
EE-490g – Lab On Apps Development For
Tablets, Smartphones And Smartwatches

Lab 8: Bluetooth Low Energy

In case you found something to improve, please tell us!
https://forms.gle/3U6WrZNyNx2nBXQ38

In this lab we are going to learn how to interact with Bluetooth Low Energy (BLE) periph-
erals. In particular, we will set up a BLE connection with a HR chest belt to display heart
rate measurements.

1 Android Studio Tricks

Here are very useful Android Studio tricks you should always use (check Section 5 of
Lab1 for more detailed explanation on how to use Android Studio debug tools):

1. Use Alt+Enter (Option+Enter for Mac users) when you have an error in your code:
put the cursor on the error and click Alt+Enter. You can also use it to update the
gradle dependencies to the latest version.

2. Use Ctrl+Space to check the documentation of a View, method or attribute: put the
cursor on the object and do Ctrl+Space. You can also use it to complete the typing
of these objects. Otherwise Android Studio always gives a list of suggestions where
you can choose the object you need.

3. Check for compilation errors: They are usually quite self-explanatory.
4. Check errors in logcat, and use the debugger: errors are highlighted in logcat,

click on the underlined blue line to go in the position of the code where the error is.

For more useful keyboard shortcuts, please check this LINK1

2 Introduction

Bluetooth Low Energy (BLE) was included in version 4.0 of the Bluetooth Specifications,
adopted in 2010.

It is based on a central-peripheral architecture, meaning that the central device scans,
looking for advertisements, and the peripheral one advertises itself and its capabilities.
BLE devices communicate using messages in the GATT (Generic Attribute Profile) format.
In this lesson, the tablet will be the GATT client. It will scan and discover all services
provided by the server as well as the different characteristics of a given service.

1https://developer.android.com/studio/intro/keyboard-shortcuts

1

https://forms.gle/3U6WrZNyNx2nBXQ38
https://developer.android.com/studio/intro/keyboard-shortcuts

EE-490g – Lab On Apps Development For
Tablets, Smartphones And Smartwatches

We will use a cardiac chest band (such as the Geonaoute HR monitor) as the server. We
will integrate it into our current Sports Tracker app as an alternative source of data for
heart rate acquisition.

3 Key terms and concepts

The following is a summary of key BLE terms and concepts:

• Generic Attribute Profile (GATT): The GATT profile is a general specification for
sending and receiving short pieces of data known as ”attributes” over a BLE link. All
current BLE application profiles are based on GATT.

• Profiles: Bluetooth definesmany profiles for BLE devices. A profile is a specification
of how a device works in a particular application. Note that a device can implement
more than one profile. For example, a device could have a heart rate monitor, but
also other sensors.

• Attribute Protocol (ATT): GATT is built on top of the Attribute Protocol (ATT). This
is also referred to as GATT/ATT. ATT is optimized to run on BLE devices. To this end,
it uses as few bytes as possible. Each attribute is uniquely identified by a Universally
Unique Identifier (UUID), which is a standardized 128-bit format for a string ID used
to uniquely identify information. The attributes transported by ATT are formatted as
characteristics and services.

• Characteristic: A characteristic contains a single value and one or several descrip-
tors that describe the characteristic’s value. A characteristic can be thought of as a
type, analogous to a class.

• Descriptor: Descriptors are defined attributes that describe a characteristic value.
For example, a descriptor might specify a human-readable description, an acceptable
range for a characteristic’s value, or a unit of measure that is specific to a character-
istic’s value.

• Service A service is a collection of characteristics. For example, you could have a
service called ”Heart Rate Monitor” that includes characteristics such as ”Heart Rate
Measurement.”

4 Set up Bluetooth

The first step is adding the Bluetooth permissions to your manifest file to use the Bluetooth
APIs. Add the following code to the manifest:

2

EE-490g – Lab On Apps Development For
Tablets, Smartphones And Smartwatches

/** mobile -> src -> main -> AndroidManifest.xml **/
<uses-permission android:name="android.permission.BLUETOOTH" />
<uses-permission android:name="android.permission.BLUETOOTH_ADMIN" />
<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />

Once the permissions are in place, we need to have a switch for choosing the heart rate
belt in the app. First, in NewRecordingScreen.kt, we define a switch button. Users choose
a heart rate source using this switch. By default, it should be off, which means the app
uses the smartwatch to receive heart rates. When the switch is toggled, the app will use
the belt. Add the following code at the bottom of our NewRecordingScreen composable:

