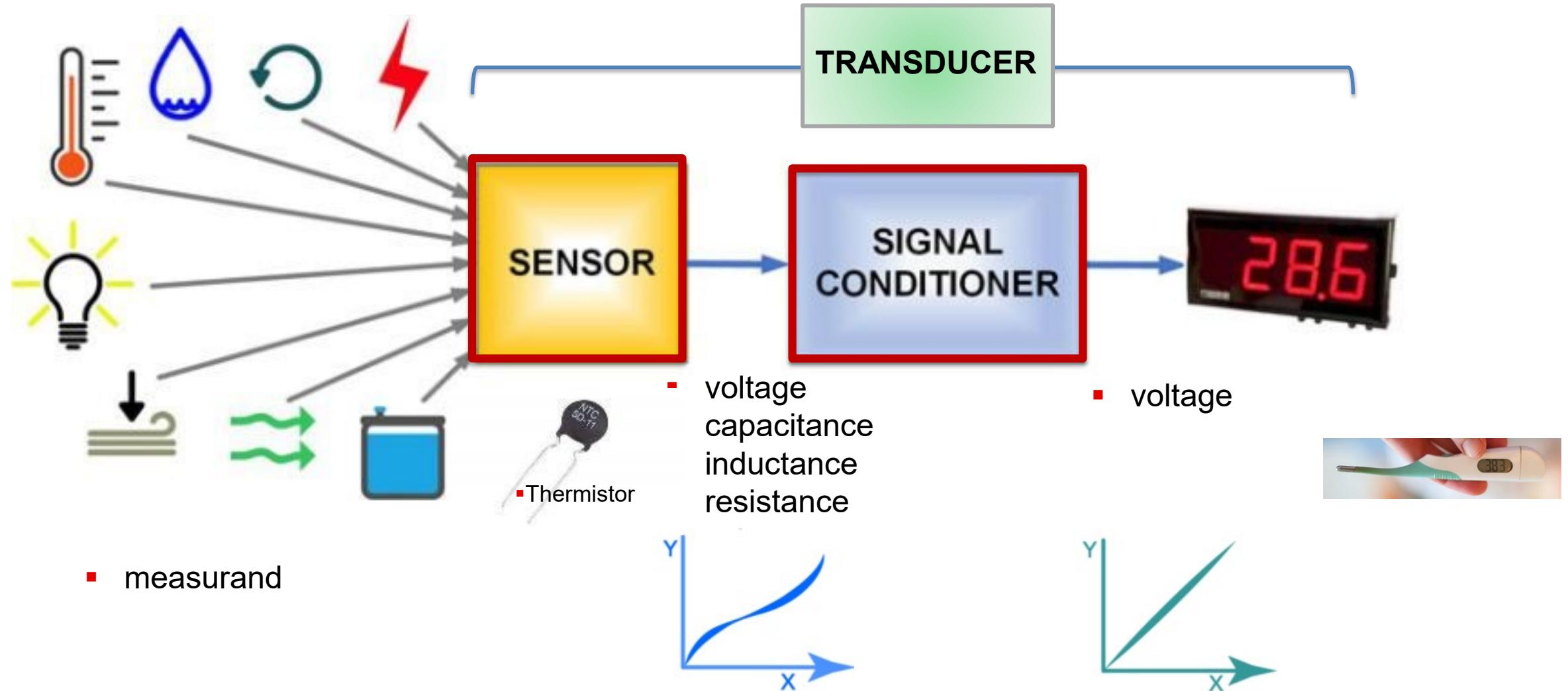


GENERAL INTRODUCTION

SENSORS

Definitions and Classification

Definitions: Sensors & Transducers



Classification based on the power requirement

- **Active sensors:** Convert a form of energy into another form (electrical) **without using an external source of power.**
Examples: Electrodes, Piezoelectric
- **Passive sensors:** Convert a form of energy into another form (electrical) **by making use of an external source of power.**
Examples: Resistive, Inductive, Capacitive

Active sensors

Measured variable	Physical effect	Output
temperature	thermoelectricity (Peltier-Seebeck effect)	voltage
biopotential, pH	redox	voltage
force, pressure acceleration, vibrations, sound	piezoelectricity	charge
speed, flow	magnetic induction	voltage
optical radiation flux	photovoltaic	voltage

Passive sensors

Measured variable	Sensitive characteristic	Comment
temperature	resistance	semiconductor: thermistor, metal: Pt, Ni
Strain- deformation	resistance	Strain gage: metal, semiconductor
force, pressure, acceleration, vibrations, sound, displacement	resistance, capacitance, inductance	potentiometer, microphone LVDT
humidity	resistance, capacitance	

RESISTIVE SENSORS & Applications

Introduction

Part I- Temperature sensors

Part II- Thermal mass flowmeter

Part III- Strain gage

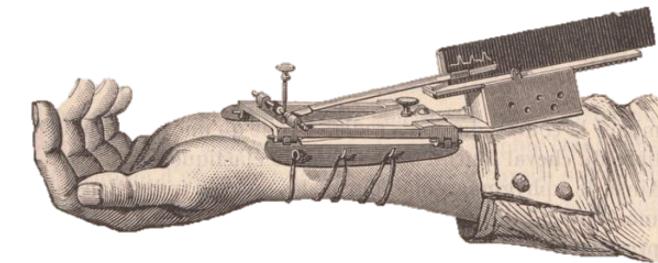
Part IV- Direct measurement of arterial pressure

Part V- Indirect measurement of arterial pressure

Part VI- Force measurement: instrumented implant

Part VII- Force plate: application in biomechanics

Part VIII- Wearable force measurement: gait analysis



Sphygmograph de Marey, 1878

Introduction: Theory of operation

The resistance of a material depends on four factors:

- Composition
- Temperature
- Length
- Cross-sectional Area

$$R = \rho \frac{l}{A}$$

Possibility to measure:

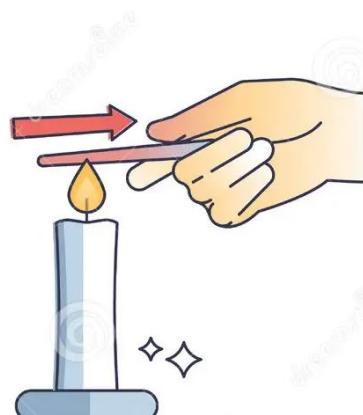
- Temperature
- Deformation (due to Pressure, Force)

- When the length l of a conductor changes, the resistance varies directly. Conversely, modifying the cross-sectional area A leads to an inverse change in resistance.
- **But, alterations in material composition or temperature affect resistivity ρ in a more complex manner.**

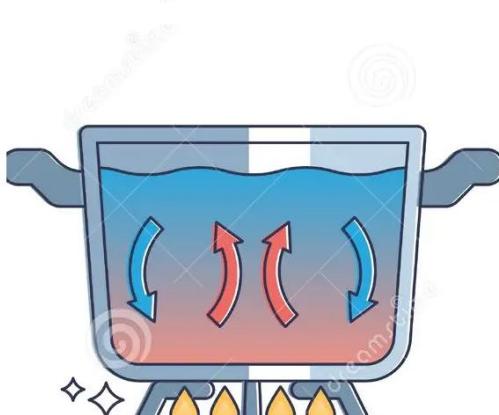
RESISTIVE SENSORS

Part I- Temperature sensors

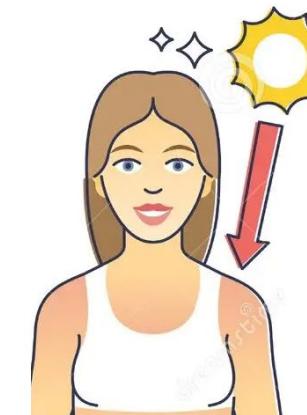
Heat transfer



CONDUCTION



CONVECTION



RADIATION

- Heat is transferred via solid material contact (conduction), liquids and gases (convection), and electromagnetic waves (radiation)
- Heat will flow from one object (milieu) to the other if the two objects are at **different temperature** .

Temperature measurement

$$R = \rho \frac{l}{A}$$

- Relation resistance \leftarrow temperature

$$R(T) = R(T_0)f(T - T_0) \text{ , with } f(T - T_0) = 1 \text{ for } T = T_0$$

f is generally a non-linear function depending on the thermosensitive element

- Metallic resistance (RTD: resistance temperature detector)**

Platinum:

$$R(T) = R(T_0) \cdot (1 + a(T - T_0) + b(T - T_0)^2 + c(T - T_0)^3)$$

- Oxide semiconductor**

Thermistor:

$$T : {}^\circ K$$

$$T_0 = 273 {}^\circ K$$

$$\beta \approx 4000 {}^\circ K$$

$$R(T) = R(T_0) e^{\beta \left(\frac{1}{T} - \frac{1}{T_0} \right)}$$

Linear approximation

- $R(T)$ is the resistance at temperature T (K)
- $R(T_0)$ is the resistance at temperature T_0 (K)
- T_0 is the **reference** temperature (normally 273K or 25°C, but can differ according to the application)
- β is a constant, its value depends on the characteristics of the material.

Metallic resistance (RTD)

$$R(T) = R(T_0) \cdot (1 + \alpha_R \Delta T)$$

$$\alpha_R = \frac{1}{R(T_0)} \frac{\Delta R}{\Delta T} \quad \text{Temperature coefficient}$$

- Example

- **Platinum**

$$\alpha_R = 3.9 \cdot 10^{-3} / {}^\circ C$$

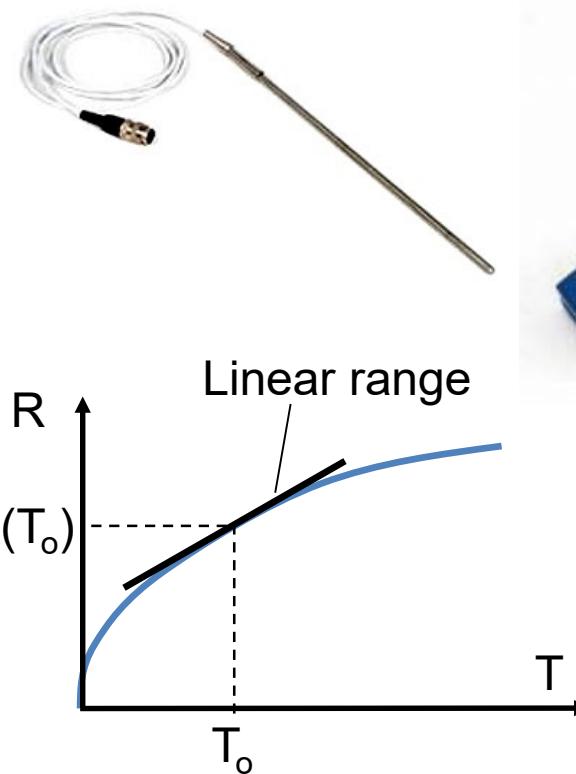
Pt100 sensor :

- Linear
- Accurate
- Reproducible (precise)
- Large measurement span

$$R(0 {}^\circ C) = 100 \Omega$$

$$R(37 {}^\circ C) = 114.4 \Omega$$

$$R(37 {}^\circ C) = R(0 {}^\circ C) (1 + 3.9 \times 10^{-3} \times 37) = 100 (1.14) = 114 \Omega$$



Oxide semiconductor

$$R(T) = R(T_0) e^{\beta \left(\frac{1}{T} - \frac{1}{T_0} \right)}$$

$$\alpha_R = \frac{1}{R} \frac{dR}{dT} = -\frac{\beta}{T^2}$$

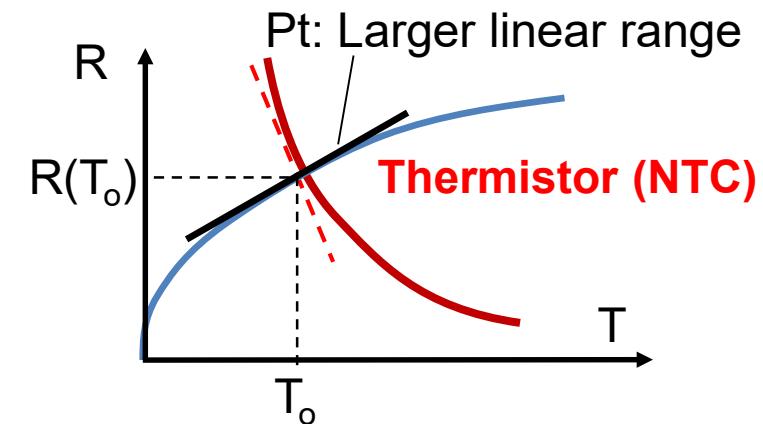
Example

Thermistor

For $T_0 = 310^\circ K$

$\alpha_R = -0.03$ to $-0.05 / {}^\circ C$ (negative)

- Small volume
- High sensitivity
- Non-linear
- Low measurement span



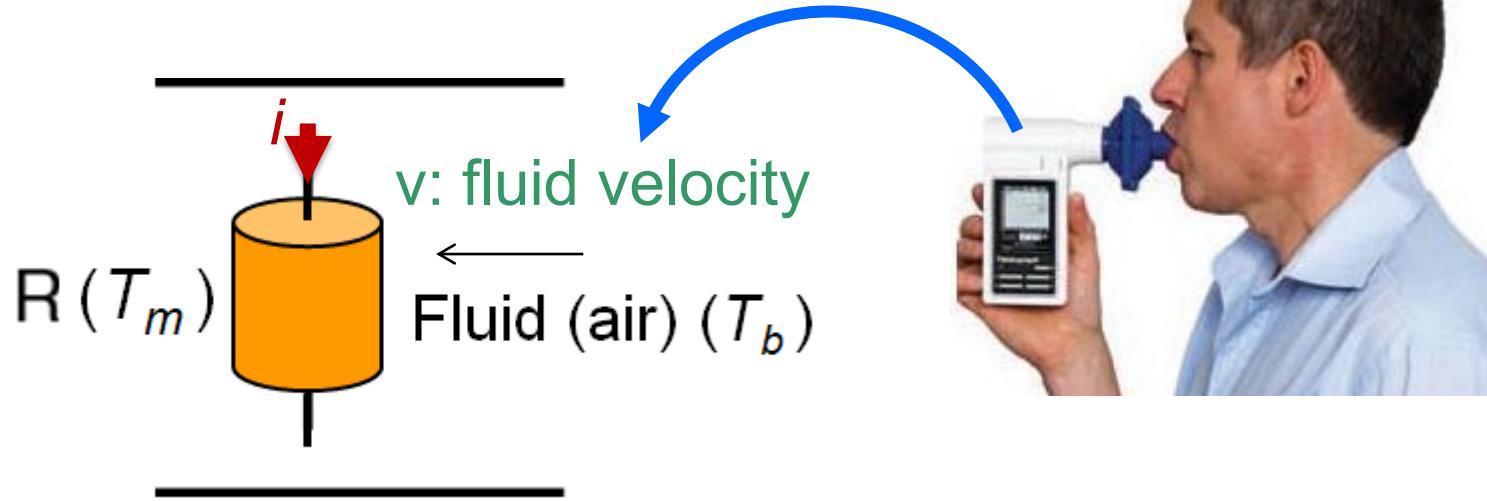
For Positive temperature coefficient (PTC) thermistors when temperature increases, the resistance increases

RESISTIVE SENSORS

**Part IIa- Thermal mass flowmeter:
Constant current method**

Measuring the flow

Basic principle



- R is heated to temperature T_m slightly *higher* than the temperature of the fluid T_b : $T_m > T_b$
- T_m varies (decreases) when the air is circulating into tube by breathing

Measuring the flow with *constant current supply*

Principle

1. The resistance is *heated* by *Joule effect* with constant current, i
→ thermal power:

$$P = R \cdot i^2$$

2. The resistance is *cooled* by the fluid circulation → heat transfer by *convection*:

$$P = A \cdot h \cdot (T_m - T_b)$$

A : sensor's lateral surface

h : heat transfer coefficient, *function of velocity v of fluid*

T_m : temperature of the resistance

T_b : temperature of the fluid

Measuring the flow with *constant current supply*

Principle (cont.)

- At equilibrium (i.e., no heat transfer):

$$A \cdot h \cdot (T_m - T_b) = R \cdot i^2$$

$$h = f(v) = \frac{R(T_m) \cdot i^2}{A \cdot (T_m - T_b)}$$

(T_m variable, T_b fixe)

*Temperature
sensor*

$$T_m = f(v)$$

$$\Delta R = f(v)$$

- h varies mainly in a non-linear fashion as a function of velocity v (e.g. $h = a + b \cdot \log v$)

Measuring the flow with *constant current supply*

Signal conditioner

- If $v \uparrow \Rightarrow T_m \downarrow \Rightarrow R \uparrow$ (e.g. NTC thermistor)

- Dynamic situation (when t varies):

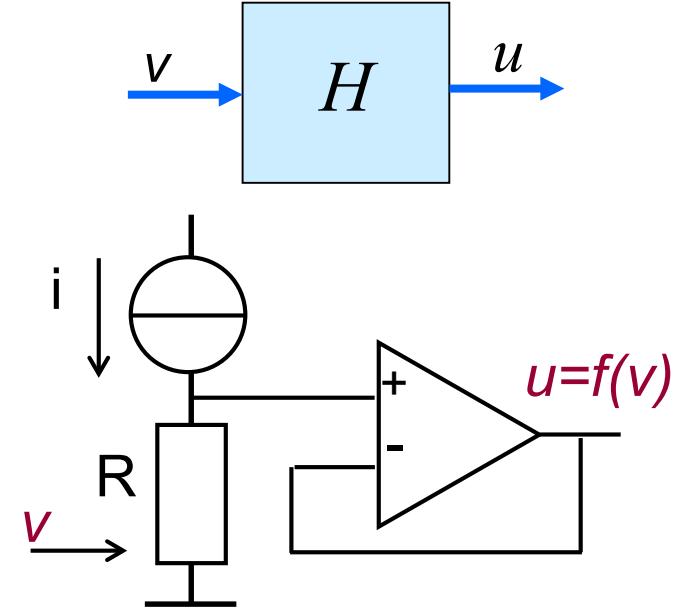
$$i^2(R + \Delta R) - Ah(T_m - T_b) = K \frac{dT_m}{dt}$$

K : thermal capacity

Assuming linear sensitivity around equilibrium:

$$h = h_0 + K_v \cdot \Delta v \quad K_v: \text{constant}$$

$$T_m = K_T(R + \Delta R) \quad K_T: \text{constant}$$



Measuring the flow with *constant current supply*

Signal conditioner (cont.)

$$h = h_o + K_v \cdot \Delta v$$

$$T_m = K_T (R + \Delta R)$$

$$i^2(R + \Delta R) - Ah(T_m - T_b) = K \frac{dT_m}{dt}$$

$$i^2(R + \Delta R) - A(h_o + K_v \Delta v)(K_T R + K_T \Delta R - T_b) = KK_T \frac{d\Delta R}{dt}$$

$$i^2 R + i^2 \Delta R - Ah_o K_T R - Ah_o K_T \Delta R + Ah_o T_b - AK_v \Delta v K_T R - AK_v K_T \Delta R + AK_v \Delta v T_b = KK_T \frac{d\Delta R}{dt}$$

$$i^2 R - Ah_o K_T R + Ah_o T_b = 0 \text{ (static condition)}$$

$\Delta v \Delta R$: second order (can be negligible):

$$(i^2 - Ah_o K_T) \Delta R - K \cdot K_T \frac{d\Delta R}{dt} = AK_v (K_T R - T_b) \Delta v$$

Measuring the flow with *constant current supply* Signal conditioner (cont.)

- First order system:

$$(i^2 - Ah_o K_T) \Delta R - K \cdot K_T \frac{d \Delta R}{dt} = AK_v (K_T R - T_b) \Delta v$$

Laplace transform:

$$((Ah_o K_T - i^2) + sK \cdot K_T) \cdot \Delta R = AK_v (T_b - K_T R) \Delta v$$

$$(\left(Ah_o - \frac{i^2}{K_T}\right) + sK) \cdot \Delta R = AK_v (T_b - K_T R) \Delta v = k \Delta v$$

$$\frac{\Delta R}{\Delta v} = \frac{k}{1 + \tau_i s}$$

$$\tau_i = \frac{K}{Ah_o - \frac{i^2}{K_T}}$$

- Slow response !

