive and
negative prediciivo values woro 75.8%, 96.9%, 75.2%, and 97.0%, respociivaly.

GONCLUSIONS: This study demonsiratod the foasibilly of classifying muliciass arhythmias from pholoplethysmography sig

techniques. s attractive for popuiation-based screening and may hold promise for the
long-lerm surveilance and management of arrhythmia.
URL: www.chi on. Identifier: ChCT 170,
Key Words: arrhythmias & .

t / — Holter monitor
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rthythmias affect the quality of fife of tens of
millions of people worldwide, with as many as
one-quarter of Americans over 40 years old

developing cardiac arthythmias.! Arrhythmias are as-
sociated with high risks of stroke,” heart failure.3 and
even sudden cardiac death. More than 80% of sudden

C Fon Mo, PRD, echnology, Chi
Republic of Ghina, Fmiak fon méao@siatac.cn and Min Tang, MD, PhD, State Kay |

, Shenzhon, 9 Pooplo's

it
2. Uit B, Zhoss cortributod oxpacly.
. Miao and M. Tang conout xuily .00 serior s

0, No. 167 Flifing 100037,

ru%mmnmqmrlmnm S0 poge 12.

97072 Tho uthcs. Pl on bohal o th Amesican et fcocioon, ., by Wy mﬁmmmnm.nhmumomrmmm
e \ previdod

MU IA121.023556

on
AA ks il ot: were ahejoumeds: oegyfoumefoha




Explainable neural network

DATA

242 patients with arrhythmia receiving radiofrequency
catheter ablation

At Fuwai Hospital, Chinese Academy of Medical Sciences

\
\ N \'\\\“ h\“ \

fingerﬁp PPG | PPG VAI\\\\“\ M,\' P
3-lead ECG for reference | ECG 5 |

___________________

Raw ECG & PPG signals

=PrL :=Csem



Explainable neural network

Preprocessing
Signal downsampling (250 to100 Hz)

Denoising with bandpass filtering WMM‘J/\‘“ ECG

ECG from 0.5 to 50 Hz

PPG from 0.5 to 10 Hz M .
Segmentation

Split into 10s non-overlapping segments
Sggmen’r n.ormohzo’r!on 118’217 labeled 10s
Signal quality exclusion PPG segments from

Remove segments with arfifacts in PPG 228 patients

Remove segments with noisy ECG reference
Labels

Annotation of ECG segments from 2 cardiologists

Create labels according to ECG annotations

=PrL :=Csem



Explainable neural network

=PrL

Each segment has only 1 identified rhythm type

Rhythm type Number of segments
Sinus rhythm 38081
Premature ventricular contraction (PVC) 11372
Premature atrial contraction (PAC) 11248
Ventricular tachycardia (VT) 5783
Supraventricular tachycardia (SVT) 12539
Aftrial fibrillation (AF) 39194

2 Csem



Explainable neural network

Split data so%
60% of patients in training set
20% of patients in validation set  “*
20% of patients in test set we

20% -

10% -

0% - : i : 2
Total Training set Validation set Test set
(N=228; (N=137; (N=46; (N=45;

segments=118 217) segments=71 390) segments=23 443) segments=23 384)
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Explainable neural network

Conv_32
Conv_32
MaxPool
Conv_64
Multiclass rhythm classification from PPG T
MOdel MaxPool
Based on VGGNet-146 (deep CNN) —
Adapted for 1-dimensional input signal Conv_128

13 convolutional layers MaaE g0l
Conv 256
5 max-pooling layers T
3 fully connected layers Conv_256
Input: 10-second PPG segment CM"""Z’:L
Output: label prediction of one of the rhythm type T
Conv_256
MaxPool

Full collected

Full collected
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Explainable neural network

=PrL

2 Csem

Annotated PPG-rhythm Dataset (N unique patients)

Training dataset V:Il:lath:n Test dataset

60% patients AR 0

(60% p ) 0% patients) || (207 patients)

B

Train DCNN E,

' il ‘ =2

Y &

z

Tuning with validation data : =

Best model

[ DCNN model ] g

=

v %

>

-

Evaluation multiclass rhythm classification
(Multiple Rhythms ={Rhythm 1, Rhythm 2, ..., Rhythm n})




Explainable neural network

Visualization of proposed DCNN
Improve understanding of model decision
Highlight regions in PPG important for the model prediction

t-distributed stochastic neighbor embedding (t-SNE)
Non-linear dimensionality reduction technique
Embedding high-dimensional data for visualization in low dimensional space @

Guided gradient-weighted class activation mapping (Grad-CAM)
Fine-grained guided backpropagation
Gradient-weighted class activation mapping

Create high-resolution class-discriminative heatmap from final convolutionadl
layer
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Explainable neural network

t-distributed stochastic neighbor embedding

A . ° iS c |
e« PVC
« PAC
". ° : ns
A

N o

c =

£ S

[%2] 172

c =

()] Q

£ £

[a) [a)
S
PVC
PAC
S

v T v v T — 'A
Dimension 1 Dimension 1
Layer 2 Layer /
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Dimension 2