/** mobile -> NewRecordingScreen.kt **/
Row(

modifier = modifier.padding(top = 32.dp),
horizontalArrangement = Arrangement.Center,
verticalAlignment = Alignment.CenterVertically

) {
Text(text = stringResource(R.string.heart_rate_belt_text))
Spacer(modifier.padding(end = 8.dp))
Switch(checked = isChecked, onCheckedChange = { checked ->

isChecked = checked
if (checked) {

device = DEVICE.BELT
} else {

device = DEVICE.SMARTWATCH
}

})
}

For this, we also need a new boolean state variable called isChecked to receive updates
for the state of the Switch.

var isChecked by remember { mutableStateOf(false) }

Bluetooth setup is accomplished in two steps using the BluetoothAdapter:

1. Get the BluetoothAdapter.

The BluetoothAdapter is required for all Bluetooth activity. The BluetoothAdapter rep-
resents the device’s own Bluetooth radio. There’s one Bluetooth adapter for the entire
system, and your app can interact with it using this object. To get the BluetoothAdapter,

3

EE-490g – Lab On Apps Development For
Tablets, Smartphones And Smartwatches

call the getDefaultAdapter() method. If getDefaultAdapter() returns null, then the de-
vice doesn’t support Bluetooth.

In mobile’s module NewRecordingViewModel.kt, define BluetoothAdapter as follows:

/** mobile -> NewRecordingViewModel.kt **/
val bluetoothAdapter: BluetoothAdapter? = BluetoothAdapter.getDefaultAdapter()

Then, when creating the Screen (before Surface(..)), you can check if the device sup-
ports Bluetooth:

/** mobile -> NewRecordingScreen.kt **/
val context = LocalContext.current
if(newRecordingViewModel.bluetoothAdapter==null){

Toast.makeText(context,"Bluetooth not supported",
Toast.LENGTH_SHORT).show()

}

2. Enable Bluetooth.

Next, you need to ensure that Bluetooth is enabled. Call isEnabled() to check whether
Bluetooth is currently enabled. If this method returns false, then Bluetooth is disabled.
To request that Bluetooth be enabled, we use an implicit intent. Use registerForActivi-
tyResult to define resultLauncher, and launch it when you request enabling Bluetooth,
passing in an ACTION_REQUEST_ENABLE intent action. This call issues a request to enable
Bluetooth through the system settings (without stopping your app). Add this code, also in
the NewRecordingScreen composable:

/** mobile -> NewRecordingScreen.kt **/
val resultLauncher = rememberLauncherForActivityResult(

contract = ActivityResultContracts.StartActivityForResult(),
onResult = { result ->

if (result.resultCode != Activity.RESULT_OK) {
Toast.makeText(

context, "Bluetooth is not enabled!",
Toast.LENGTH_SHORT

).show()
isChecked = false
device = DEVICE.SMARTWATCH

}
}

)

4

EE-490g – Lab On Apps Development For
Tablets, Smartphones And Smartwatches

/** mobile -> NewRecordingScreen.kt **/
if (isChecked == true) {

if (newRecordingViewModel.bluetoothAdapter?.isEnabled == false) {
val enableBtIntent = Intent(BluetoothAdapter.ACTION_REQUEST_ENABLE)
resultLauncher.launch(enableBtIntent)

}
}

In this way every time we change the isChecked variable, we are going to do this check
and launch a dialog requesting user permission to enable Bluetooth if rrequired. If the
user grants permission, the system enables Bluetooth, and the focus returns to the app.

If enabling Bluetooth succeeds, your activity receives the RESULT_OK result code in the
onResult() callback.

If Bluetooth was not enabled (e.g. the user responded ”Deny”), then the result code is
RESULT_CANCELED. The variable in the main activity should be false, a message should be
shown to the user (e.g. via a toast), and the switch should go back from the belt to the
watch state.

5 Find BLE devices

To establish a connection between the tablet and the HR belt, we first need to scan for
available BLE devices using startScan(). This method takes a ScanCallback as a pa-
rameter. You must implement this callback because that is how scan results are returned.
Since scanning is battery-intensive, you should observe the following guidelines:

• As soon as you find the desired device, stop scanning.
• Never scan on a loop, and always set a time limit on your scan. A previously available
device may have moved out of range, and continuing to scan drains the battery.

In ExerciseLiveViewModel.kt, add the following code to scan BLE devices during a lim-
ited time defined as SCAN_PERIOD. We will call scanLeDevice() later on to initiate a BLE
link.