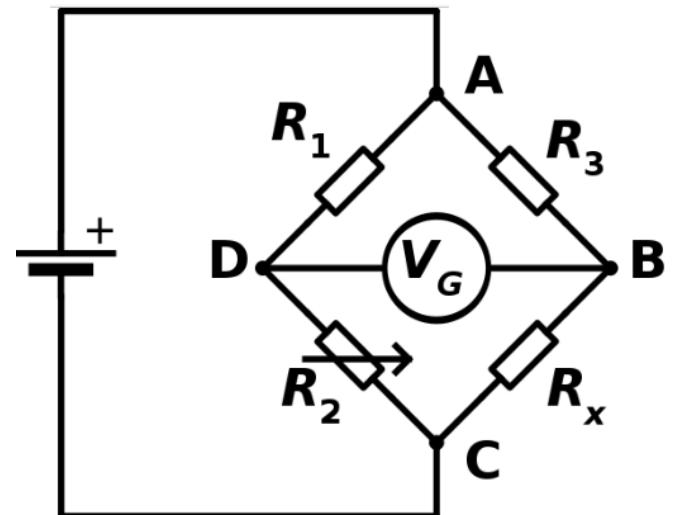
RESISTIVE SENSORS

Part IIb- Thermal mass flowmeter:
Constant temperature method

Null method:

- Exerts an influence on the measured system so as to oppose the effect of the measurand
- The influence and the measurand are balanced

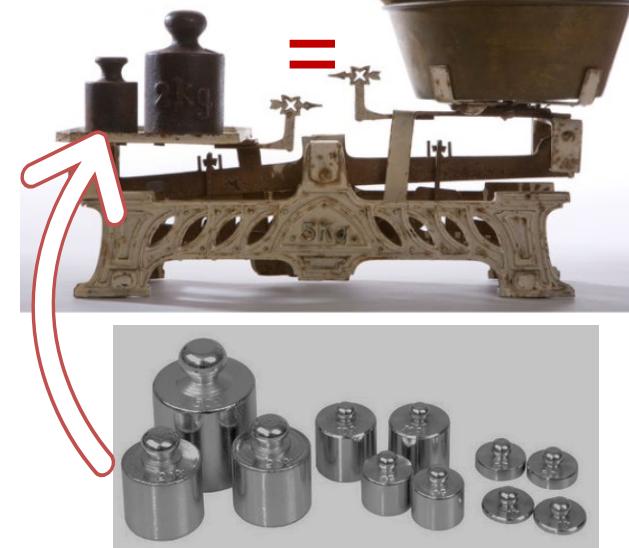
Null method measurement circuit: Wheatstone bridge



Example circuit:

- R_x unknown (to be measured)
- R_1, R_2 and R_3 known, R_2 adjustable until $V_G = 0$
- When the measured voltage $V_G = 0$, both legs have equal voltage ratios: $R_2/R_1 = R_x/R_3 \rightarrow R_x = R_3 R_2 / R_1$

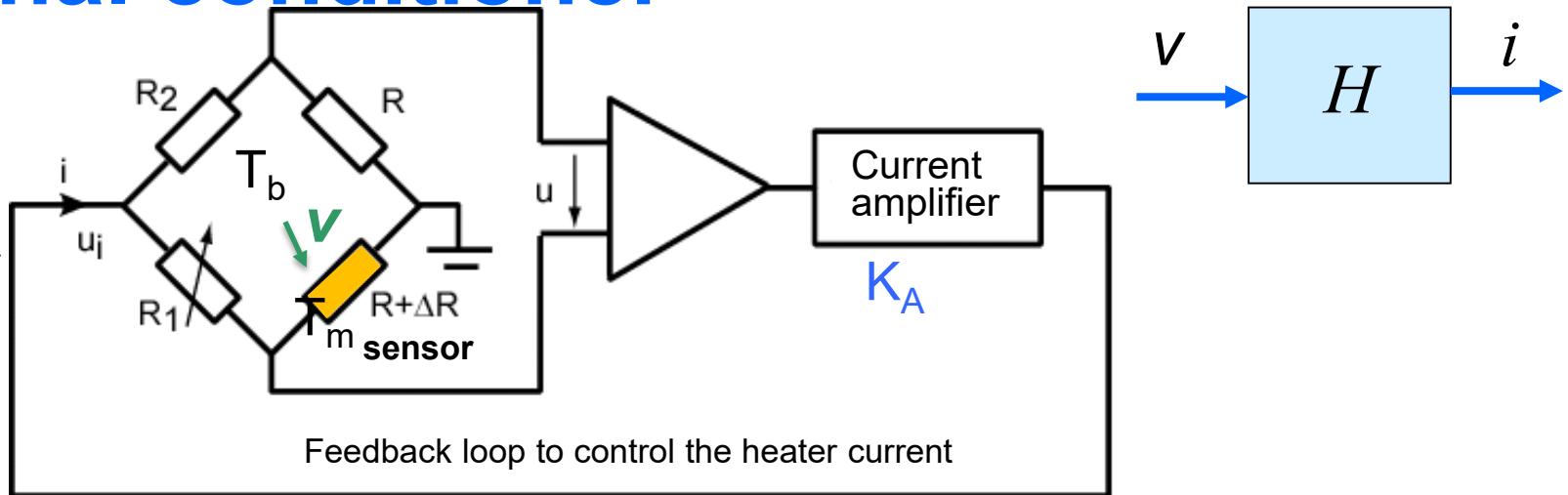
Balance input
(known)



Measuring the flow with $T_m - T_b = \text{constant}$

Principle & Signal conditioner

$$u = \frac{R \cdot R_1 - (R + \Delta R)R_2}{(R + R_2)(R + \Delta R + R_1)} u_i$$



- Adjusting the current in $R + \Delta R$ in order to have $T_m - T_b = \text{constant}$ by Joule effect ($T_m > T_b$)
- $i = f(v) \rightarrow$ measuring the current i
- if $v \uparrow$: $R + \Delta R$ is cooled \rightarrow increase i to heat $R + \Delta R \Rightarrow i \uparrow$

$$v \uparrow \Rightarrow i \uparrow$$

Measuring the flow with $T_m - T_b = \text{constant}$ Principle (cont.)

- Balance the bridge in the absence of fluid circulation ($\Delta v=0$):

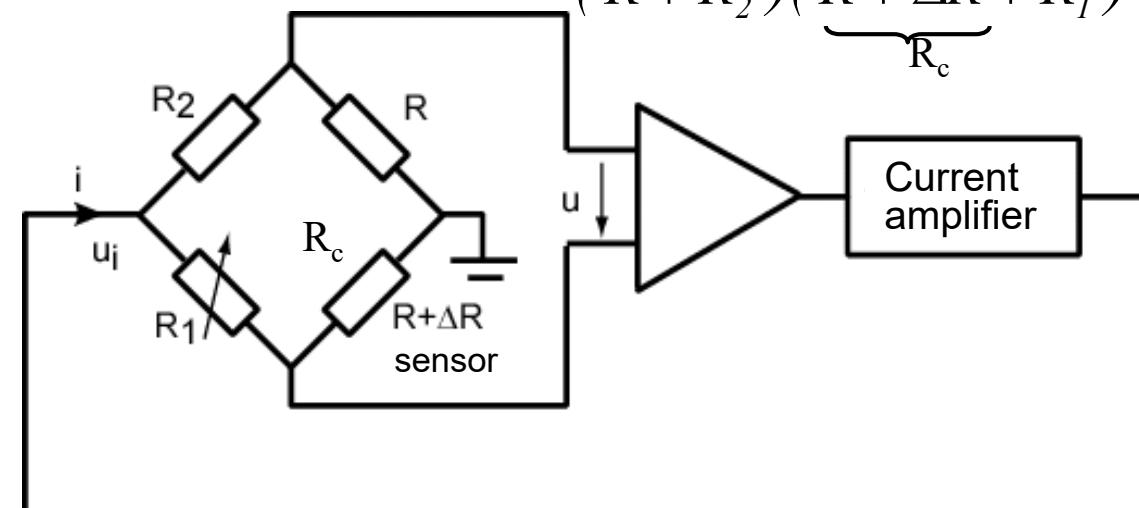
- Slightly increase the potentiometer value R_1

$$\Rightarrow u \uparrow \Rightarrow i \uparrow \Rightarrow T_m \uparrow \Rightarrow R_c \uparrow \text{ (Platinum)}$$

- Bridge balanced again with $T_m = T_b + T_o$ and $u=0$

- $\Delta v \neq 0$

$$\begin{array}{c} v \uparrow \Rightarrow T_m \downarrow \Rightarrow R_c \downarrow \\ \Rightarrow u \uparrow \Rightarrow i \uparrow \Rightarrow T_m \uparrow \end{array}$$



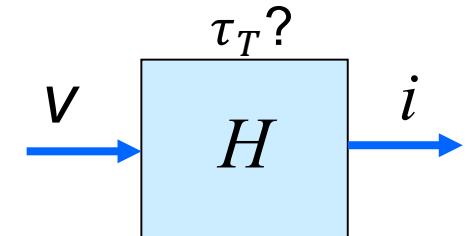
Measuring the flow with $T_m - T_b = \text{constant}$

Principle (cont.)

- The resistance varies with i and v : $\Delta R = f(\Delta i, \Delta v)$: $\Delta R = \frac{K_i}{1 + \tau_i s} \Delta i - \frac{K_v}{1 + \tau_i s} \Delta v$
- Wheatstone bridge of gain K_B : $\Delta R = -\frac{\Delta u}{K_B}$
- Current amplifier of gain (transconductance) K_A : $\Delta i = K_A \cdot \Delta u$
- $\Delta R = -\frac{\Delta i}{K_A \cdot K_B}$
- Time constant of the measurement system $i=f(v)$:

$$\left(\frac{1}{K_A \cdot K_B} + \frac{K_i}{1 + \tau_i s} \right) \Delta i = \frac{K_v}{1 + \tau_i s} \Delta v$$

$$\tau_T = \frac{\tau_i}{1 + K_i \cdot K_A \cdot K_B} \ll \tau_i !$$



→ System is much faster than the circuit with constant current

Measuring the flow

- Example: Flowmeters to measure respiration (spirometer)

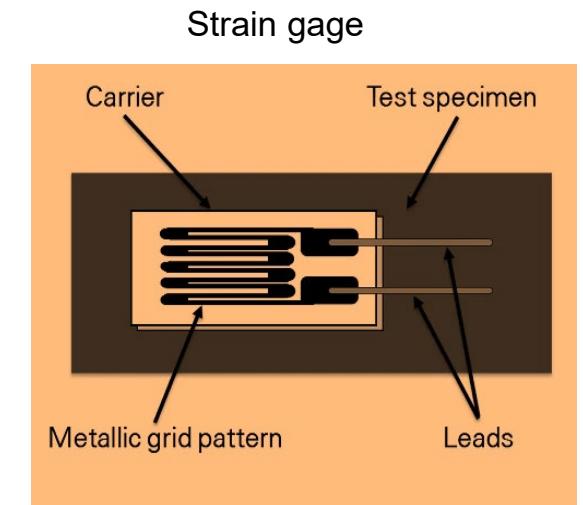
Spirometers are used to diagnose and assess a number of conditions and diseases, for example:

- **Asthma** – an obstructive lung disease in which the airways become periodically swollen and narrowed.
- **Chronic Obstructive Pulmonary Disease (COPD)** - lung conditions that narrow the airway and make it difficult to breathe.
- **Cystic fibrosis** – a degenerative condition in which the lungs and digestive system become clogged with thick, sticky mucus.
- **Pulmonary fibrosis** – scarring of the lungs caused by pollutants, medications and interstitial lung disease.

25

RESISTIVE SENSORS

Part III- Strain gage (gauge)



Strain gage: resistive property

- Converts a mechanical elongation/displacement produced by a force in its corresponding change in resistance
- Conductor of length l and cross-section surface A :

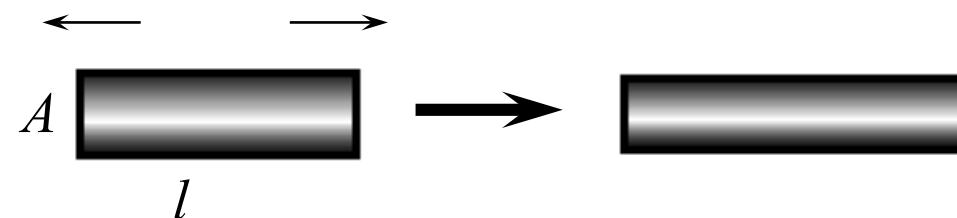
R : resistance

ρ : resistivity

l : length

A : section area

$$R = \rho \frac{l}{A}$$



$$R_2 = R_1 + \Delta R$$

$$R_1 < R_2$$

$$R_1 = \rho \frac{l}{A}$$

$$R_2 = \rho \frac{l + \Delta l}{A - \Delta A}$$

Strain gage: mechanical property

- Stress:

$$\sigma = \frac{F}{A}$$

F: force
A: area

Stress measures the internal pressure experienced by a material when subjected to a force. A larger force or smaller area increases the likelihood of deformation (shape change)

- Strain:

$$\varepsilon = \frac{\Delta l}{l}$$

Strain is the deformation resulting from stress. When a material experiences stress, it typically lengthens if pulled or shortens if compressed.

- Strain in direction of the stress:

$$\varepsilon_{\parallel} = \frac{\sigma}{Y}$$

Y: Young's modulus

- Strain perpendicular to the stress:

$$\varepsilon_{\perp} = -\nu \varepsilon_{\parallel}$$

ν : Poisson's ratio

Strain gage response

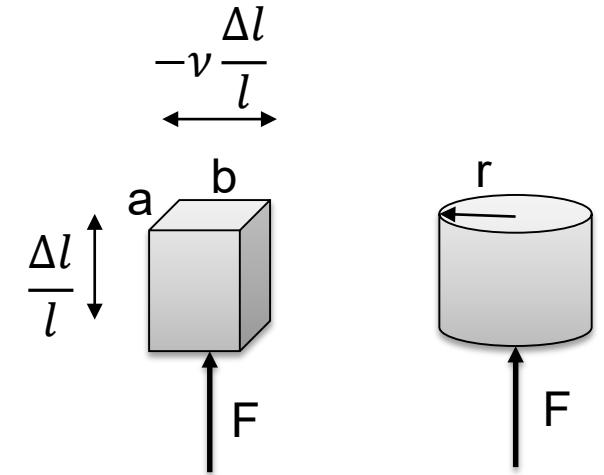
- $R = \rho \frac{l}{A}$

$$\frac{\Delta R}{R} = \frac{\Delta \rho}{\rho} + \frac{\Delta l}{l} - \frac{\Delta A}{A}$$

- The surface is mainly rectangular or circular

$$A = a \cdot b \text{ or } A = \pi r^2$$

- $\frac{\Delta A}{A} = \frac{\Delta a}{a} + \frac{\Delta b}{b} \text{ or } \frac{\Delta A}{A} = 2 \frac{\Delta r}{r} \Rightarrow \frac{\Delta A}{A} = -2\nu \frac{\Delta l}{l}$



$$\frac{\Delta R}{R} = (1 + 2\nu) \frac{\Delta l}{l} + \frac{\Delta \rho}{\rho}$$

Metallic conductor

$$\frac{\Delta\rho}{\rho} = C \frac{\Delta V}{V} = C(1 - 2\nu) \frac{\Delta l}{l}$$

V : volume ($V = A \cdot l$)

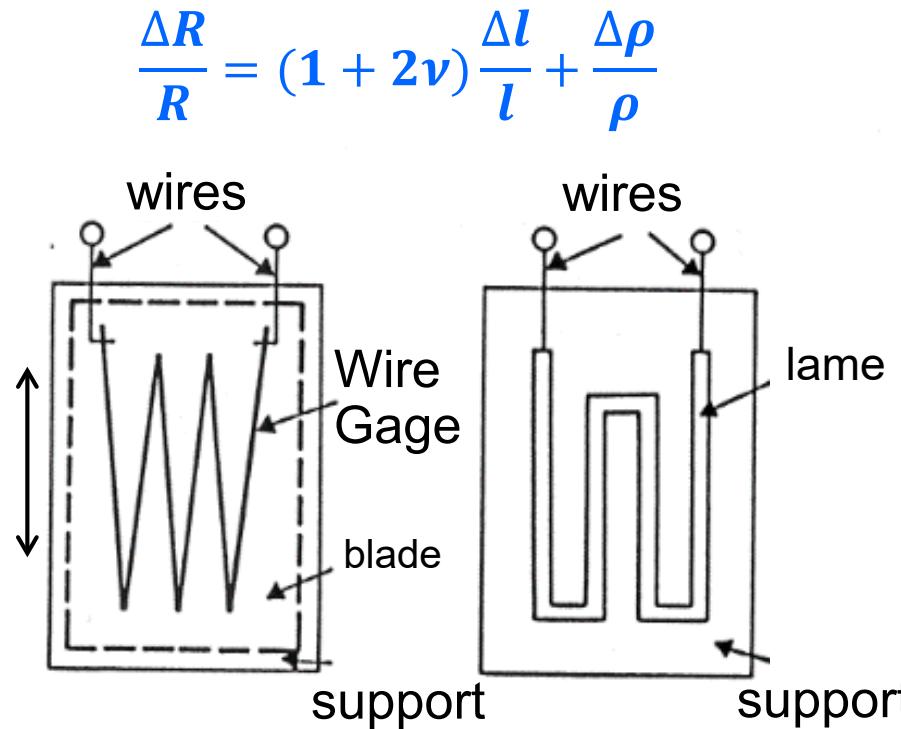
C : Bridgman correction factor

- The relative variation of the gage resistance is:

$$\frac{\Delta R}{R} = \{(1 + 2\nu) + (1 - 2\nu)C\} \frac{\Delta l}{l} = K \frac{\Delta l}{l}$$

$$K = (1 + 2\nu) + (1 - 2\nu)C$$

- K : gage factor
(for metals $C \approx 1$ and $\nu \approx 0.3$ and $K \approx 2$)



$$\frac{\Delta R}{R} = K \frac{\Delta l}{l}$$

Semiconductor

- Resistivity changes with doping: p-type (deficit of electron) or n-type (excess of electron)

$$\frac{\Delta \rho}{\rho} = \pi \cdot \sigma = \pi \cdot Y \frac{\Delta l}{l}$$

π : piezoresistivity coefficient

- The relative variation of the gage resistance is :

$$\frac{\Delta R}{R} = (1 + 2\nu) \frac{\Delta l}{l} + \frac{\Delta \rho}{\rho}$$

$$\frac{\Delta R}{R} = \{(1 + 2\nu) + \pi \cdot Y\} \cdot \frac{\Delta l}{l}$$

$$K = (1 + 2\nu) + \pi \cdot Y \approx \pi \cdot Y$$

$$\frac{\Delta R}{R} = K \frac{\Delta l}{l}$$

- $K \approx 100 - 200$ for a semiconductor gage

In summary

$$\frac{\Delta R}{R} = K \frac{\Delta l}{l}$$

- Metallic strain gage
 - More sensitive to mechanical strain
 - K=2 to 4
- Semiconductor strain gage
 - More sensitive to resistivity (piezoresistif effect)
 - K=100 to 200

Temperature effect

- Thermal expansion of the gage: $l_j = l_{jo}(1 + \lambda_j(T - T_o))$
- Thermal expansion of the support: $l_s = l_{so}(1 + \lambda_s(T - T_o))$
- At T_o , $l_{jo} = l_{so} = l_o$; At T , $l_s - l_j = l_o(\lambda_s - \lambda_j)\Delta T$ with $\Delta T = T - T_o$

$$R(T_l) = R(T_o)(1 + \alpha_R(T - T_o))$$

$$\left. \frac{\Delta R}{R} \right|_{expansion} = K \frac{l_s - l_j}{l_o} = K(\lambda_s - \lambda_j) \cdot \Delta T$$

$$\left. \frac{\Delta R}{R} \right|_T = \left\{ \alpha_R + K(\lambda_s - \lambda_j) \right\} \cdot \Delta T = \beta \cdot \Delta T$$

- α_R : temperature coefficient, $^{\circ} \text{C}^{-1}$
- λ_s : expansion coefficient of support, $^{\circ} \text{C}^{-1}$
- λ_j : expansion coefficient of gage, $^{\circ} \text{C}^{-1}$

Temperature effect – Comparison

$$\left. \frac{\Delta R}{R} \right|_T = \left\{ \alpha_R + K(\lambda_s - \lambda_j) \right\} \cdot \Delta T = \beta \cdot \Delta T$$

Metallic strain gages

$\alpha_R = 0.01$ to $0.04\%/\text{ }^\circ\text{C}$
relatively low

If $\lambda_s - \lambda_j$ low, β stays low
Compensation for temperature
for $\beta > 1.5 \cdot 10^{-6} / \text{ }^\circ\text{C}$

Semiconductor strain gages (piezoresistive)

- α_R high
- K varies with temperature
- Compensation for temperature
mainly necessary
- $\lambda_j = 3.2 \cdot 10^{-6} / \text{ }^\circ\text{C} \ll \lambda_s$
- Sensors integrated in a silicon support
 $\lambda_s - \lambda_j = 0$

Comparison

Strain Gage	Metal	Semi-conductor
Linearity	High	Medium
Sensitivity	Low	High
Thermal sensitivity	Low	High

RESISTIVE SENSORS

**Part IV- Direct measurement of
arterial pressure
(Strain gage application)**

Measuring arterial blood pressure

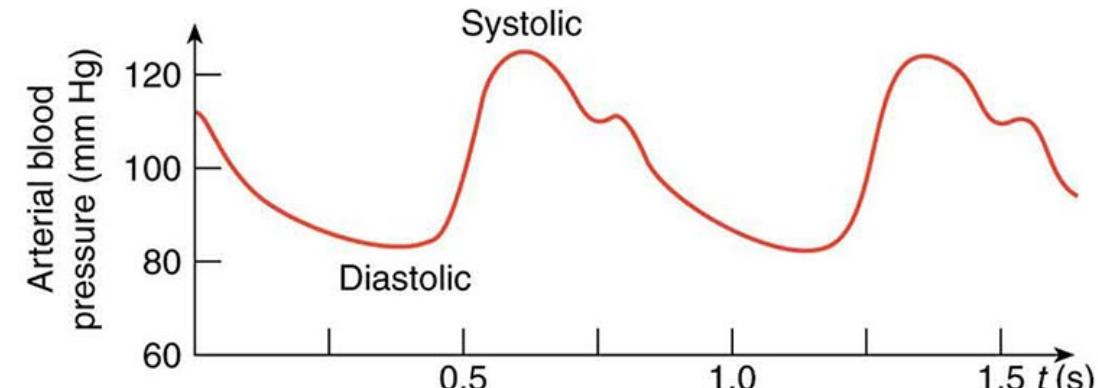
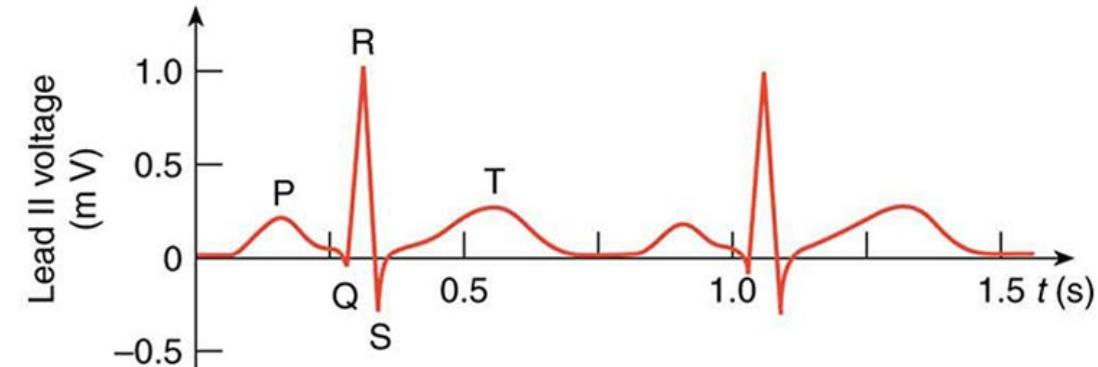
Direct measurement