Dimension 1

Layer 13




Explainable neural network

=PrL

>

O
Sinus rhythm .
B
g
PVC i
Premature ventricular contraction g

(2]

PAC

Premature atrial contraction

PPG ECG

o

VT

Ventricular tachycardia

PPG ECG

m

SVT

Supraventricular tachycardia

PPG ECG

m

AF

Atrial fibrillation

PPG ECG
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Neural network recap
Regularization
Different architectures
Labs
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Lab — Instructions

=PrL

Submit report as single PDF file
Recommended to work in groups of 3 students

You can prepare one single report for the group
(hamel_name2_name3_lab_NN2.pdf)

But every member must upload the file on Moodle

Python code is given and provided as Jupyter notebooks

This practical session is not focused on coding but on questions
testing your understanding and interpretation of the results.

2 exercises in this lab session on real-life biomedical problems.

2 Csem



Lab — Heart rate classification

GOAL: Estimate heart rate (HR) from PPG and acceleration signal
Focus on sitting and walking

DATA:
PPG-DaliA dataset hitps://archive.ics.uci.edu/ml/datasets/PPG-DaliA
15 subjects
Photoplethysmography (PPG) signals
3D acceleration signals
Reference HR computed from ECG signal
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https://archive.ics.uci.edu/ml/datasets/PPG-DaLiA

Lab — Heart rate classification

, < = N a R a

8s PPG signal = - o = N —

®) of O ol O]

a) o [2] =0 1) = B

LT & VW i | = ol B ol B O

| R S e g = B B =
O O O

3D acceleration signal

/ Model training \

Adam optimizer
Mean squared error 10ss
30 epochs
Batch size = 100

\ Learning rate = 0.0001 /

=PrL :=Csem

o)
N
QO
>
c
©)
@)

'

Heart rate (HR)

Adaptive AvgPool1D
Fully connected (128)
Fully connected (128)
Fully connected (128)

With or without acceleration signal
Add batch normalization
Add dropout




Lab — ECG rhythm classification

GOAL - Train NN to classify different cardiac rhythms from single-lead ECG signals

Normal sinus rhythm
Sinus bradycardia
Sinus tachycardia
Aftrial fibrillation
Atrial Flutter

DATA

Subset of large scale 12-lead ECG database for arrhythmia study
hitps://physionet.org/content/ecg-arrhythmia/1.0.0/

1500 single-lead (lead ll) ECG signals of each rhythm

=PrL :=Csem


https://physionet.org/content/ecg-arrhythmia/1.0.0/

Lab — ECG rhythm classification

ECG - Recording of the heart's electrical activity

Electrodes ‘ Heart

— Holter monitor
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Lab — ECG rhythm classification

Normal sinus rhythm
P wave before QRS complex,
Regular rhythm
Rate = 60-100 bpm at rest

Sinus bradycardia
P wave before QRS complex
Regular rhythm
Rate < 60 bpm at rest

Sinus tachycardia R B B HERHERRE i
P wave before QRS Complex - . E58 4 | ESHS! 12458 5580 |SAREHRHS (HASSRSHS HSNSSRRS 45215050 SES0SRES ESSHUAE BOSSES
Regular rhythm
Rate > 100 bpm at rest
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Lab — ECG rhythm classification

Atfrial fibrillation
No distinct P wave before QRS complex
Very irregular rnythm

Atfrial flutter
“Sawtoothed” patttern of P wave
Irregular rhythm

=PrL :=Csem



Lab — ECG rhythm classification

AL

-~

=PrL

10s ECG signal

2 Csem

MaxPool1D

_10
wl—
HE
-2
g
O

Olo
(a ]

Convl1D (16)
BatchNorm1D
MaxPool1D

/ Model training \

Adam optimizer
Cross entropy loss
50 epochs
Batch size = 100

\ Learning rate = 0.0001 /

I fa)
QR |
DY &
a) e
> &
ol
UCO

MaxPool1D
Conv1D (64)
BatchNorm1D

O
0
—-—
O
0}
-
C
O
O
=
-
L

Adaptive AvgPool1D

Normal sinus rhythm

Sinus bradycardia
Sinus tachycardia
Atrial fibrillation
Aftrial flutter

Encoded rhythm

/

Custom architectures

Add convolutional layers
Add fully connected layers
Add regularization

Etc.
\

~

/
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Labs

L

Process locally with a virtual environment rather than using noto.

(Recommended) run the experiments using last week notebooks.

Complete last week lab directory with the new notebooks and the new datasets.
Open a terminal in the directory.
Activate virtual environment.

LinuX: source venv/bin/activate

Windows: venv\Scripts\activate

Start JupyterLab.
python -m jupyter lab

2 Csem


https://jupyterlab.github.io/jupyterlab/
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