/** mobile -> ExerciseLiveViewModel.kt **/
private val bluetoothAdapter: BluetoothAdapter? =

BluetoothAdapter.getDefaultAdapter()
private val bluetoothLeScanner = bluetoothAdapter?.bluetoothLeScanner
private var scanning = false
private val handler = Handler()

5

EE-490g – Lab On Apps Development For
Tablets, Smartphones And Smartwatches

private val SCAN_PERIOD: Long = 5000

fun scanLeDevice() {
if (!scanning) { // Stops scanning after a pre-defined scan period.

handler.postDelayed({
scanning = false
bluetoothLeScanner?.stopScan(leScanCallback)

}, SCAN_PERIOD)
scanning = true
bluetoothLeScanner?.startScan(leScanCallback)

} else {
scanning = false
bluetoothLeScanner?.stopScan(leScanCallback)

}
}

The following code is a simple implementation of ScanCallback, which is the interface
used to deliver BLE scan results. In this implementation, Log messages are shown on the
consolle when devices are found.

/** mobile -> ExerciseLiveViewModel.kt **/
private val leScanCallback: ScanCallback = object : ScanCallback() {

override fun onScanResult(callbackType: Int, result: ScanResult) {
super.onScanResult(callbackType, result)

Log.i(
ExerciseLiveViewModel::class.simpleName,
"Name: ${result.device.name}, " +

"Address: ${result.device.address}," +
" RSSI: ${result.rssi}"

)
}

}

scanLeDevice should be called only if the user set his/her choosen HR device to DE-
VICE.BELT. To implement this functionality, we will need to hoist the state of device from
NewRecordingScreen to MainActivity, and then provide it to both screens thay require
it (i.e., NewRecordingScreen and ExerciseLiveScreen). We also need to implement a
state-hoisting function onUpdateDevice for the changing of the value of the device, and
restructure all code assigning a calue to the device variable accordingly. Also, be sure to
delete the declaration of the device state variable from NewRecordingScreen.

6

EE-490g – Lab On Apps Development For
Tablets, Smartphones And Smartwatches

/** mobile -> NewRecordingScreen.kt **/
@Composable
fun NewRecordingScreen(

...
device: DEVICE,
onUpdateDevice: (DEVICE) -> Unit,
onLogoutClicked: ...,
...

) {
var isChecked by remember { mutableStateOf(device == DEVICE.SMARTWATCH) }
...
Switch(checked = isChecked, onCheckedChange = { checked ->

isChecked = checked
if (checked) {

onUpdateDevice(DEVICE.BELT)
} else {

onUpdateDevice(DEVICE.SMARTWATCH)
}

})
}

/** mobile -> MainActivity **/
class MainActivity : ComponentActivity() {

...
private var userKey ...
private var device by mutableStateOf(DEVICE.SMARTWATCH)

...

NewRecordingScreen(
...,
device,
onUpdateDevice = {

device = it
},
onLogoutClicked = {...}

)
...
ExerciseLiveScreen(

device,

7

EE-490g – Lab On Apps Development For
Tablets, Smartphones And Smartwatches

dataClient
)

/** mobile -> ExerciseLiveScreen.kt **/
@Composable
fun ExerciseLiveScreen(

device: DEVICE,
dataClient: DataClient,
modifier: Modifier = Modifier,
exerciseLiveViewModel: ExerciseLiveViewModel = viewModel()

)

In ExerciseLiveScreen.kt, change the LifecycleResumeEffect composable as follows:

/** mobile -> ExerciseLiveScreen.kt **/
LifecycleResumeEffect {

if (device == DEVICE.SMARTWATCH) {
dataClient.addListener(exerciseLiveViewModel)
sendCommandToWear("Start", context)

} else {
exerciseLiveViewModel.scanLeDevice()

}
exerciseLiveViewModel.getLastLocation(context)
...

}

In this function, callec when the user navigates to the ExerciseLiveScreen, we set up
the communication with the smartwatch or scan for BLE devices depending on the user
choice.

Launch the application now. The scan function callbackwe defined prints a nearby device’s
name in the Logcat environment, whenever it finds a new device. Try to find your HR belt
in the list based on its MAC address. Remember that the belt must be worn to enable
its BLE transceiver. Make sure you find your belt device not the ones of your neighbors!
Increasing the value of SCAN_PERIOD can help if you do not see your belt. If needed, the
app ”Heart Rate Monitor” from BM Innovations GmbH can also help to find the device and
check if it works.

Once you find your belt’s MAC address, save the address in a variable.