- **Extravascular** sensor: the vascular pressure is coupled via a catheter (filled with liquid) to a pressure sensor located outside the body

Long response time

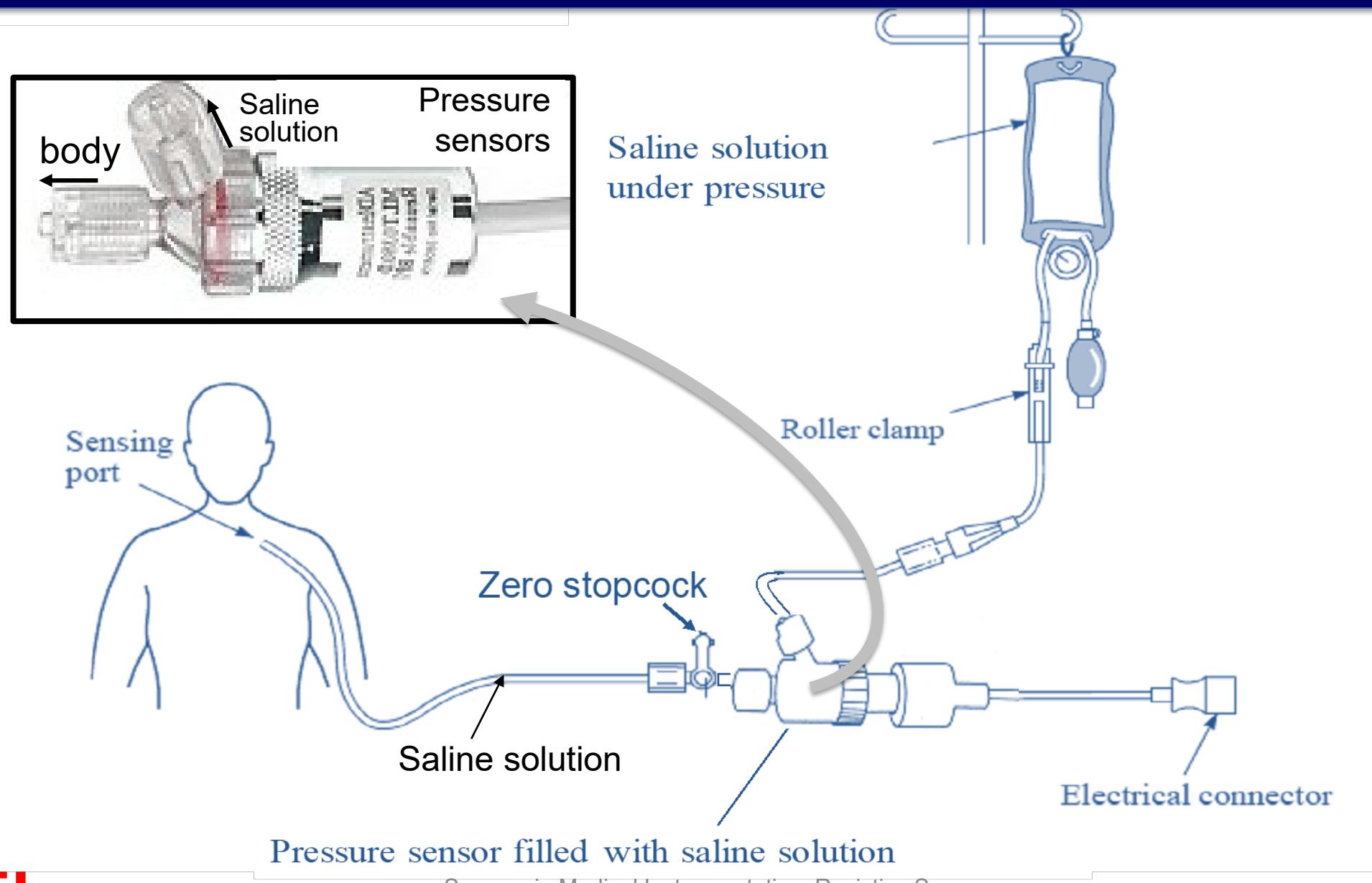
- **Intravascular** sensor : "Catheter-tip sensors", the sensor is located at the extremity of the catheter (e.g. in direct contact with the blood)

Short response time

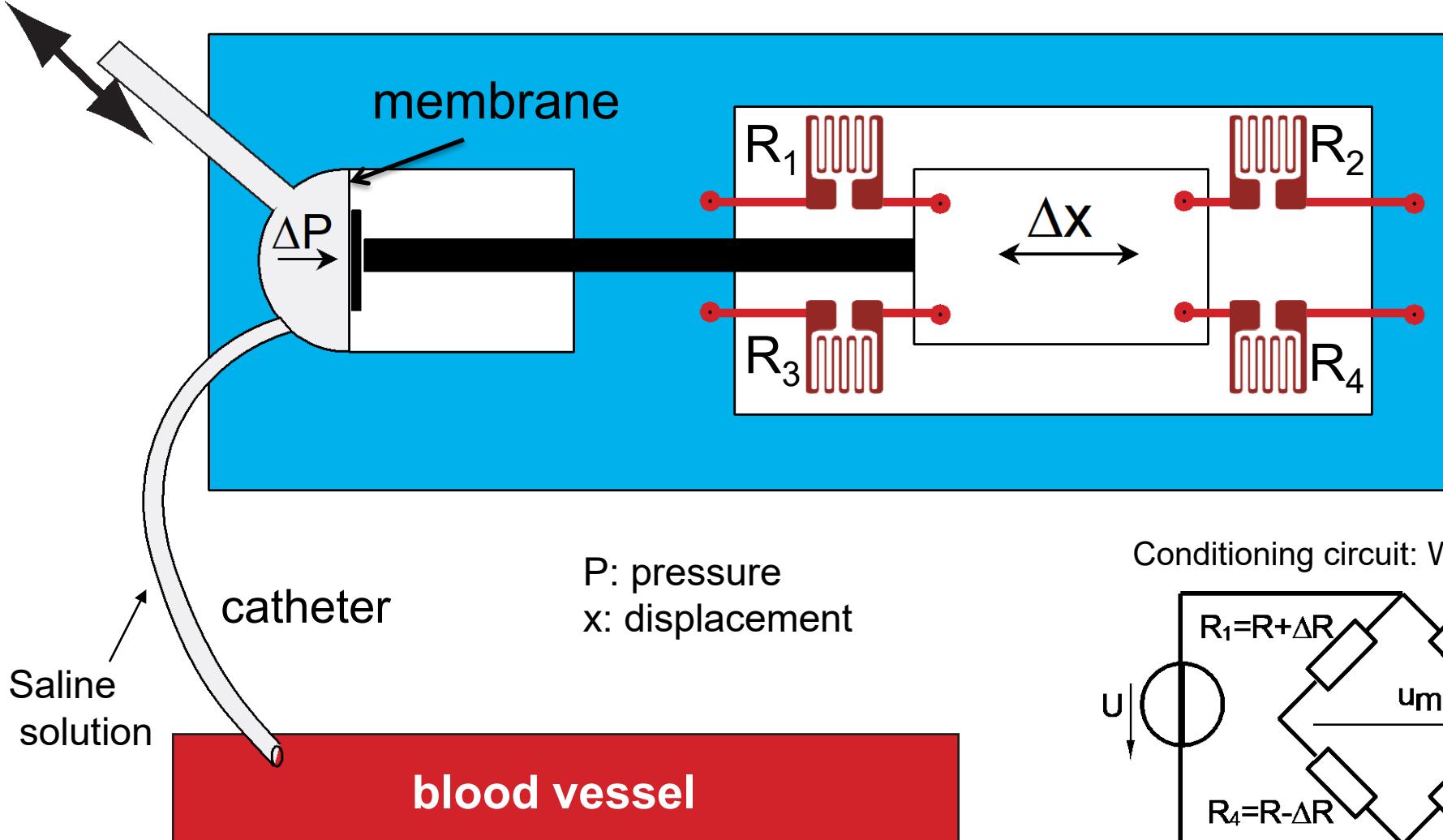
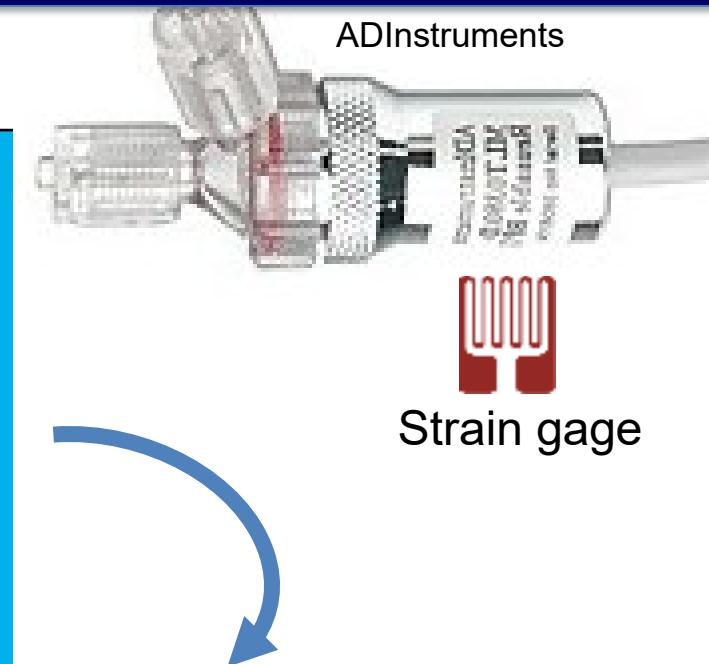


systolic pressure: maximum
diastolic pressure: minimum

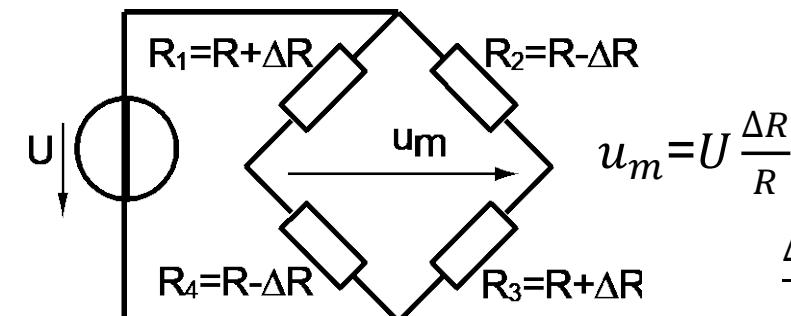
Extravascular sensor



Extravascular sensor



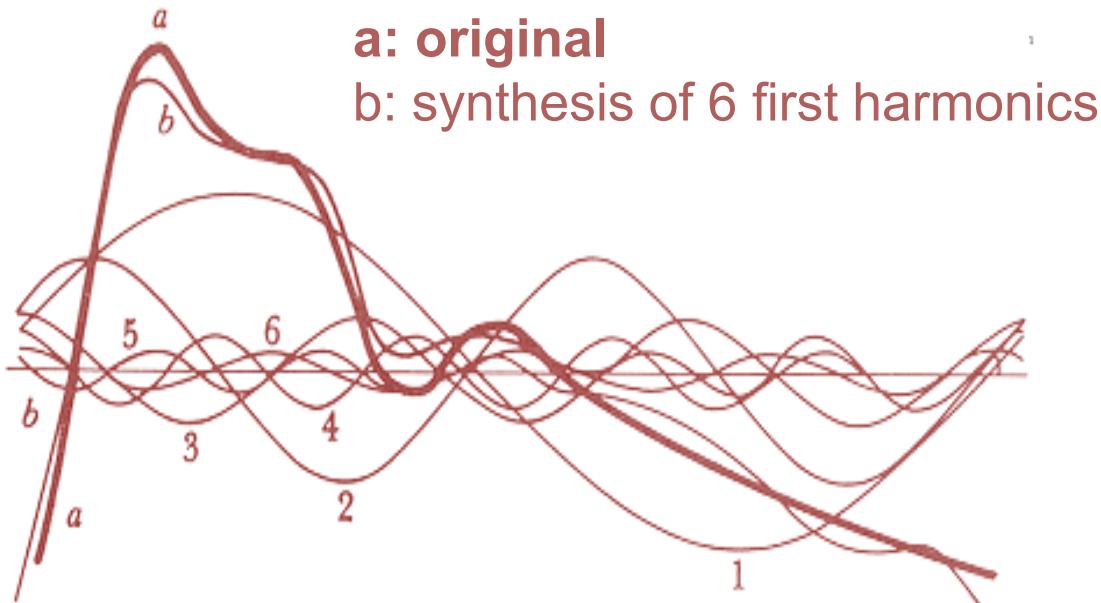
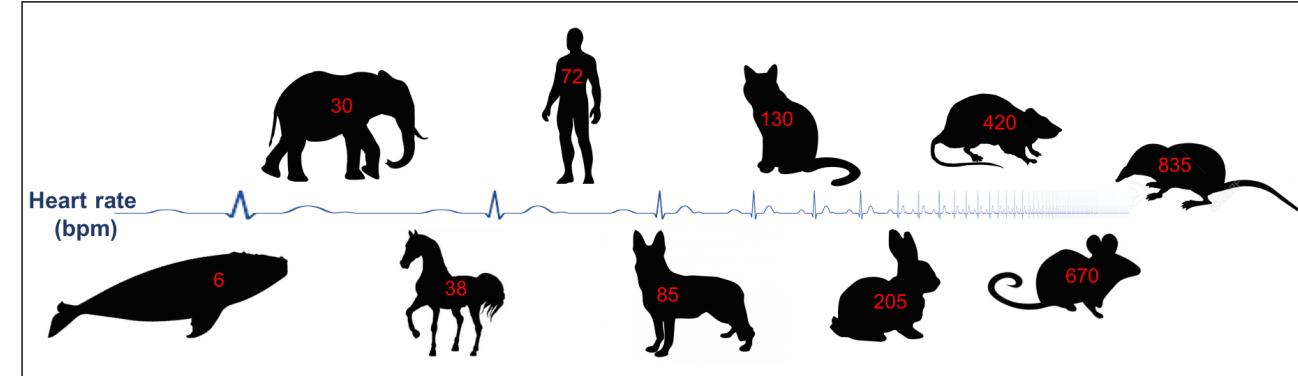
Conditioning circuit: Wheatstone bridge



$$\frac{\Delta R}{R} = K \frac{\Delta x}{x} = K' \frac{\Delta P}{P}$$

Dynamic properties of pressure measurement systems

- Arterial pressure bandwidth in humans: 0 to 50 Hz

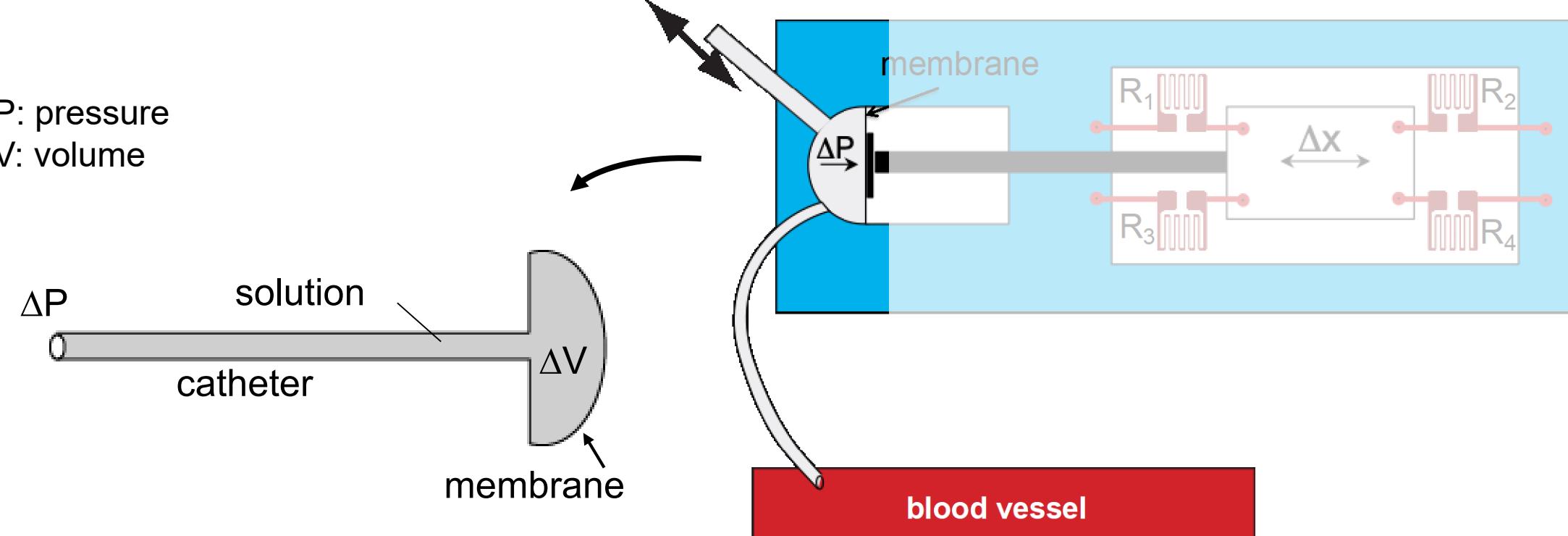


- Need for transfer function estimation of the system

Modelling the catheter – liquid – membrane system

analogy

- Hydraulic system \longrightarrow electrical system



Analogous Variables: Electrical-Hydraulic

Quantity	Electrical System	Pressure System
Flowing quantity <i>power</i> ← × Volume quantity Energy Density	Current (Amps = Coul/s) Charge (Coul) Volt (Joule/Coul)	Flow (mL/s) Volume (mL) Pressure (kPa) ($\text{Pa} = \text{F}/\text{Area} = \text{J}/\text{Vol}$)
Energy Density to maintain Flow	Resistance (Ohms = Volt/Amps)	Resistance kPa / (mL/s)
Volume maintained by Energy Density	Capacitance (Farads = Coul/Volt)	Compliance mL / kPa
Energy Density to maintain d/dt (Flow)	Inductance (Henry = Volt/(Amps/s))	Inertance (kPa / (mL/s ²))

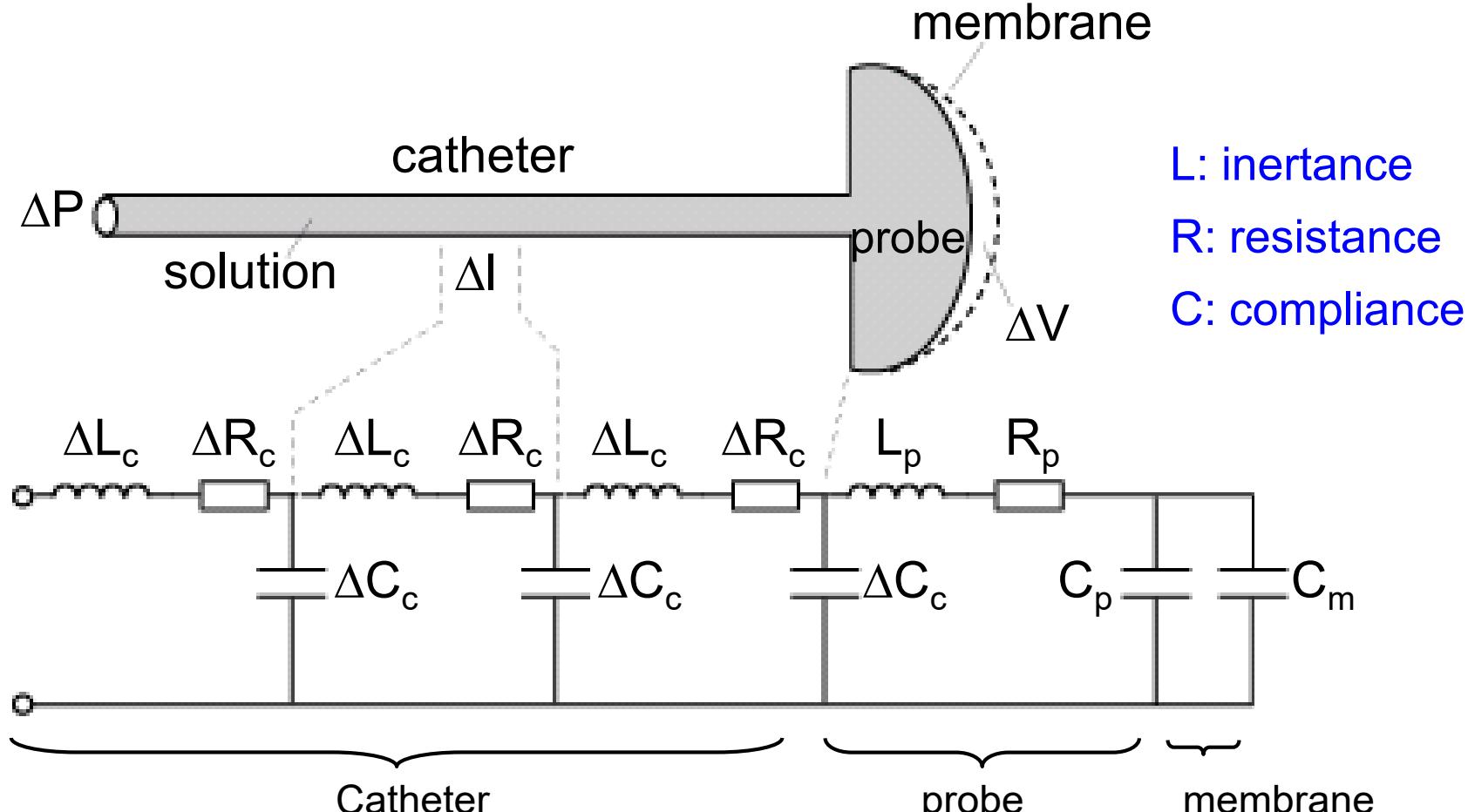
Copyright © by A. Adler, 2009 (including Material from J.G. Webster)

Modelling the catheter – liquid – membrane system

■ Hydraulic system

analogy

electrical system



Modelling the catheter – liquid – membrane system

- Measure of **energy density**: Pressure (ΔP) \rightarrow voltage
- Measure of **flow quantity**: Flow (Q) \rightarrow current
- The **resistance** of the catheter liquid is:

$$R_c = \frac{\Delta P}{Q} = \frac{\Delta P}{v \cdot A} \quad Pa \cdot s / m^3 \quad (Q = v \cdot A)$$

- v : average speed of liquid
- A : cross-sectional area of catheter

- Laminar flow, the Poiseuille equation*:
 - η : viscosity of the liquid
 - l_c : length of the catheter
 - r_c : radius of the catheter

$$R_c = \frac{8\eta l_c}{\pi \cdot r_c^4}$$

*See Moodle:
Annex_HydraulicResistanceCalculation

Modelling the catheter – liquid – membrane system

■ Inertance of the liquid

Electrical circ:
 $L = u/(di/dt)$

$$L_c = \frac{\Delta P}{dQ} \quad \text{with} \quad \frac{dQ}{dt} = \frac{dv}{dt} \cdot A = a \cdot A \quad \text{and} \quad \Delta P = \frac{\text{Force}}{\text{surface}} = \frac{m \cdot a}{A}$$

$$L_c = \frac{m \cdot a}{A \cdot a \cdot A} = L_c = \frac{m}{A^2}$$

$$m = \rho \cdot V = \rho \cdot A \cdot l$$

a : acceleration

m : mass of the liquid

ρ : density

A : Section

l : length

■ Compliance of catheter liquid:

- E_c : Volumetric elastic modulus

$$C_c = \frac{\Delta V}{\Delta P} = \frac{1}{E_c}$$

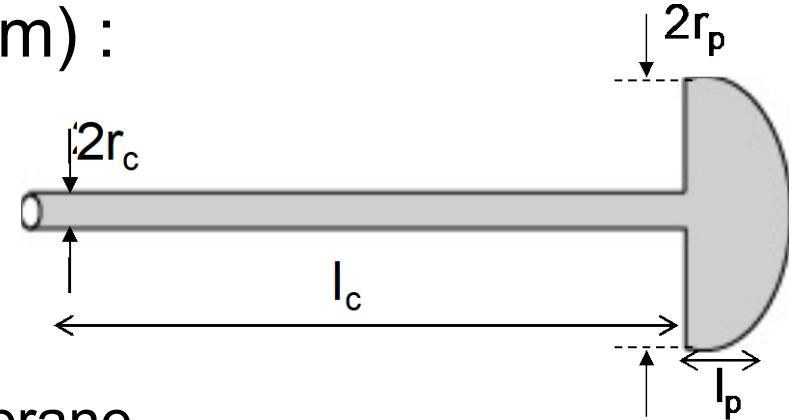
Electrical circ:
 $C = Q/V$

Modelling the catheter – liquid – membrane system

- For the probe(p), catheter (c) and membrane (m) :

$$C_{p,c,m} = \frac{1}{E_{p,c,m}} \quad R_{p,c} = \frac{8\eta l_{p,c}}{\pi \cdot r_{p,c}^2} \quad L_{p,c} = \frac{m_{p,c}}{A_{p,c}^2}$$

- $L_{p,c}$: length of probe or catheter
- $R_{p,c}$: radius of probe or catheter
- $E_{p,c,m}$: elastic modulus of the probe, catheter or membrane



- For $l_p \ll l_c$ and $r_p \gg r_c$:

$$R_c \gg R_p \text{ and } L_c \gg L_p$$

- For $E_m \ll E_c$ and $E_m \ll E_p$:

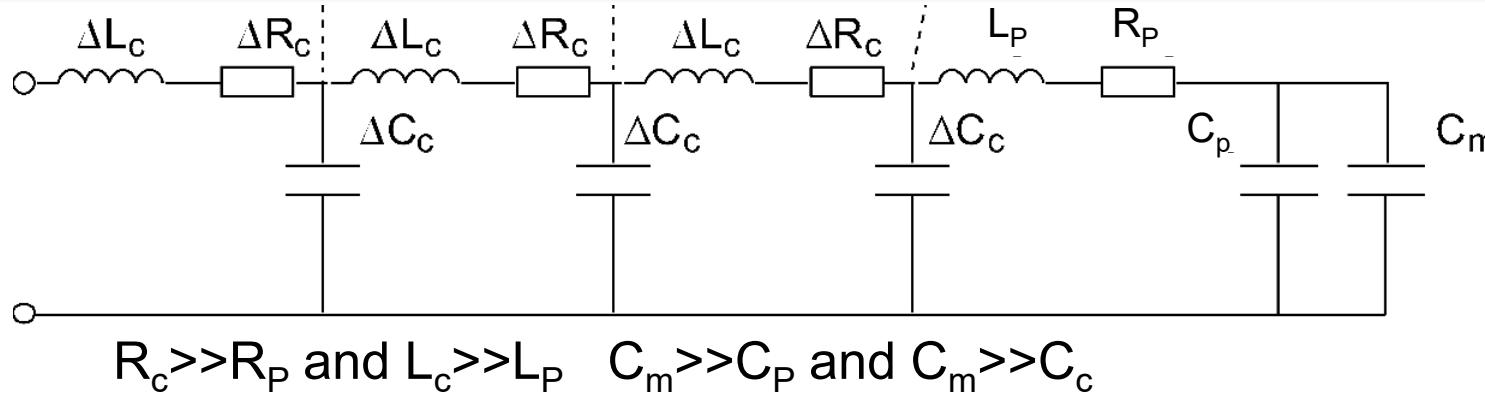
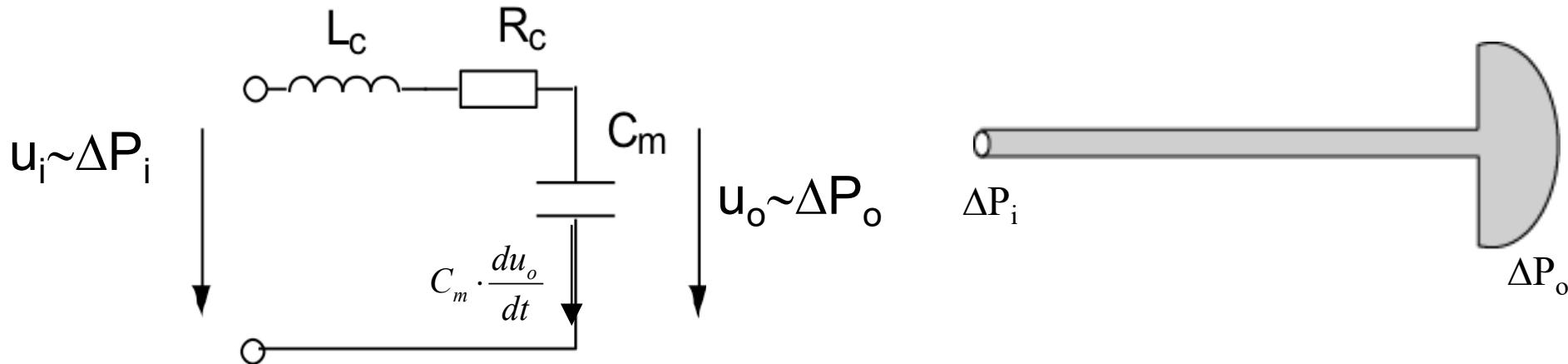
$$C_m \gg C_p \text{ and } C_m \gg C_c$$

$$C_m = \frac{1}{E_m}$$

$$R_c = \frac{8\eta l_c}{\pi \cdot r_c^4}$$

$$L_c = \frac{m_c}{A_c^2}$$

Modelling the catheter – liquid – membrane system



$$u_i(t) = L_c C_m \frac{d^2 u_o(t)}{dt^2} + R_c C_m \frac{du_o(t)}{dt} + u_o(t)$$

Modelling the catheter – liquid – membrane system

- Second order system

$$u_i(t) = L_c C_m \frac{d^2 u_o(t)}{dt^2} + R_c C_m \frac{du_o(t)}{dt} + u_o(t)$$

Characteristic equation

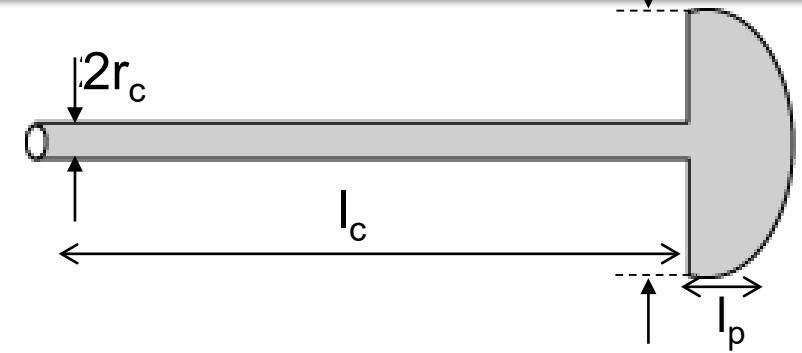
$$u_i(t) = \frac{1}{\omega_o^2} \frac{d^2 u_o(t)}{dt^2} + \frac{2\zeta}{\omega_o} \frac{du_o(t)}{dt} + u_o(t)$$

$$\omega_o = \frac{1}{\sqrt{L_c C_m}}$$

$$\zeta = \frac{R_c}{2} \sqrt{\frac{C_m}{L_c}}$$

$$\omega_o = \pi \cdot r_c \sqrt{\frac{E_m}{\pi \rho l_c}}$$

$$\zeta = \frac{4\eta}{r_c^3} \sqrt{\frac{l_c}{\pi \rho E_m}}$$



$$C_m = \frac{1}{E_m} \quad R_c = \frac{8\eta l_c}{\pi \cdot r_c^4}$$

$$L_c = \frac{m_c}{A_c^2} = \frac{\rho A_c l_c}{A_c^2} = \frac{\rho l_c}{\pi r_c^2}$$

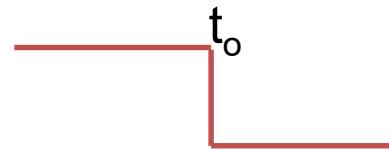
ρ : density

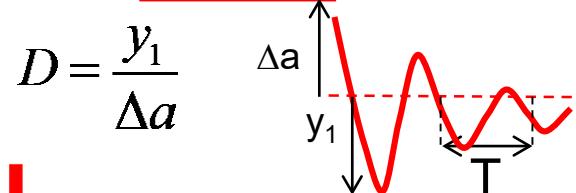
Modelling the catheter – liquid – membrane system

- Step response

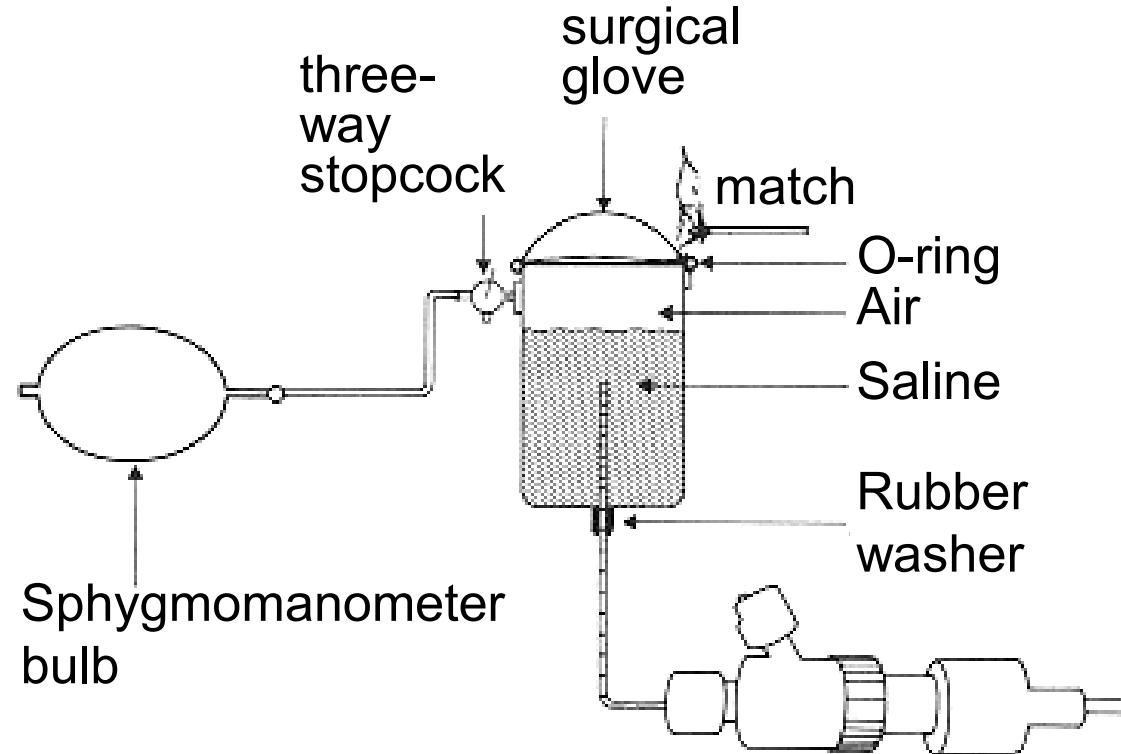
$$\zeta = \frac{1}{\sqrt{\left(\frac{\pi}{\ln D}\right)^2 + 1}}$$

$$\omega = \frac{2\pi}{T\sqrt{1-\zeta^2}}$$



$$D = \frac{y_1}{\Delta a}$$


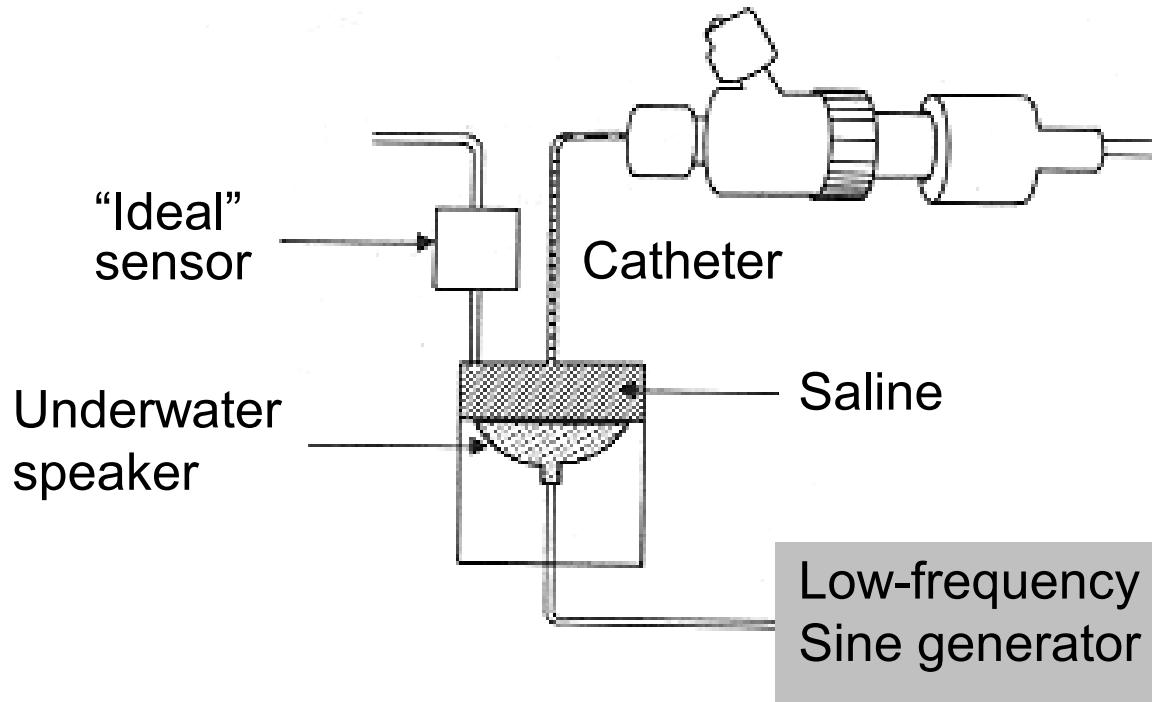
At time t_0 , the glove is burst



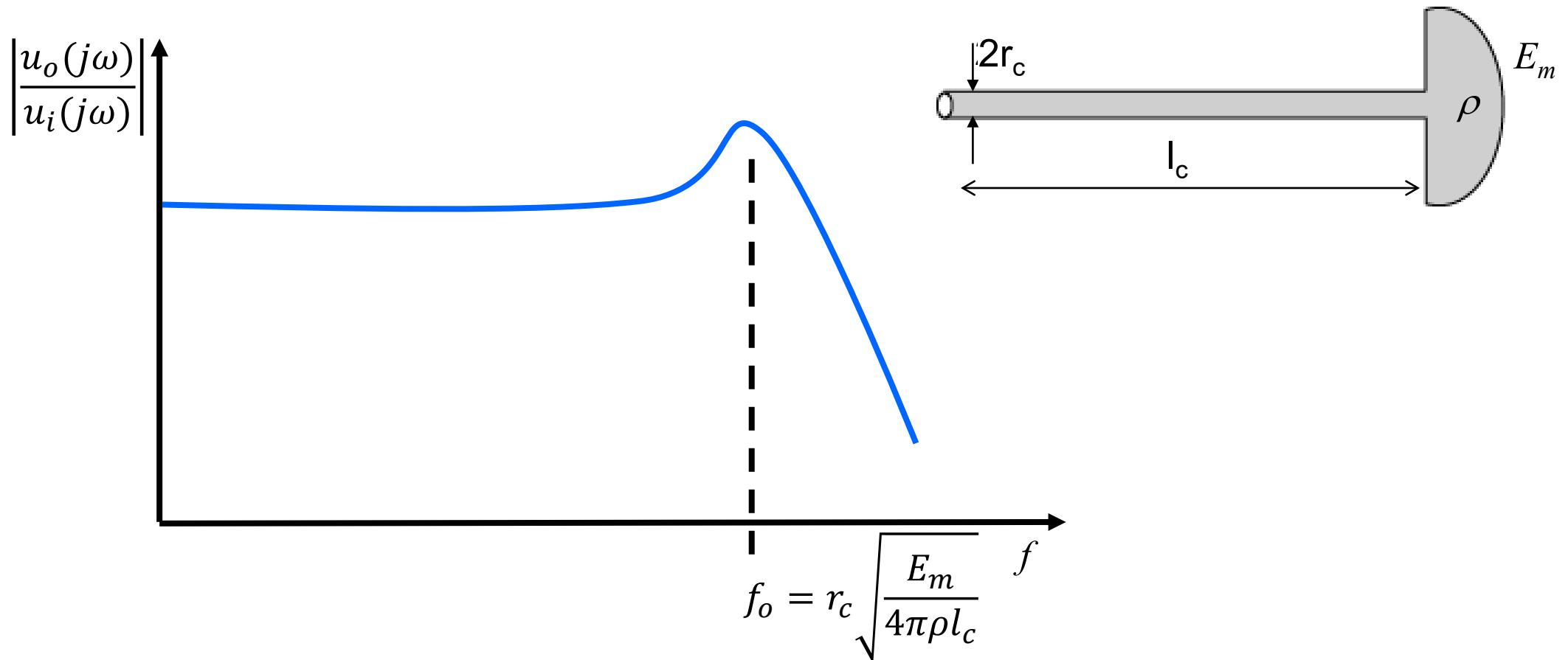
At time t_0 the glove is burst

Modelling the catheter – liquid – membrane system

- Response to a sinusoidal signal



Frequency range of extravascular sensor



The frequency range is limited by the size of catheter (l, r),
the membrane elasticity (E_m) and density (ρ) of the liquid
→ low pass behavior