/** mobile -> ExerciseLiveViewModel.kt **/

8

EE-490g – Lab On Apps Development For
Tablets, Smartphones And Smartwatches

private val myDeviceAddress = "00:00:00:00:00:00"
//TODO: Replace this with your device's address

In this implementation, the app will be able only to interact with an HR belt with a given
UUID. You may think of a more flexible solution, in which the user provides the belt UUID,
or even better chooses among the UUID returned when scanning for devices, as an exten-
sion.

6 Connecting to the Bluetooth belt

Once the BLE device is discovered, we can start interacting with it. First, we have to
connect to its GATT server using the connectGatt()method. This method takes three pa-
rameters: a Context object, autoConnect (a boolean indicating whether to automatically
connect to the BLE device as soon as it becomes available), and a reference to a Blueto ⌋

othGattCallback. Use connectGatt() in the scan callback after you find your device.

/** mobile -> ExerciseLiveViewModel.kt -> leScanCallback
-> onScanResult() **/

if (result.device.address == myDeviceAddress){
bluetoothLeScanner?.stopScan(this)
result.device.connectGatt(context, false, gattCallback)

}

We need to provide two parameters for this connectGatt function: context and gattCa ⌋

llback. Since it is impossible to access the application context in a ViewModel, we need
first to change the view model to an AndroidViewModel to pass the context when the view
model is created. Change the class definition of ExerciseLiveViewModel as follows:

/** mobile -> ExerciseLiveViewModel.kt **/
class ExerciseLiveViewModel(application: Application) :

AndroidViewModel(application),
DataClient.OnDataChangedListener {

Then, define a context variable in this AndroidViewModel:

/** mobile -> ExerciseLiveViewModel.kt **/
private val context = getApplication<Application>().applicationContext

Once the connectGatt function tells the application which device to connect to, the app
must connect to the GATT server on the BLE device. This connection requires a Bluet ⌋

oothGattCallback to receive notifications about the connection state, service discovery,

9

EE-490g – Lab On Apps Development For
Tablets, Smartphones And Smartwatches

characteristic reads, and characteristic notifications. Add the following code to Exercis ⌋

eLiveViewModel.kt to have a BluetoothGattCallback.

/** mobile -> ExerciseLiveViewModel.kt **/
private val gattCallback = object : BluetoothGattCallback() {

override fun onConnectionStateChange(gatt: BluetoothGatt,
status: Int, newState: Int) {

}

override fun onServicesDiscovered(gatt: BluetoothGatt?, status: Int) {
}

override fun onCharacteristicChanged(gatt: BluetoothGatt,
characteristic: BluetoothGattCharacteristic) {

}
}

As you see in the code, there are three different functions in the gattCallback, which we
will explain and complete in the following sections.

6.1 Connection State Change

The onConnectionStateChanged() function is triggered inside the gattCallback when
the connection to the device’s GATT server changes. Define a variable to save the blue-
toothGatt received when a connection is successfully changed to the connected state.

/** mobile -> ExerciseLiveViewModel.kt **/
private var bluetoothGatt: BluetoothGatt? = null

Then, you can fill in the onConnectionStateChange as follows:

/** mobile -> ExerciseLiveViewModel.kt -> gattCallback **/

override fun onConnectionStateChange(gatt: BluetoothGatt,
status: Int, newState: Int) {

val deviceAddress = gatt.device.address

if (status == BluetoothGatt.GATT_SUCCESS) {
if (newState == BluetoothProfile.STATE_CONNECTED) {

Log.w("BluetoothGattCallback",

10

EE-490g – Lab On Apps Development For
Tablets, Smartphones And Smartwatches

"Successfully connected to $deviceAddress")
bluetoothGatt = gatt
bluetoothGatt?.discoverServices()

} else if (newState == BluetoothProfile.STATE_DISCONNECTED) {
Log.w("BluetoothGattCallback",

"Successfully disconnected from $deviceAddress")
gatt.close()

}
} else {

Log.w("BluetoothGattCallback",
"Error $status encountered for $deviceAddress! Disconnecting...")

gatt.close()
}

}

6.2 Discover Services

The next thing to do once you connect to the GATT Server on the BLE device is to perform
service discovery. This action provides information about the services available on the
remote device as well as the service characteristics and their descriptors. In our example,
once the service successfully connects to the device (indicated by the appropriate call to
the onConnectionStateChange() function of the BluetoothGattCallback), the discoverS ⌋

ervices() function queries the information from the BLE device. This is done by the code
we already implemented as bluetoothGatt?.discoverServices().

First, we need to define some values for the heart rate service. These values are taken
from officially adopted BLE services for heart rate.