Intravascular sensor

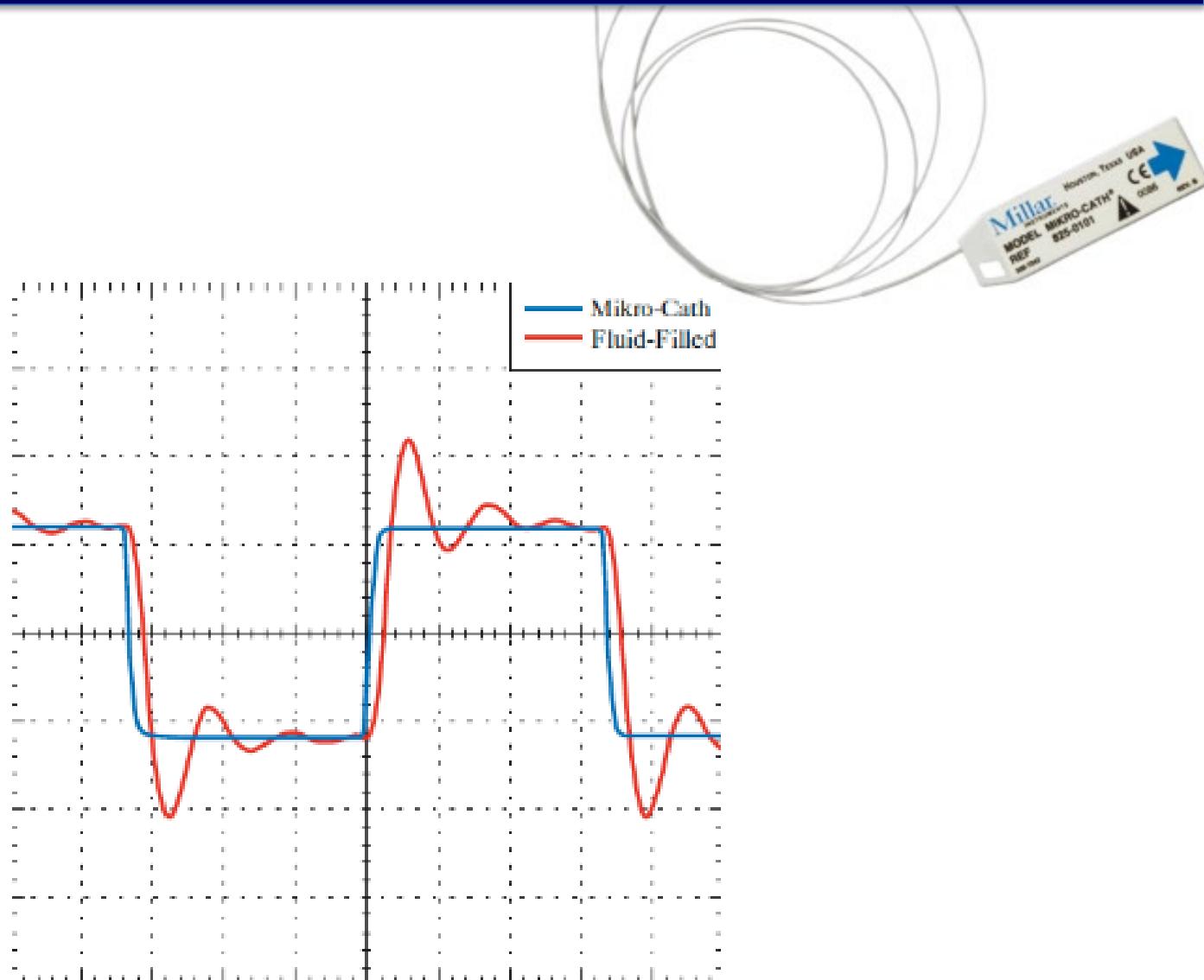
- Move the sensor at the tip of catheter and avoid the RLC circuit which reduces the frequency band
- Example: "Gaeltec"
 - **Structure**: metallic diaphragm with deposited gauges
 - **Excitation**: 5V AC r.m.s. maximum or 1V DC maximum
 - **Bridge resistance**: 1.5k Ω nominal
 - **Sensitivity**: 5 μ V/V/mmHg
 - **Range**: 0 - 150mmHg for urology
 - **Range with temperature compensation**: 15-40° C
 - **Temperature offset**: < 0.05%FS/° C
 - **Temperature sensitivity**: < 0.2%/° C
 - **Linearity error and hysteresis**: < \pm 1%FS BSL
 - **Surpressure**: 600mmHg

- Example catheter diameter: F5
 - **F**: French scale (0.33 mm)
 - **F5=1.65mm**

Millar intravascular sensors

Specification

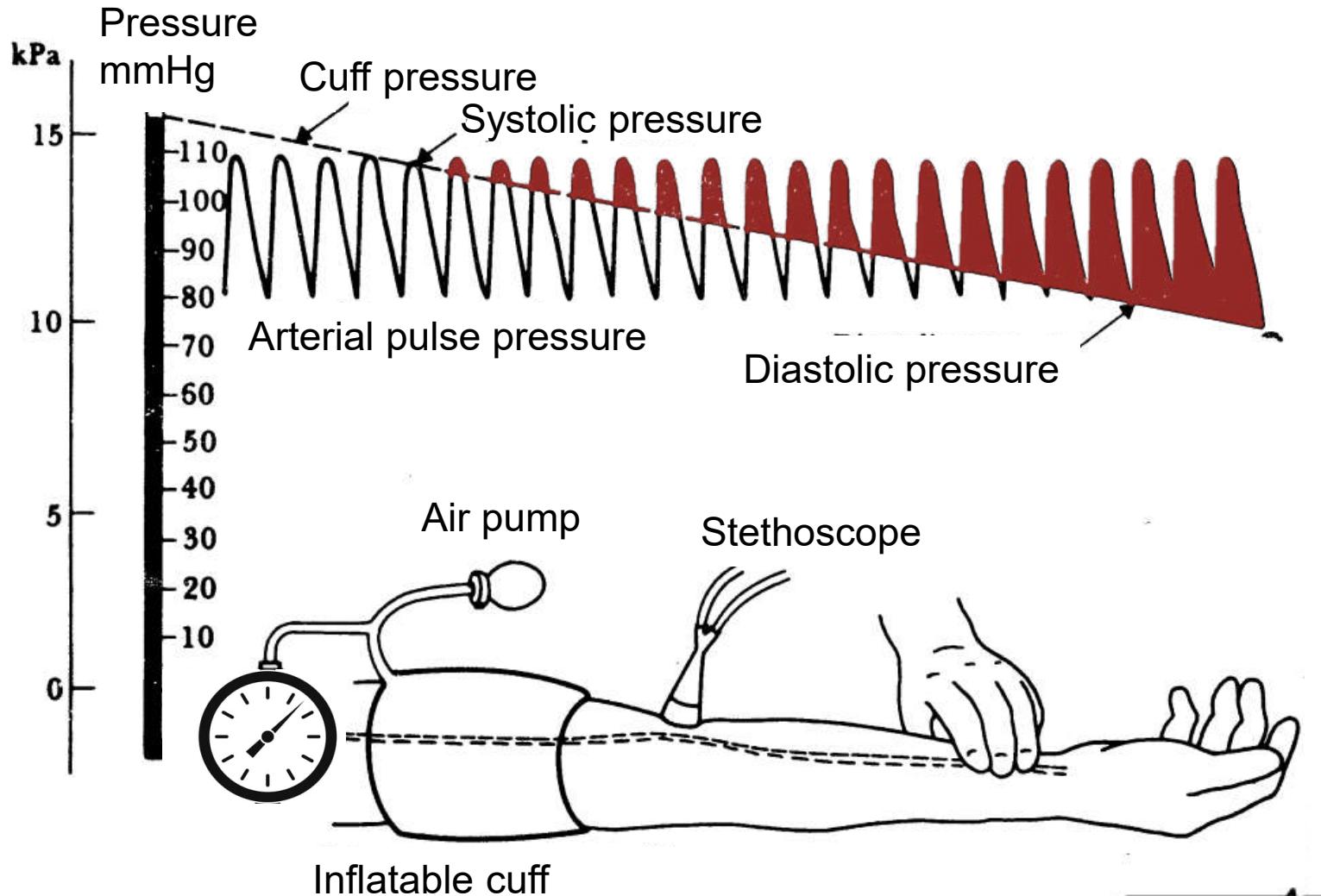
Part Number	825-0101
Catheter Material	Nylon
Effective Length	120 cm
French Size (Sensor)	3.5F (1.2 mm o.d.)
French Size (Catheter Body)	2.3F (0.9 mm o.d.)
Tip Characteristics	Straight
Connector Type	Low Profile
Reusable	No
Ship Sterile	Yes



RESISTIVE SENSORS

Part V- Indirect measurement of arterial pressure

Measuring arterial pressure: Indirect measurement



Korotkoff method

- The cuff pressure is raised above the systolic pressure e.g. 180mmHg: **The artery is blocked** preventing all circulation of blood.
- The cuff pressure is decreased by 2-3mmHg/s.
- When the **systolic** pressure = occlusive pressure, the blood begins to flow again
- The stethoscope detects an audible sound (**Korotkoff**). The pressure value corresponds to the systolic pressure (around 120 mmHg).
- When the cuff pressure reaches the **diastolic** pressure, the Korotkoff sound disappears (~ 80 mmHg)

Korotkoff method

- The Korotkoff sounds goes through 5 phases:
 - phase 1 : the initial sound (cuff pressure = systolic pressure)
 - phase 2 : the intensity of the sound increases
 - phase 3 : the sound reaches its maximum intensity
 - phase 4 : the sound is muffled and muted
(cuff pressure = diastolic pressure)
 - phase 5 : the sound disappears
- **Origin**
 - Turbulences, vibration of the arterial walls
- **Accuracy**
 - underestimates the systolic pressure by 1 to 13 mmHg
 - overestimates the diastolic pressure by 8 to 18 mmHg

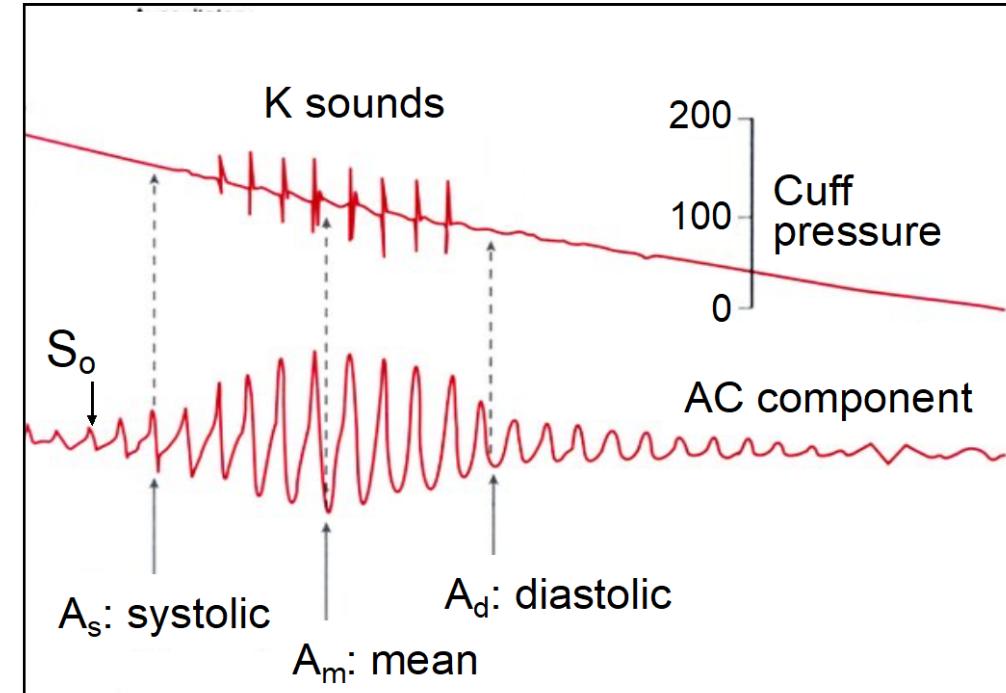
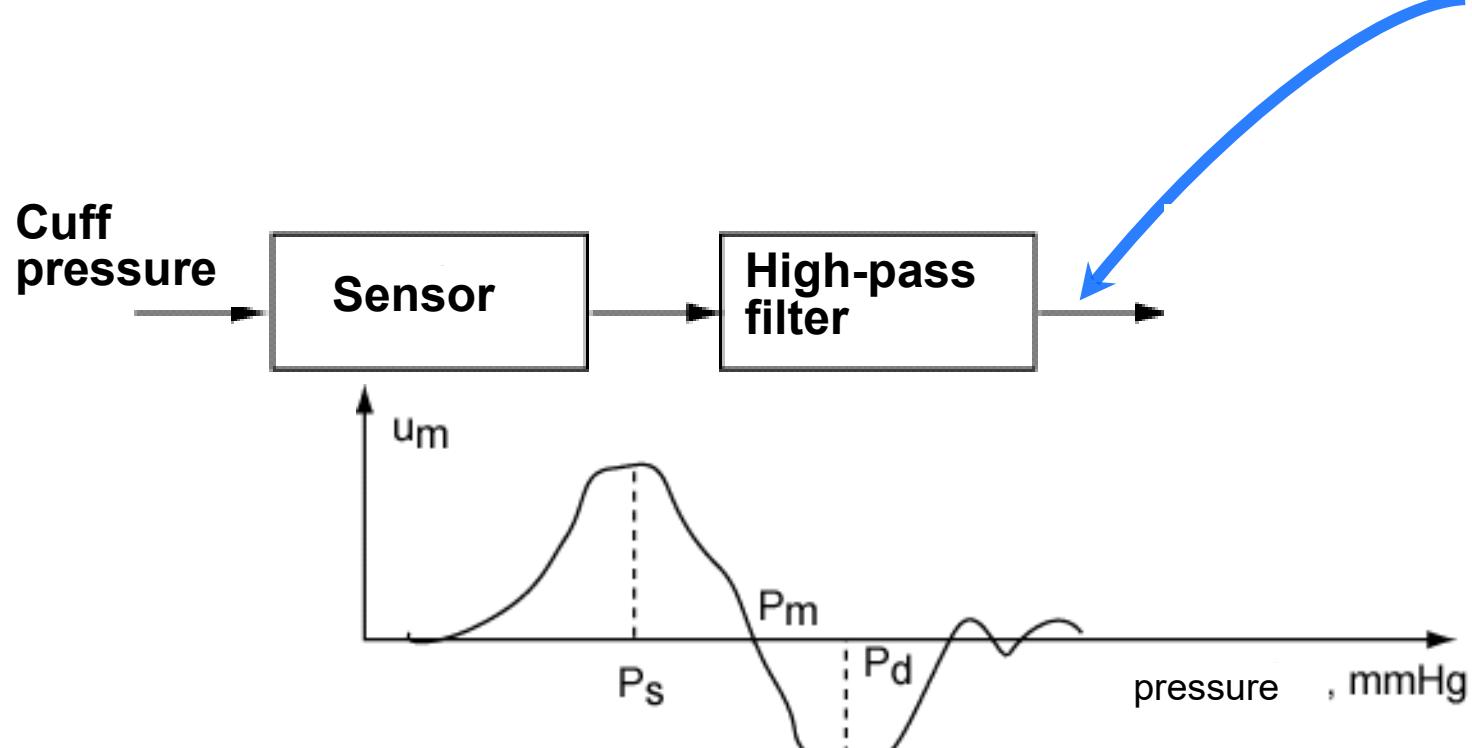
Oscillometry method

- Identical to the Korotkoff method; however the measurement of systolic and diastolic pressures is done directly by reading the cuff pressure and not by the stethoscope
- Change of volume under the cuff at each pulse
- Change of air volume inside the cuff
- Change in cuff pressure

Oscillometry method

at S_o the cuff pressure starts to decrease (AC component)

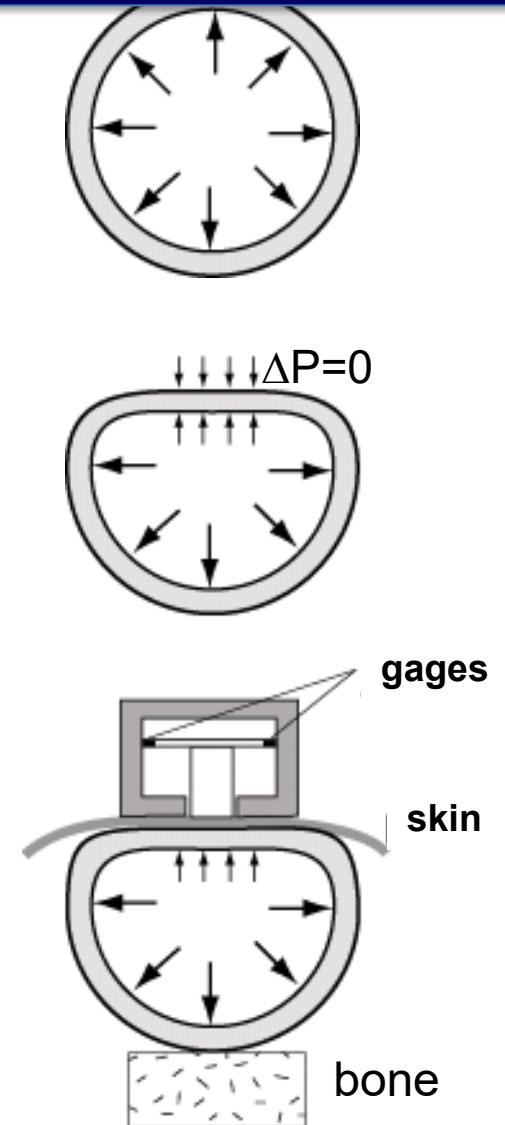
- A_s = systolic pressure estimated by the Korotkoff method (P_s)
- A_d = diastolic pressure estimated by the Korotkoff method (P_d)
- A_m = mean arterial pressure (P_m)



Tonometry

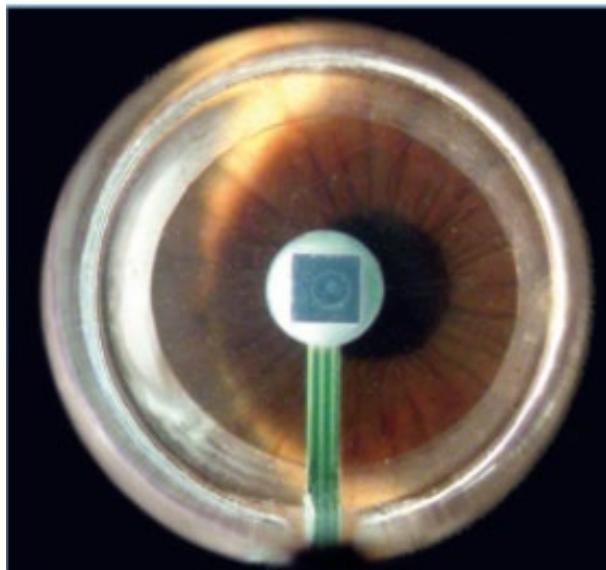
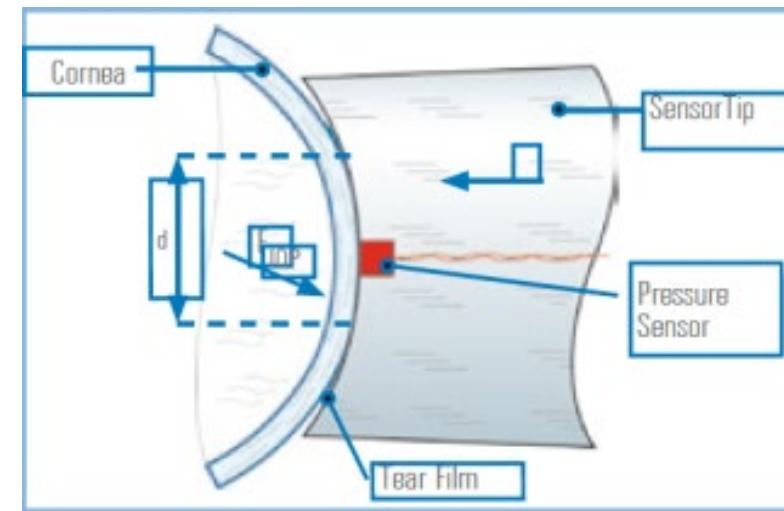
- Vessel wall partially flattened
- Pressure gradient vanishes through flattened part
- Pressure measured outside vessel = arterial pressure

- **Applications**
 - Measuring heart rate
 - Measuring ocular pressure

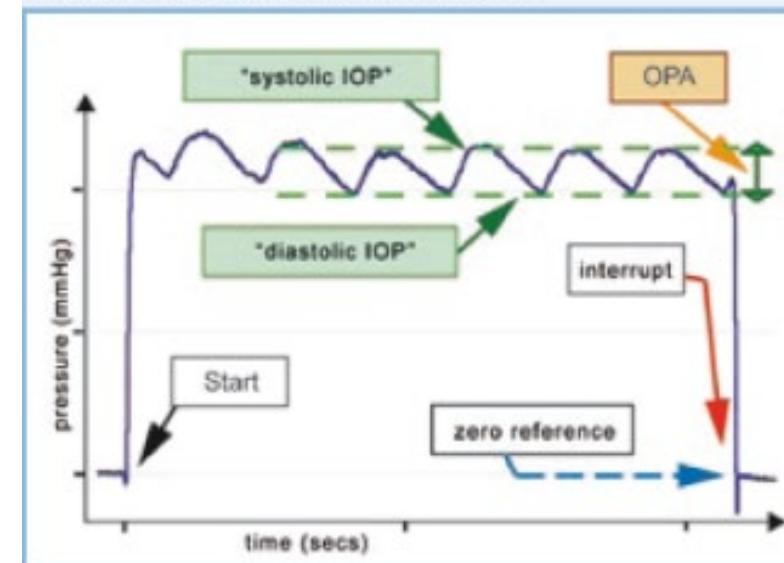


Example: Ziemer tonometer

SensorTip with contour-matched contact surface



This is what the PASCAL tonometer measures:



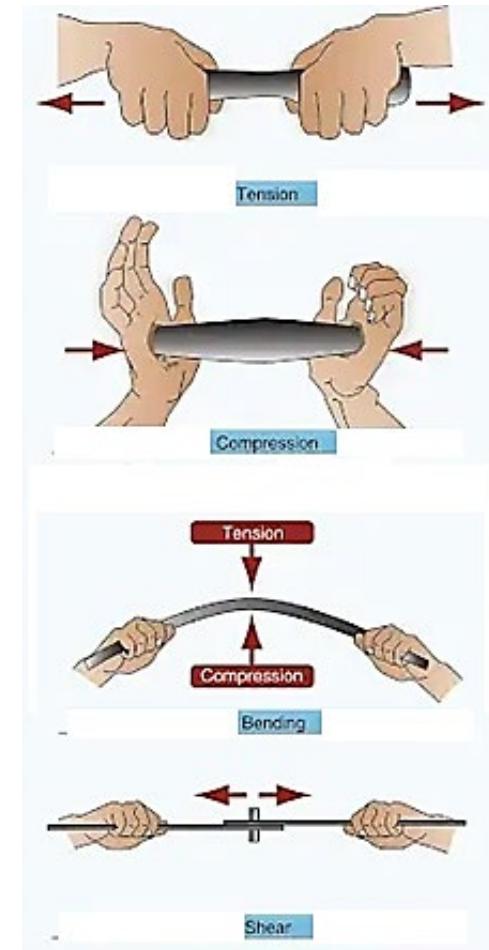
RESISTIVE SENSORS

**Part VI- Force measurement:
instrumented implant**

Kinetic measurement

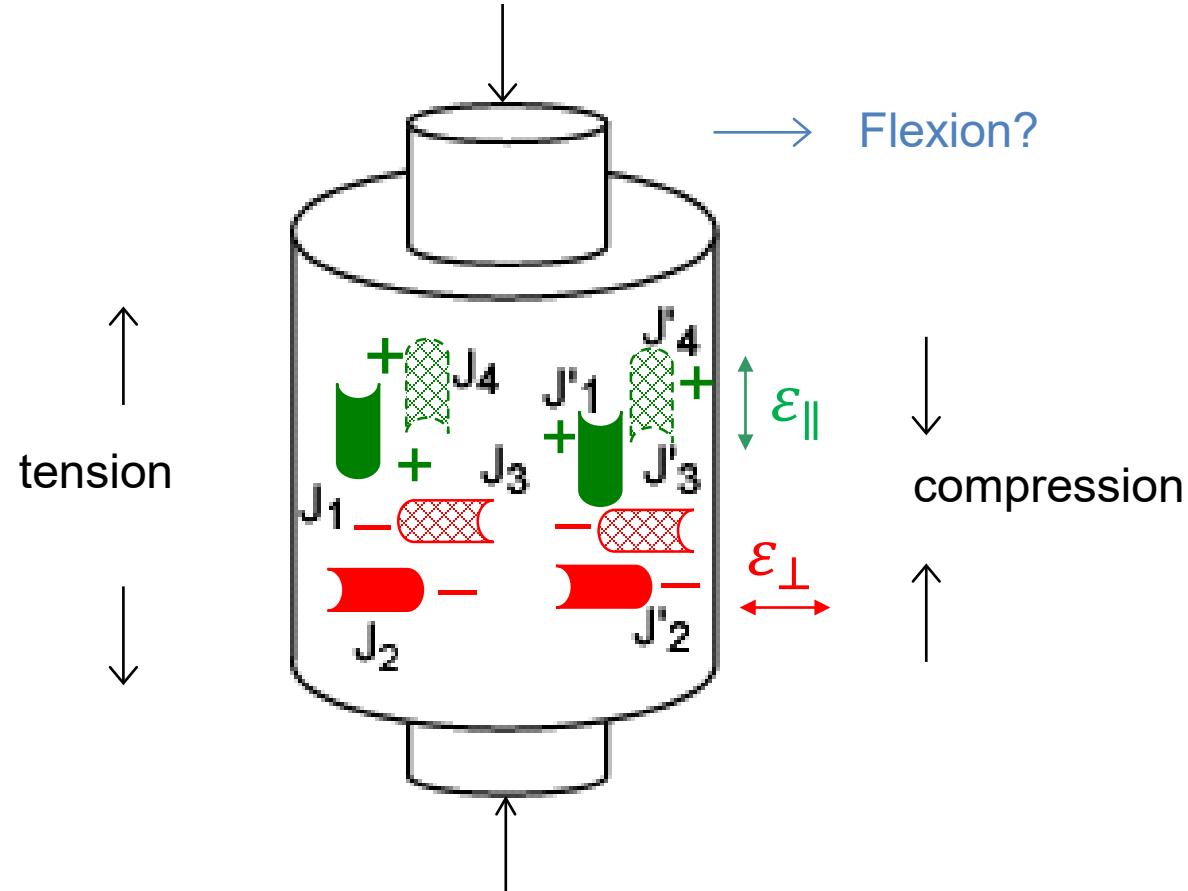
Force sensors

- The force is transformed to deformation via a test specimen
- Testing in tension, compression, flexion or shear
- The deformation is measured by a metallic or semiconductor strain gage mounted on a Wheatstone bridge.



Kinetic measurement

- Example of a test specimen in tension – compression mode



Example flexion mode

$$u_o = u_a - u_b = \frac{R_2}{R_1 + R_2} u - \frac{R_4}{R_3 + R_4} u$$

$$= \frac{R_2 R_3 - R_1 R_4}{(R_1 + R_2).(R_3 + R_4)} u$$

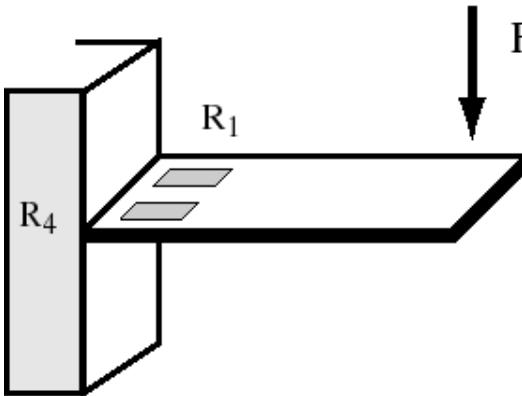
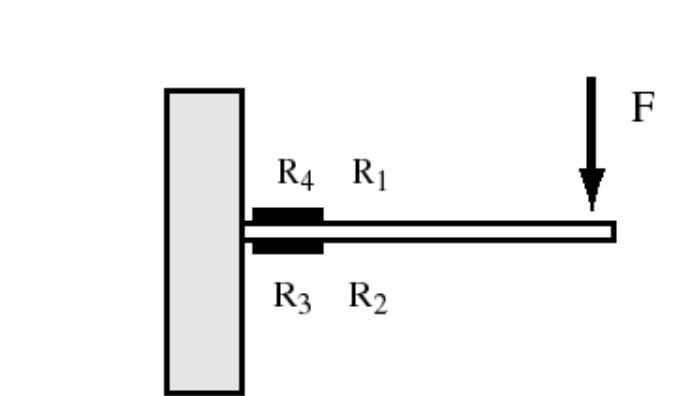
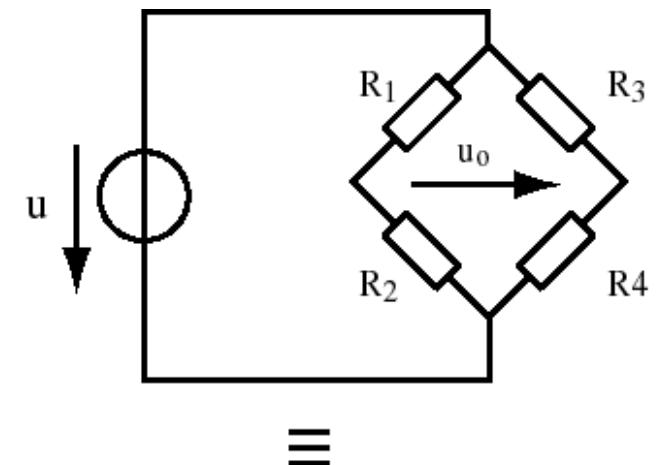
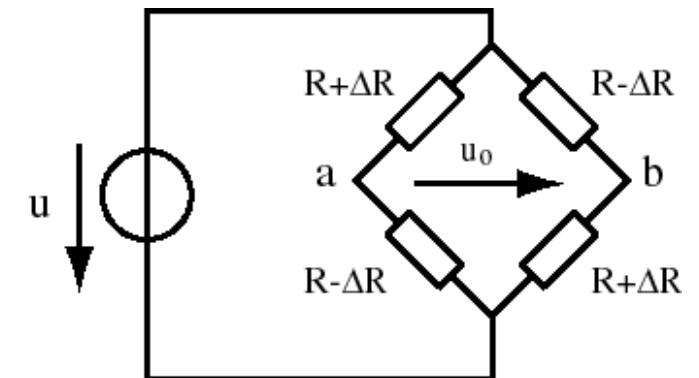
For $R_1 = R_2 = R_3 = R_4 = R$

$$u_o = \frac{(R - \Delta R)^2 - (R + \Delta R)^2}{(2R)(2R)} u = -\frac{\Delta R}{R} u$$

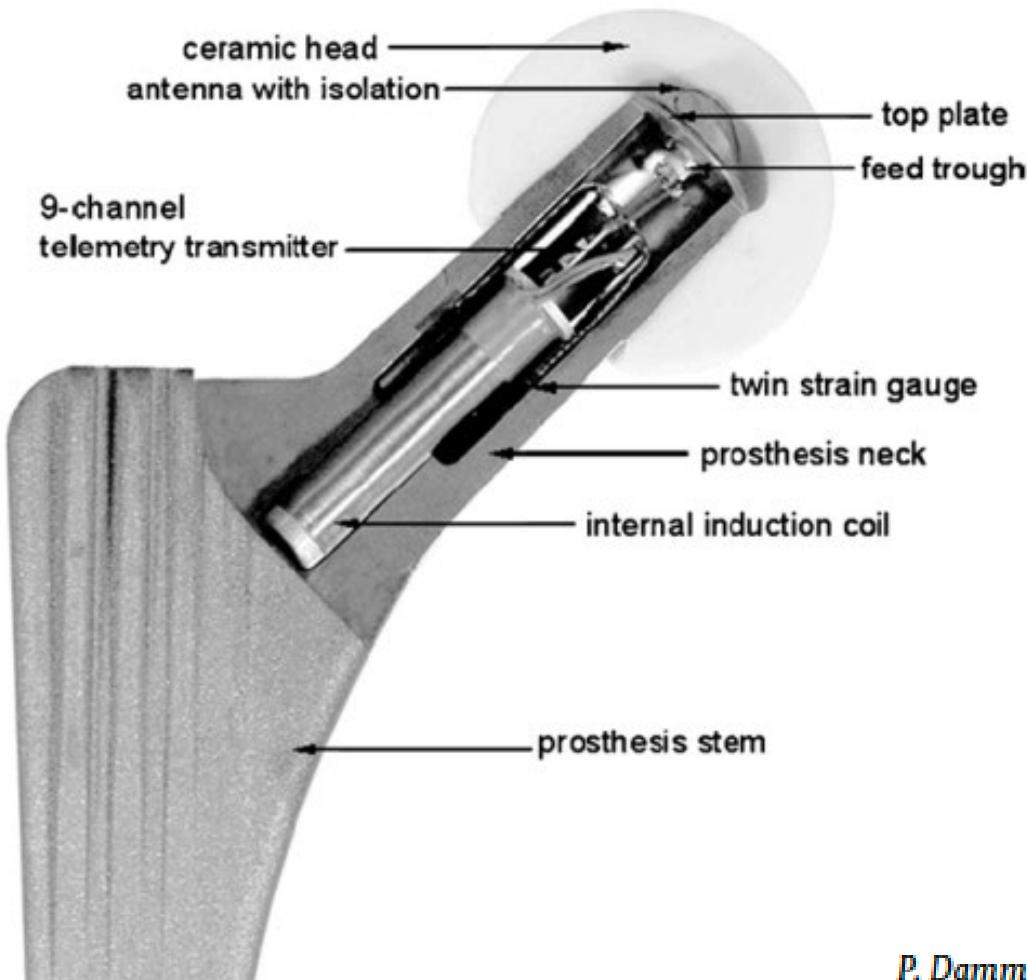
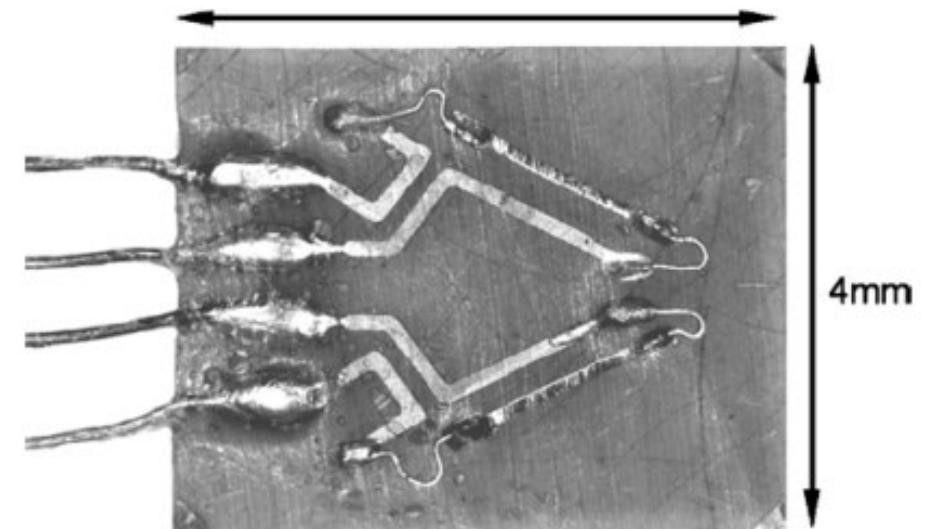
$$\frac{\Delta R}{R} = K \frac{\Delta l}{l} = K \varepsilon$$

Relative variation of resistance for
metallic strain gage

$$\Rightarrow u_o = -K \frac{\Delta l}{l} u = -K' u F$$



Instrumented prosthesis

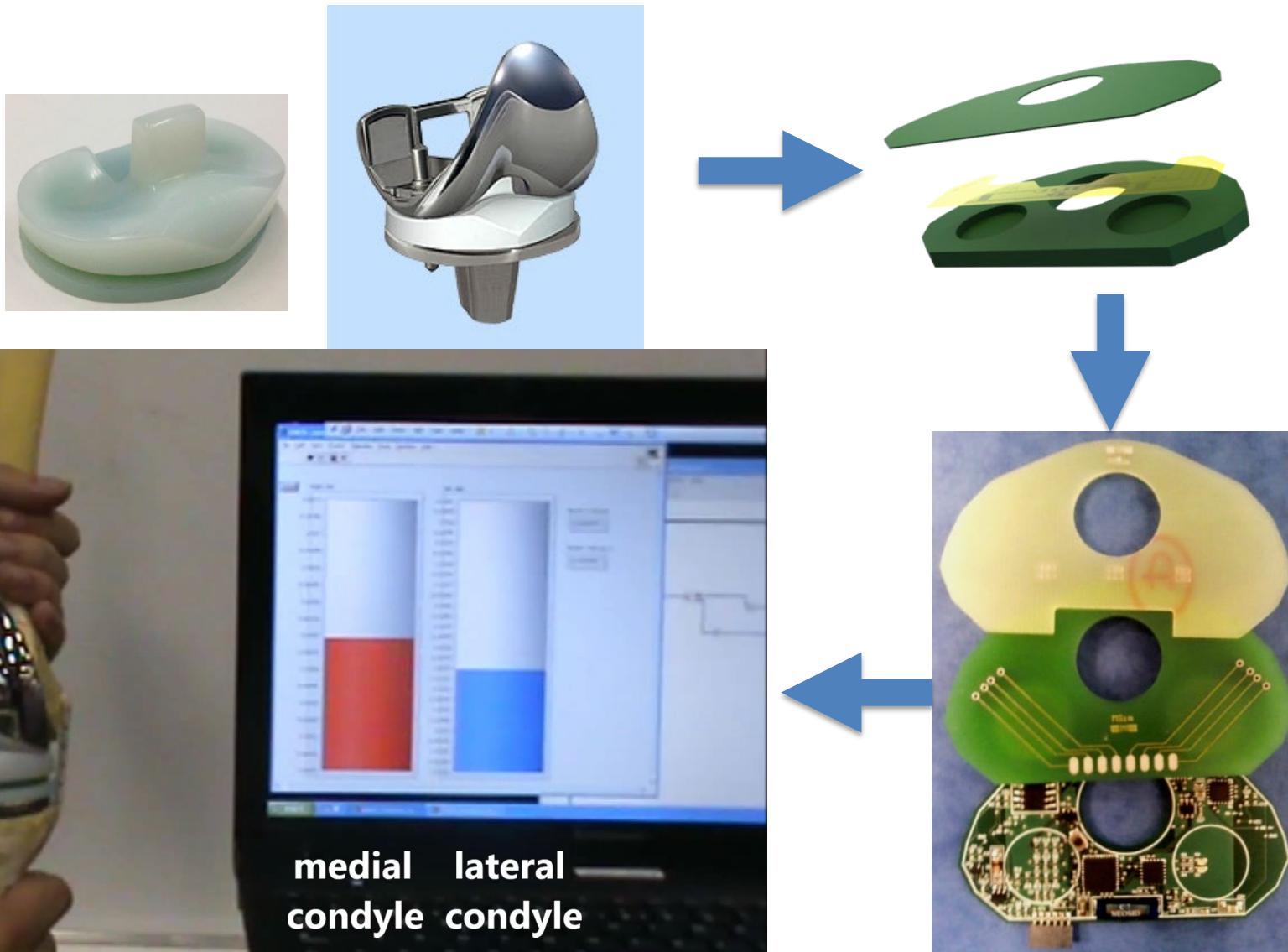


P. Damm et al. / Medical Engineering & Physics 32 (2010) 95–100

Measurement of force and symmetry

■ SImOS

Smart Implants for Orthopaedics Surgery



RESISTIVE SENSORS

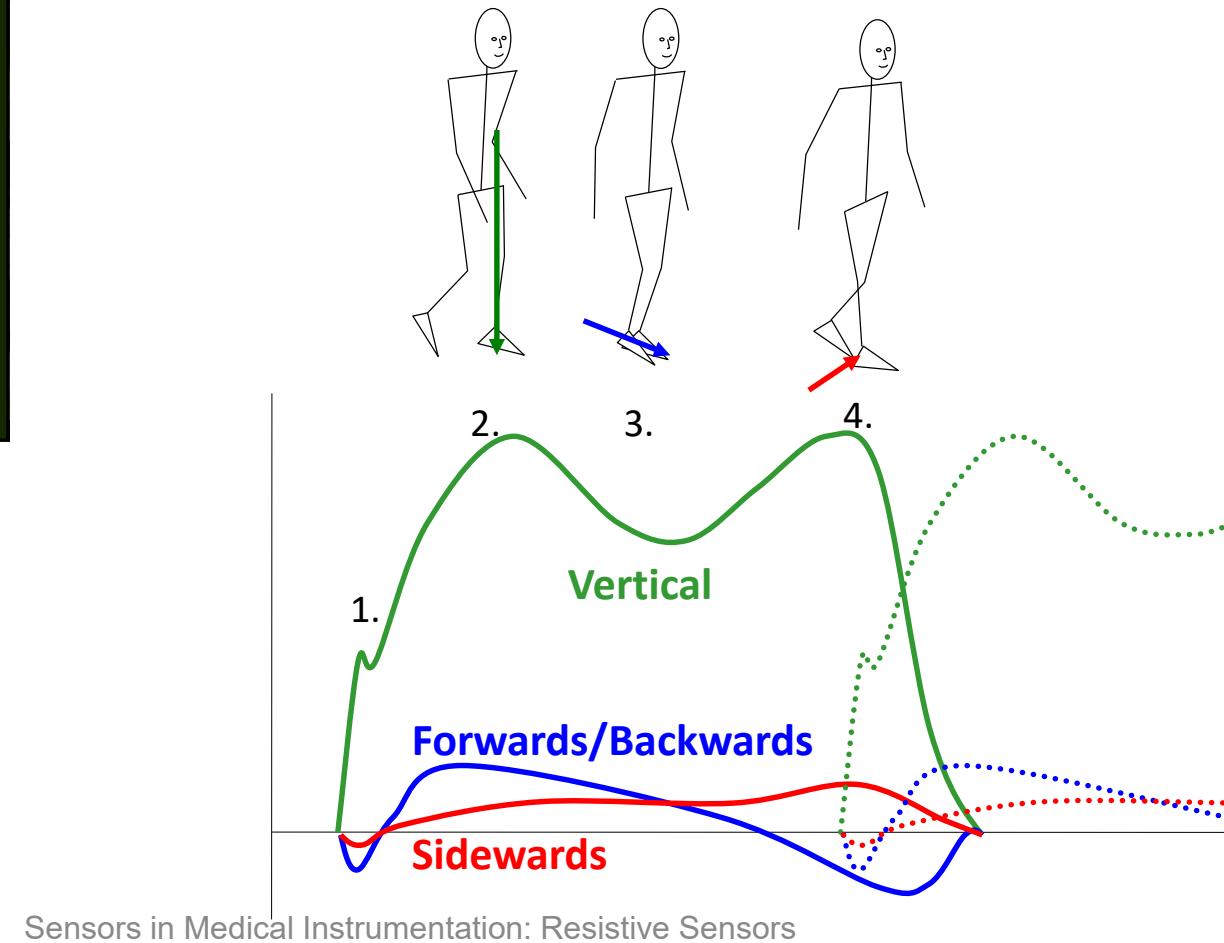
Part VII- Force plate: application in biomechanics

Force platform

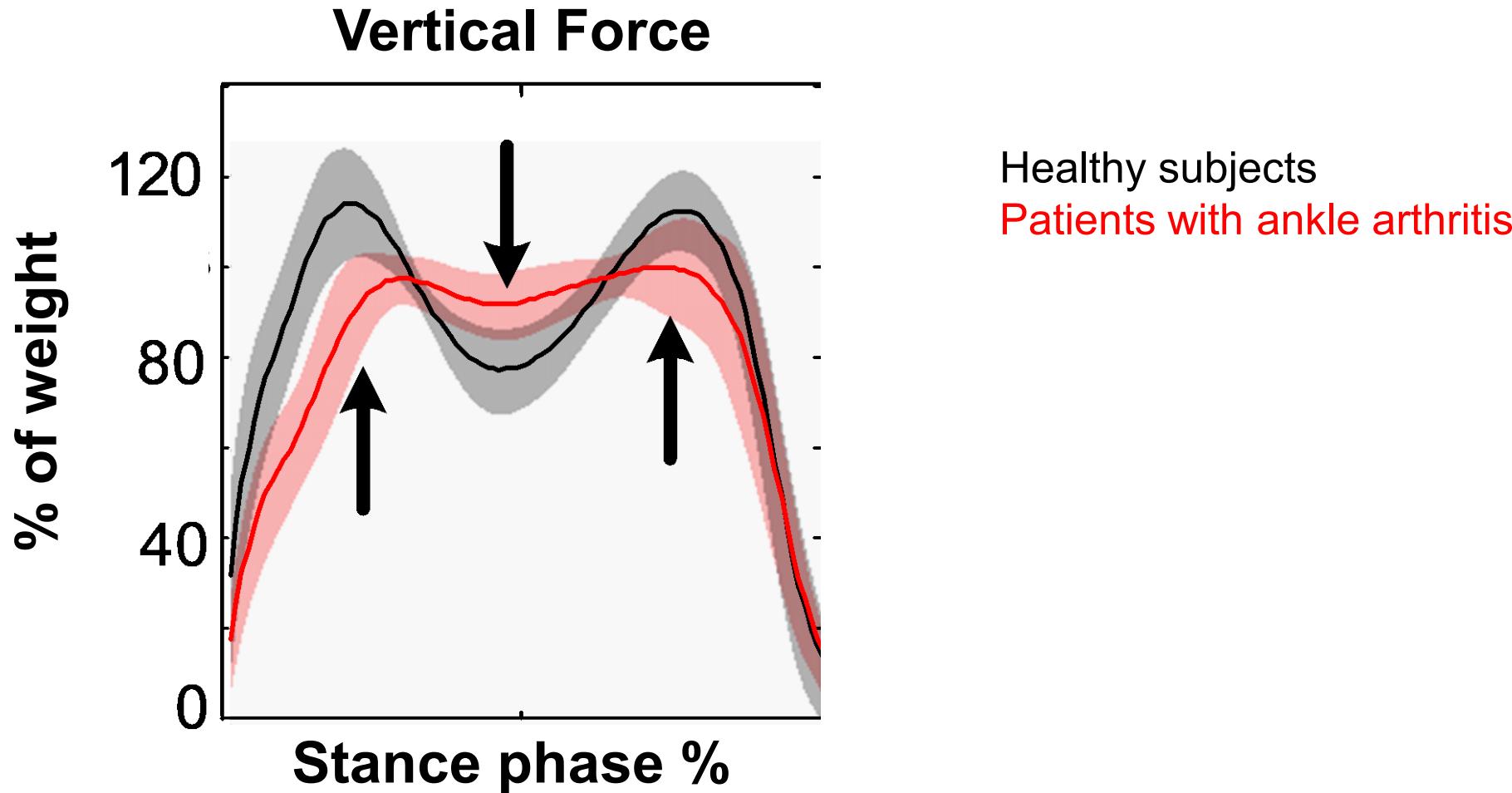
- The force platform allows:
 - the measurement of external forces
 - the estimation of the center of pressure (CoP)
 - the measurement of joint forces and moments

Force platform: ground reaction force

1. Heel Strike
2. Weight Acceptance
3. Mid Stance Phase
4. Push Off

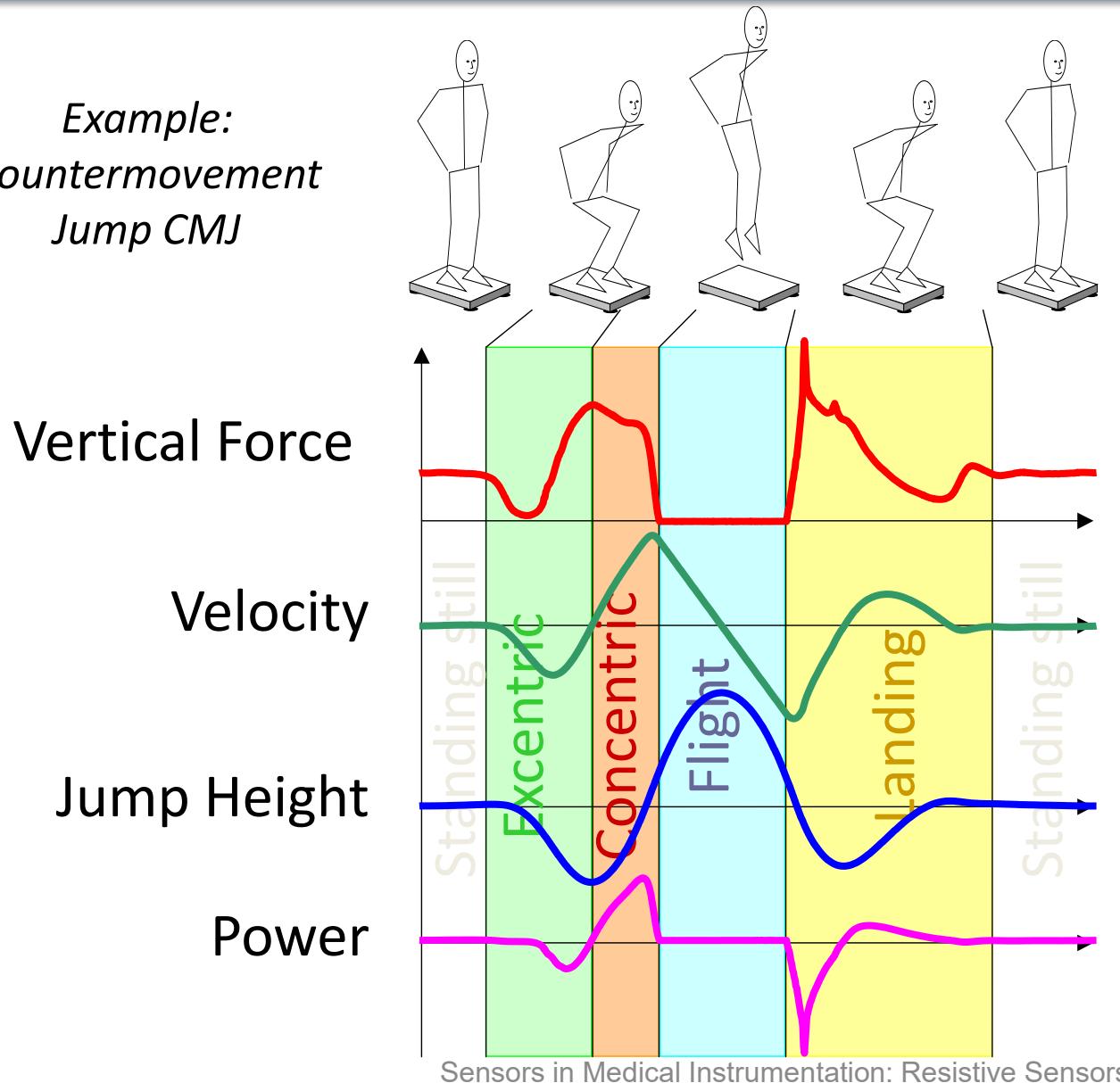


Example: vertical ground reaction force during walking



Force platform: jump

*Example:
Countermovement
Jump CMJ*



$F = \text{measured}$

$$v = \int a = \int \frac{F}{m}$$

$$s = \int v$$

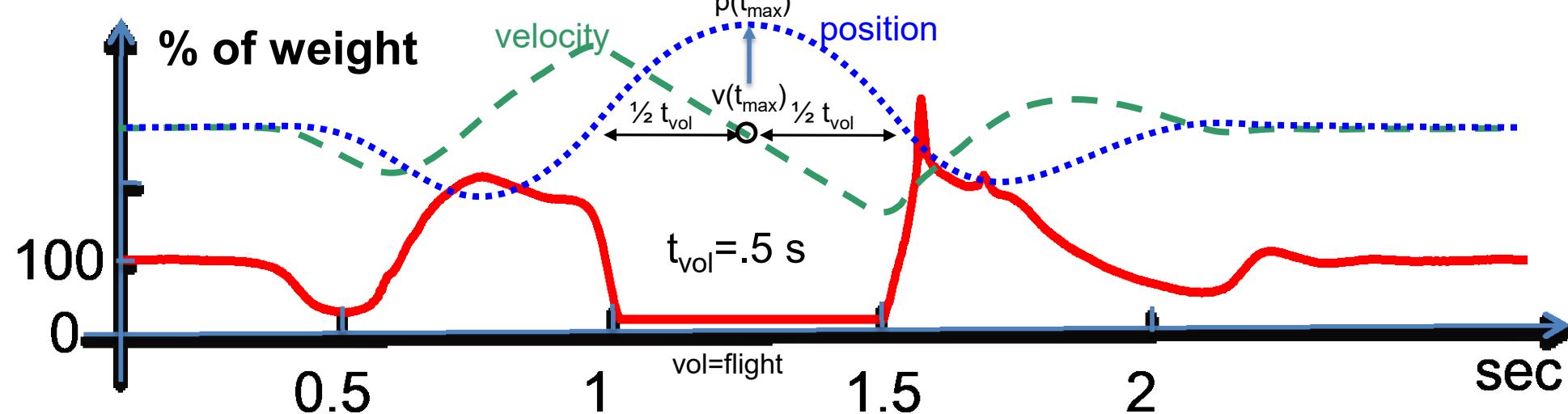
$$P = F \times v$$

Example: calculating the jump height

Show that: $h_{vol} = \frac{g}{2} \cdot \left(\frac{t_{vol}}{2} \right)^2 = \frac{9.8}{2} \cdot 0.25^2 \approx 30cm$

$$mgh_{max} = \frac{1}{2}mv^2(t_{max}) = \frac{1}{2}mg^2\left(\frac{t_{vol}}{2}\right)^2$$

$$v(t) = gt \Rightarrow v(t_{max}) = gt_{max} \approx g \frac{t_{vol}}{2}$$



Posturography: CoP Sway During Standing

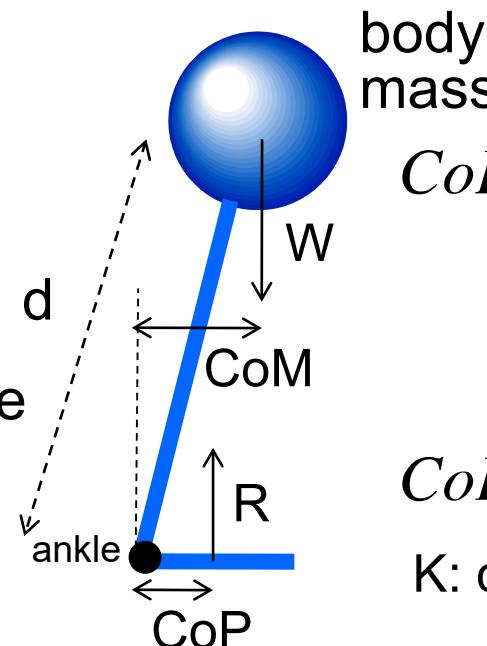
- Body sway is controlled by:
 - Vestibular system
 - Visual system
 - Proprioceptive system

$$R \cdot CoP - W \cdot CoM = I \cdot \dot{\omega}$$

$$R = W$$

$\dot{\omega}$: angular acceleration

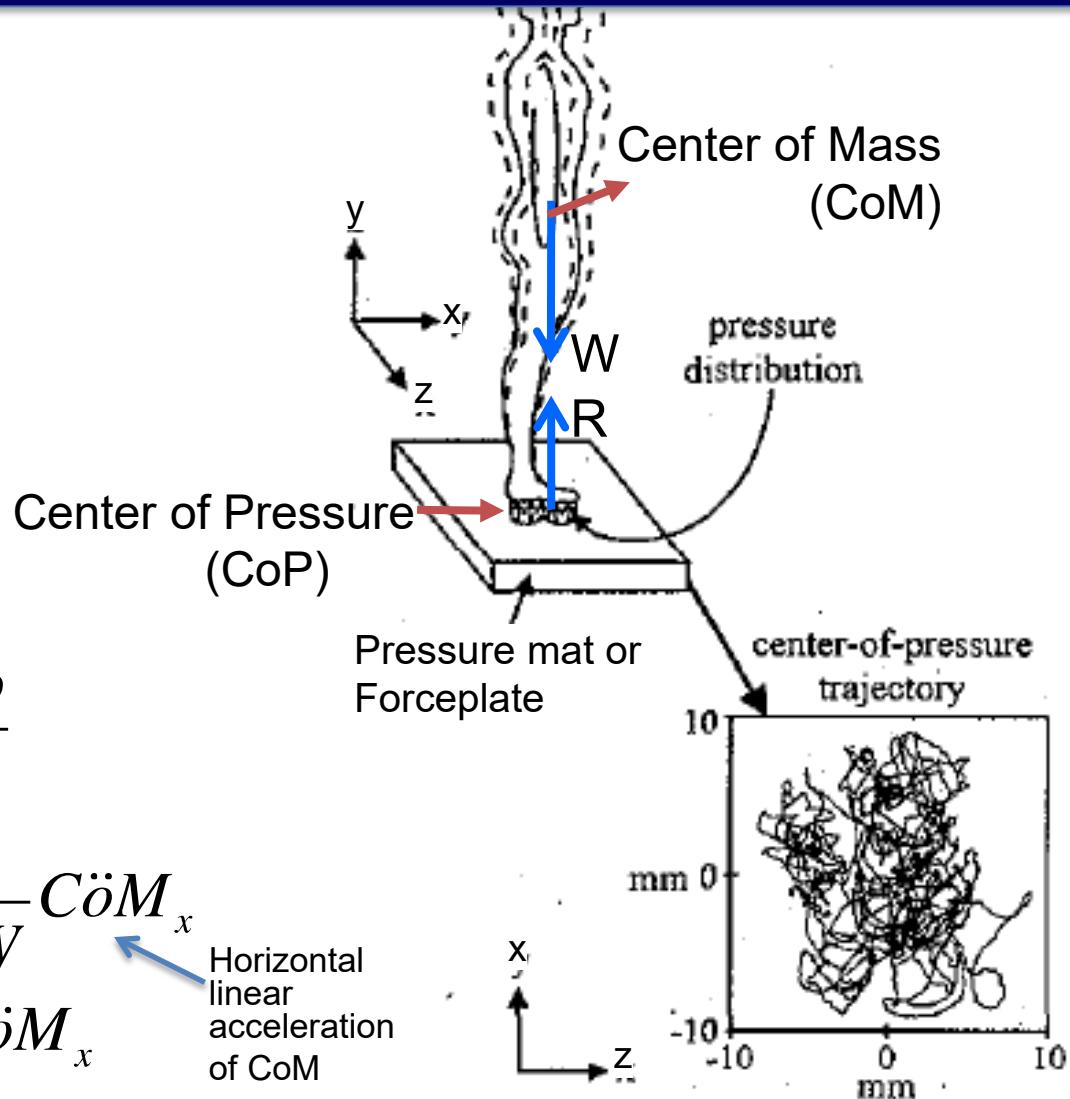
I : moment of inertia of total body about ankle



$$\begin{aligned} CoP - CoM &= \frac{I \cdot \dot{\omega}}{W} \\ &= \frac{I}{d \cdot W} \dot{CoM}_x \end{aligned}$$

$$CoP - CoM = K \dot{CoM}_x$$

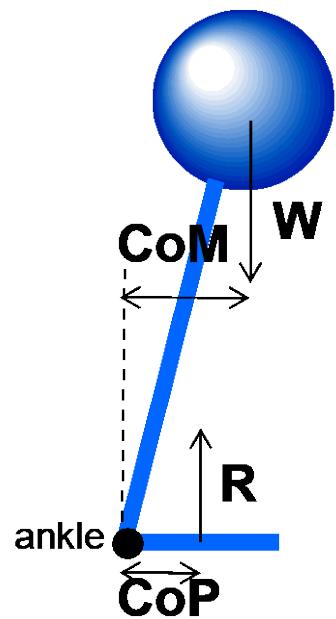
K: constant (anthropometric)



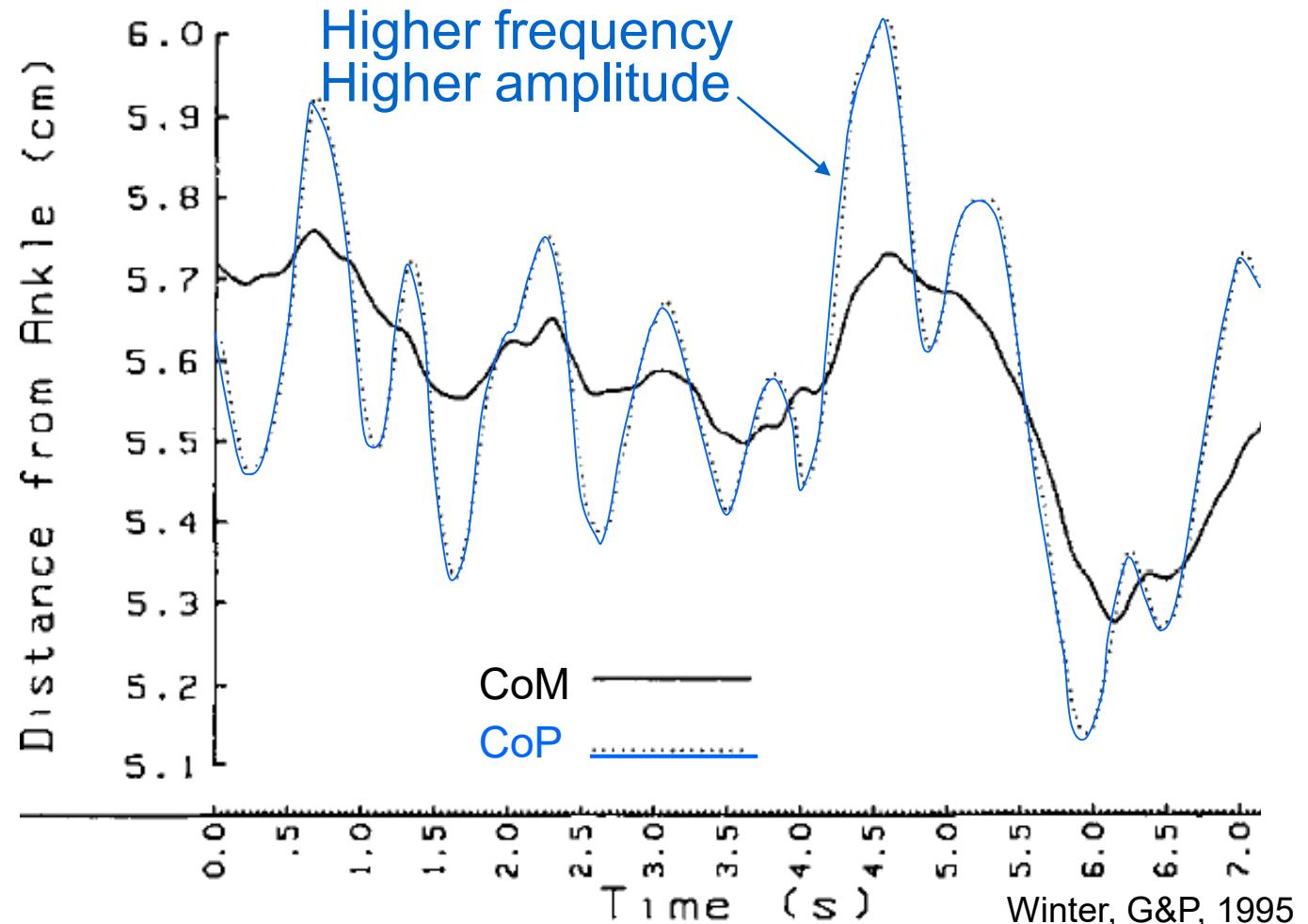
Quite Standing Posture: CoM versus CoP

To keep balance:

CoP should vary more and faster in order to keep CoM range low and stable



$$CoP - CoM = \frac{I \cdot \dot{\omega}}{W}$$



Postural sway in clinical assessment

J.-B. Mignardot et al. / Postural Sway, Cognitive Status, and Falls

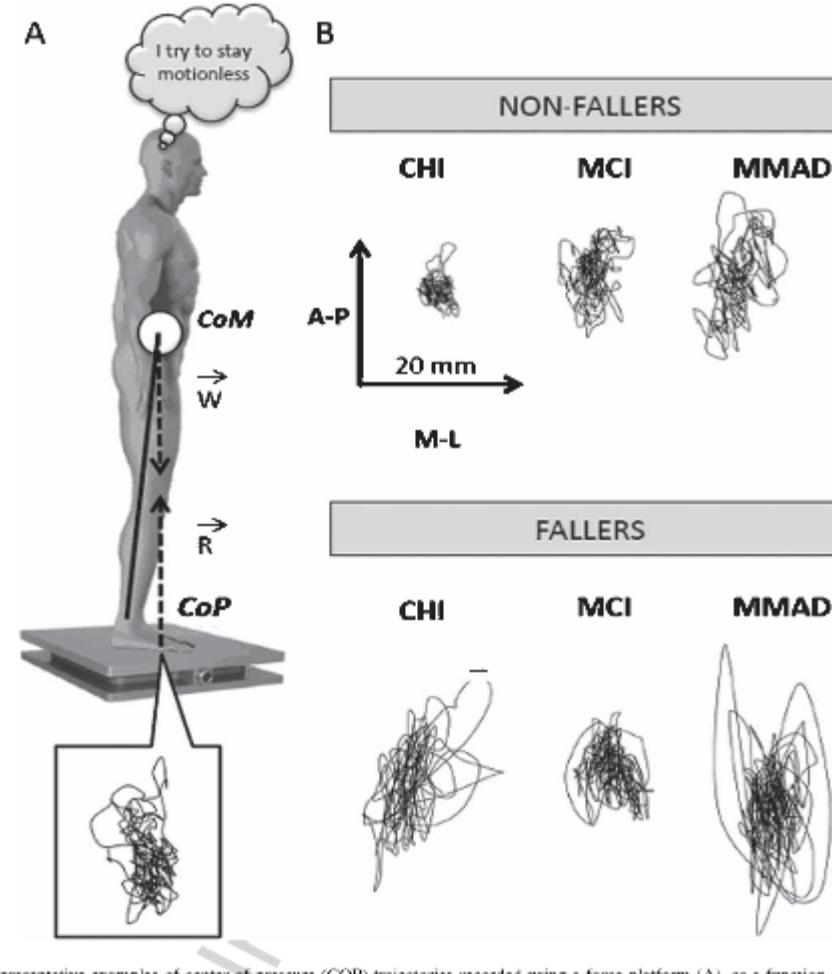
Objective:

To examine the center-of-pressure (COP) velocity association with cognitive status and history of falls, in cognitively healthy individuals (CHI), patients with mild cognitive impairment (MCI), and with mild-to-moderate Alzheimer's disease (MMAD).

Conclusion:

identifying people with and without cognitive impairment who are at risk of falls risk via the evaluation of the postural control strategies might be a valuable window of opportunity for fall-prevention interventions.

Mignardot, Jean-Baptiste, et al. "Postural sway, falls, and cognitive status: a cross-sectional study among older adults." *Journal of Alzheimer's Disease* 41.2 (2014): 431-439.



1. Representative examples of center-of-pressure (COP) trajectories recorded using a force platform (A), as a function of the cognitive status (CHI, MCI, and MMAD) and fall risk (non-fallers versus fallers) (B). CHI, cognitive healthy individual; MCI, mild cognitive impairment; MMAD, mild-to-moderate dementia; AP, anteroposterior axis; ML, mediolateral axis.

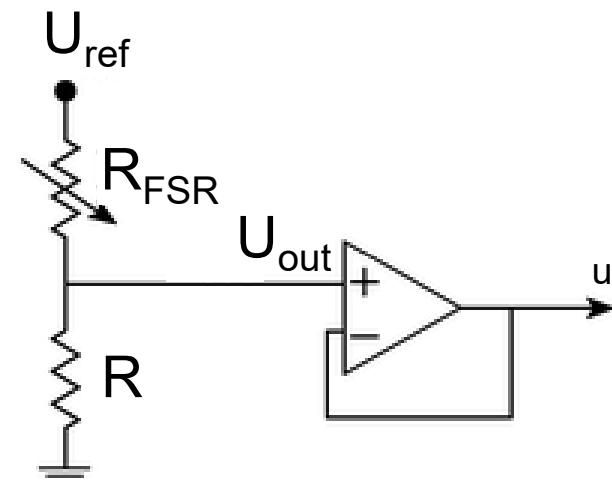
RESISTIVE SENSORS

Part VIII- Wearable force measurement: gait analysis

Plantar sensors

- The force is inversely proportional to the resistance
- 3 regions of operation
 - Between 0 and 20gr the resistance changes very rapidly ("footswitch")
 - $>20\text{gr}$ $1/R$
 - Saturation
- Low precision
- Particular characteristics :
 - flexibility
 - Limited lifetime
 - low thickness, sensitivity
 - simple to use
- FSR + inverting amplifier linear tension-force

FSR: Force Sensing Resistor

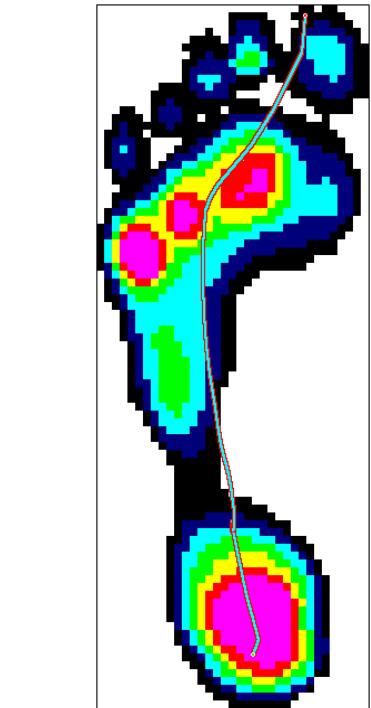


$$u_o = \frac{R}{R + R_{FSR}} U_{ref} = \frac{1}{1 + \frac{R_{FSR}}{R}} U_{ref} = \frac{R}{R_{FSR}} U_{ref}$$

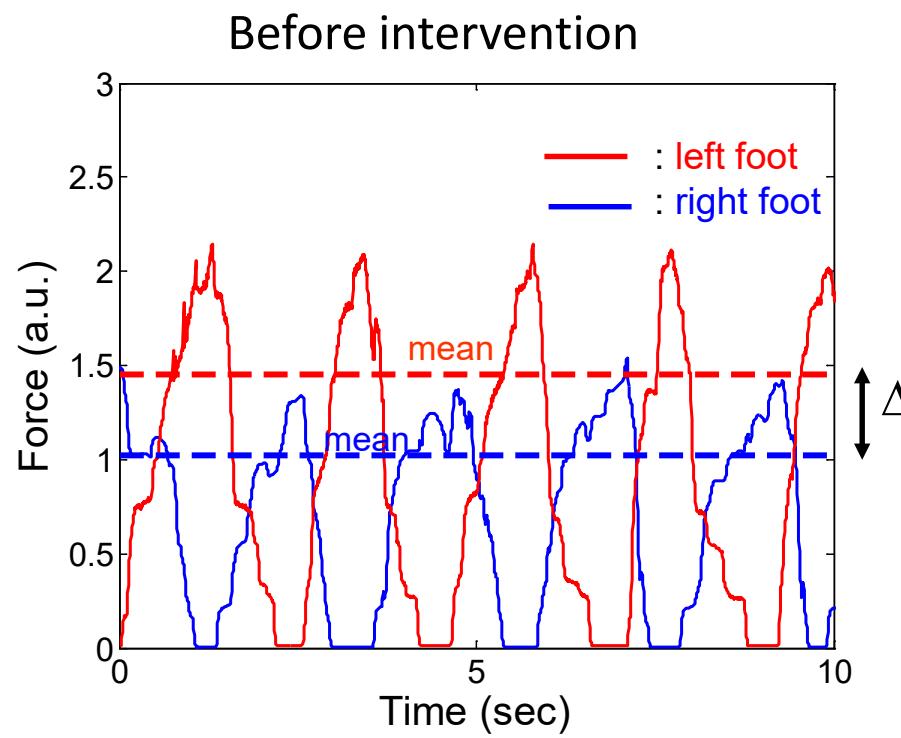
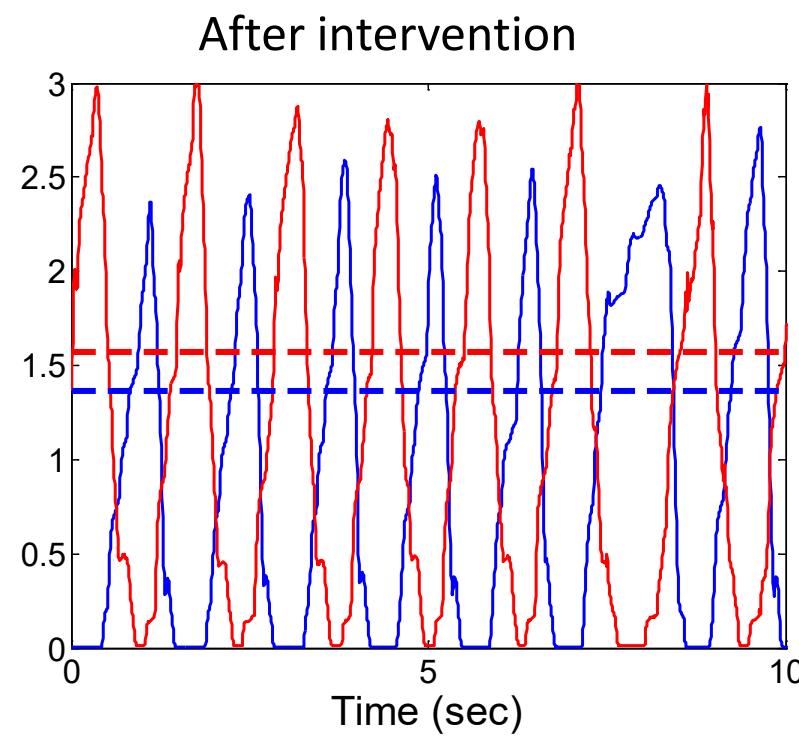
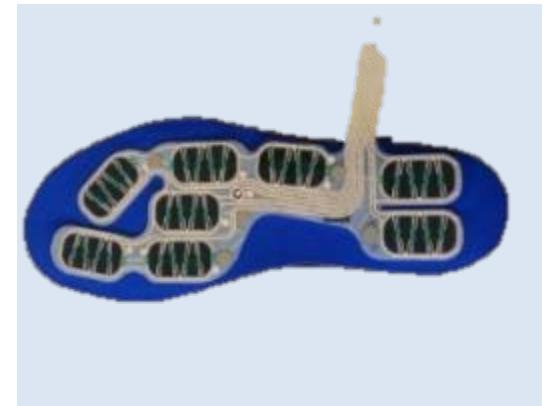
Plantar sensor

- Applications

- measure the pressure distribution under the foot
- Platform with high number of sensors (cells)
- Integrate the sensors inside an insole
- Diabetes
- Functional Electrical Stimulation (FES)
- Gait analysis

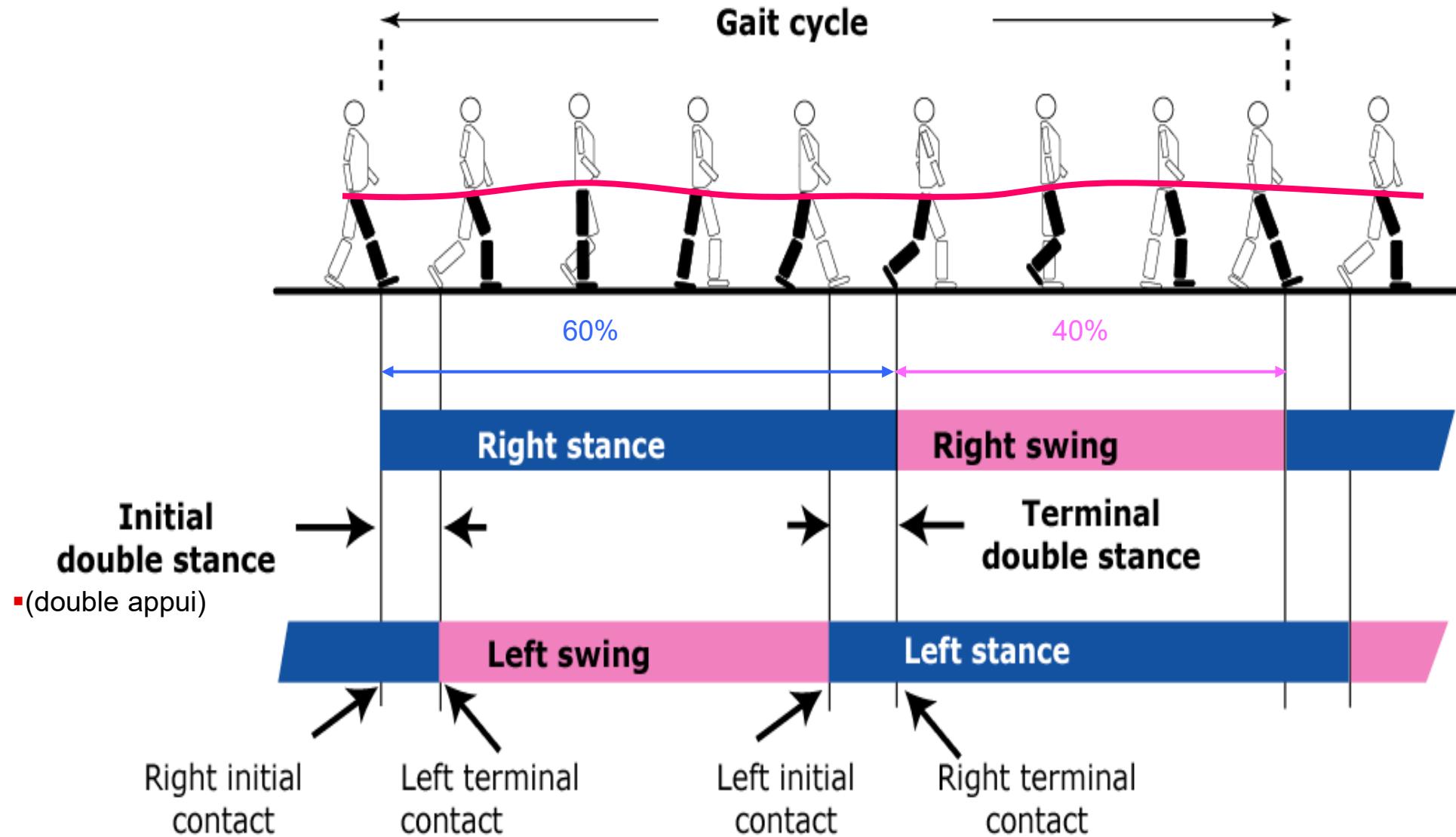


Example: Foot loading during walking after hip fracture surgery



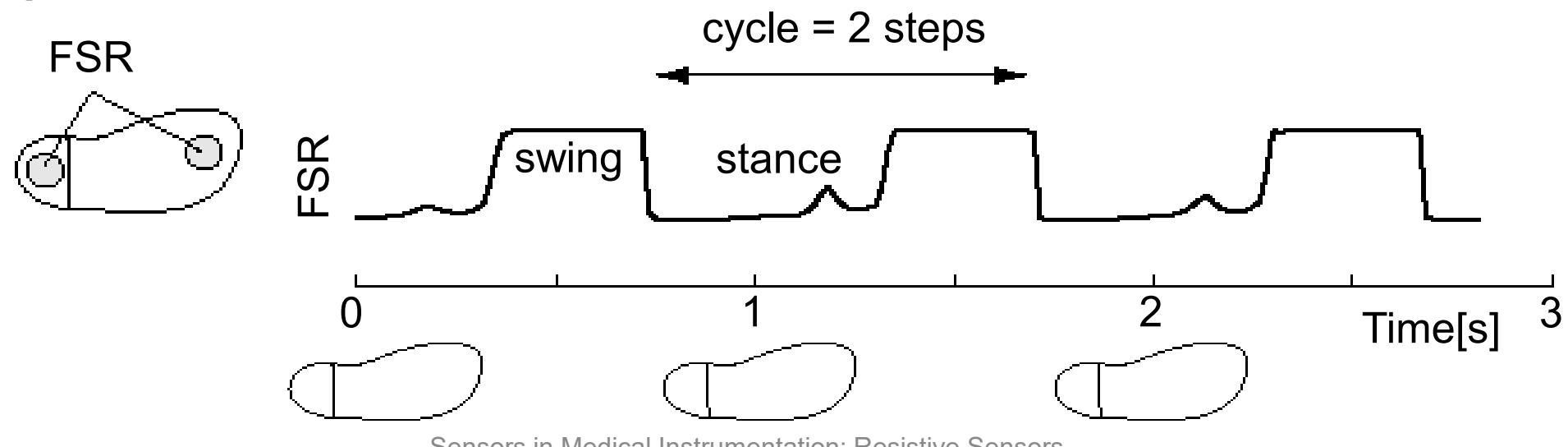
Moufawad El Achkar et al., EPFL thesis, 2016

Temporal gait analysis



Measuring the temporal gait parameters

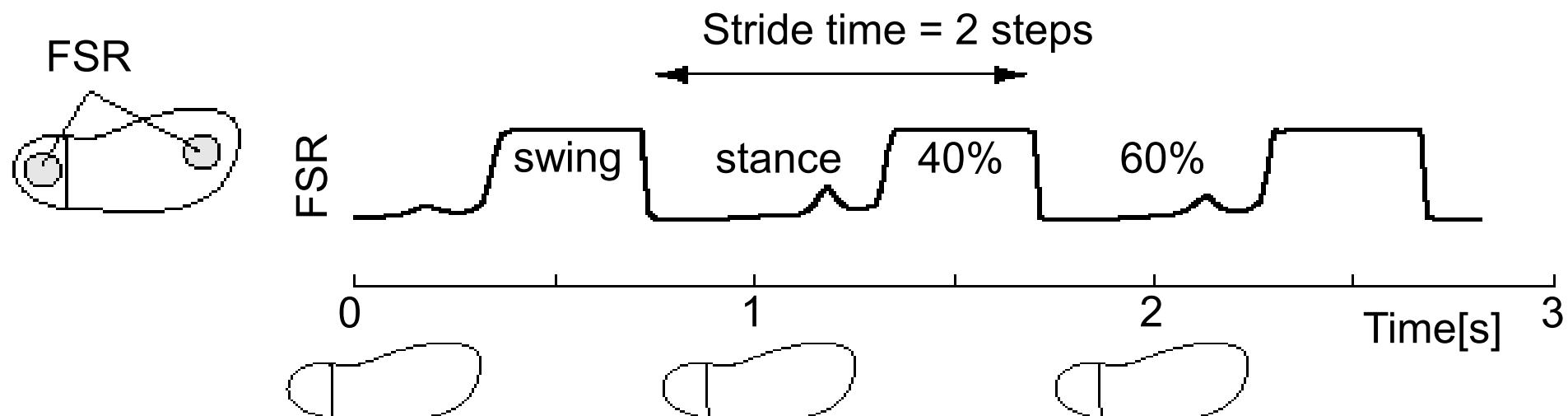
- Stance and swing phases, initial and terminal double stance, ground impact (heel strike), heel and toe off, rolling of the foot.
- Sensors are fixed directly on the sole of the foot or incorporated in an insole.



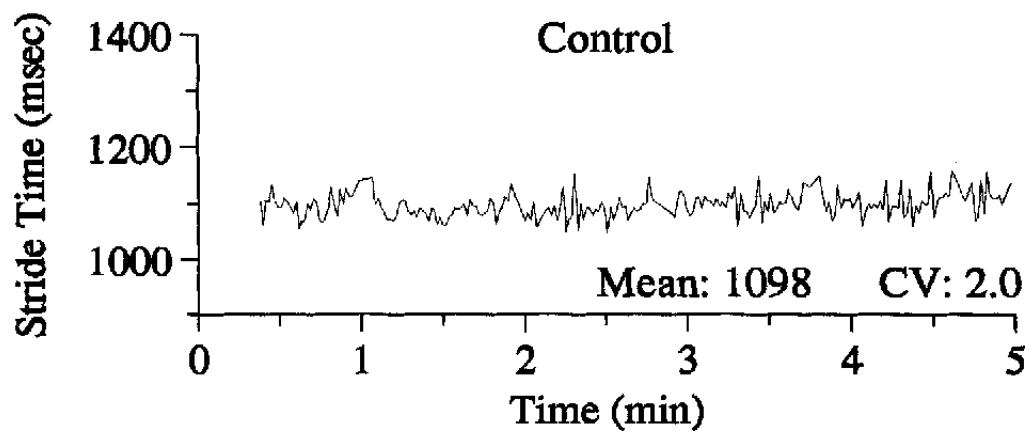
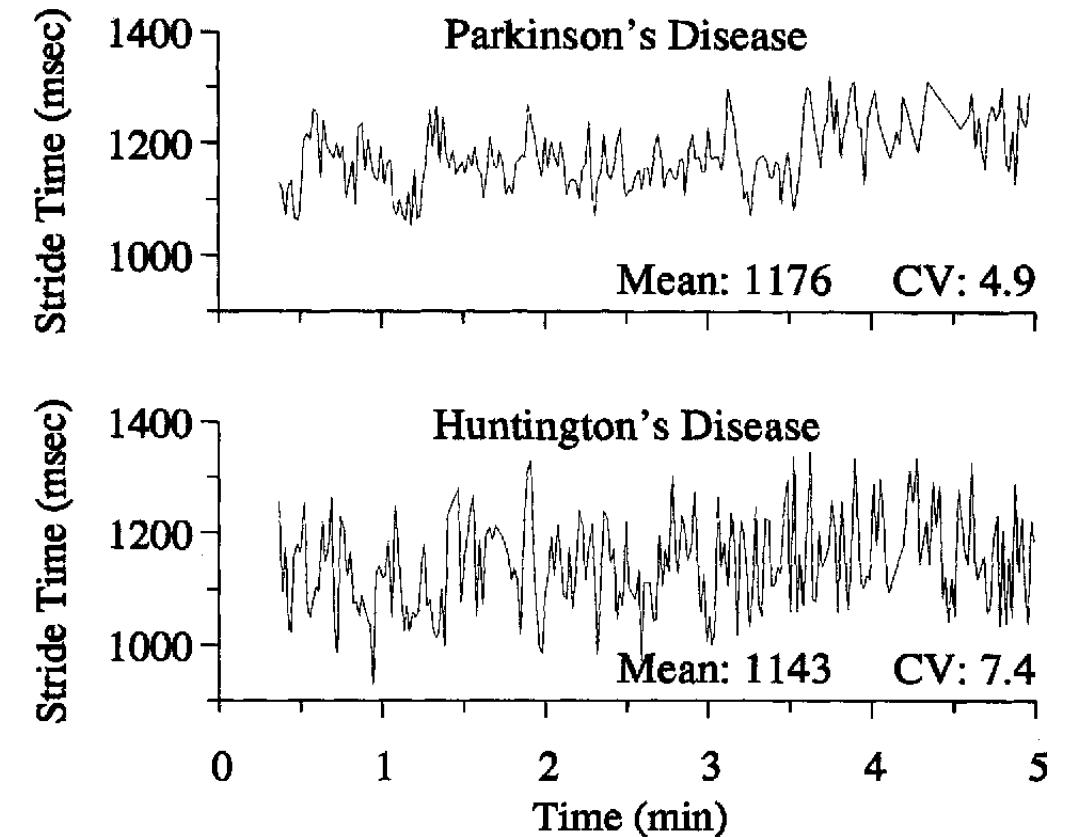
Measuring the temporal gait parameters

- Application

- Distinguish normal from pathological gait
- Better understand the muscle activity of the lower limbs



Example: increase Stride time variability with disease



CV=SD/mean, %

Hausdorff, Jeffrey M. et al. *Movement disorders* 1998