/** mobile -> ExerciseLiveViewModel.kt **/
private val HEART_RATE_SERVICE = "0000180D-0000-1000-8000-00805f9b34fb"
private val HEART_RATE_MEASUREMENT = "00002a37-0000-1000-8000-00805f9b34fb"
private val CLIENT_CHARACTERISTIC_CONFIG =

"00002902-0000-1000-8000-00805f9b34fb"

The app needs to override the onServicesDiscovered() function in the BluetoothGattCall-
back. This function is called when the device reports on its available services.

/** mobile -> ExerciseLiveViewModel.kt -> gattCallback **/

override fun onServicesDiscovered(gatt: BluetoothGatt?, status: Int) {

11

EE-490g – Lab On Apps Development For
Tablets, Smartphones And Smartwatches

if (status == BluetoothGatt.GATT_SUCCESS) {
val gattService = bluetoothGatt?.

getService(UUID.fromString(HEART_RATE_SERVICE))
val gattCharacteristics = gattService?.

getCharacteristic(UUID.fromString(HEART_RATE_MEASUREMENT))
setHeartRateCharacteristicNotification(gattCharacteristics!!, true)

} else {
Log.w("BluetoothGattCallback", "onServicesDiscovered received: $status")

}
}

In the code above, when the service is successfully discovered, we get the heart rate
service using its specific UUID. The UUID class should be imported from the java.util
package. Then, the measurement characteristic is obtained from the heart rate service.
This is the characteristic which has the heart rate values.

Once your app has connected to a GATT server and discovered services, it can read and
write attributes, as supported. We will write the setHeartRateCharacteristicNotific ⌋

ation() function in the following section.

6.3 Heart Rate Characteristics

It’s common for BLE apps to ask to be notified when a particular characteristic changes
on the device. In our app, we implement a function to call the setCharacteristicNot ⌋

ification() method specifically for the heart rate measurement. Add a function in this
view model to be able to set the characteristic notification for the heart rate.

/** mobile -> ExerciseLiveViewModel.kt **/
private fun setHeartRateCharacteristicNotification(

characteristic: BluetoothGattCharacteristic,
enabled: Boolean) {

bluetoothGatt?.let { gatt ->
gatt.setCharacteristicNotification(characteristic, enabled)
val descriptor = characteristic.getDescriptor(

UUID.fromString(CLIENT_CHARACTERISTIC_CONFIG))
descriptor.value = BluetoothGattDescriptor.ENABLE_NOTIFICATION_VALUE
gatt.writeDescriptor(descriptor)

} ?: run {
Log.w("BluetoothCallback", "BluetoothGatt not initialized")

12

EE-490g – Lab On Apps Development For
Tablets, Smartphones And Smartwatches

}
}

6.4 Characteristics Change

Once notifications are enabled for a characteristic, an onCharacteristicChanged() call-
back is triggered if the characteristic changes on the remote device:

/** mobile -> ExerciseLiveViewModel.kt -> gattCallback **/
override fun onCharacteristicChanged(gatt: BluetoothGatt,

characteristic: BluetoothGattCharacteristic) {
val heartRateReceived = characteristic.value.get(1).toInt()
Log.i(ExerciseLiveViewModel::class.simpleName,

"HR : ${characteristic.value.get(1)}")
_heartRate.postValue(heartRateReceived)
// Update HR plot series
val size = _heartRateList.size
_heartRateList.add(Point(size.toFloat(), heartRateReceived.toFloat()))
_heartRateListLiveData.postValue(_heartRateList)

}

Note that since the BLE functions are not executing in the same thread as the main thread,
we need to use postValue() function to update the heart rate as the live variable.

6.5 Stop BLE

For the last step, we need to stop BLE when we go out from the ExerciseLiveScreen .
As you know about the composable lifecycle, inside the LifecycleResumeEffect in the
onPauseOrDispose function is called while leaving from the screen. Thus, we change this
function as follows:

/** mobile -> ExerciseLiveScreen.kt **/
onPauseOrDispose {

if (device == DEVICE.SMARTWATCH) {
dataClient.removeListener(exerciseLiveViewModel)
sendCommandToWear("Stop", context)

} else {
exerciseLiveViewModel.stopBLE()

}
}

13

EE-490g – Lab On Apps Development For
Tablets, Smartphones And Smartwatches

Then, we implement the stopBLE function in the viewModel to stop the Bluetooth gatt.

/** mobile -> ExerciseLiveViewModel.kt **/
fun stopBLE(){

bluetoothGatt?.let { gatt ->
gatt.close()
bluetoothGatt = null

}
}

And now, in the end, we can just add a simple Text to display the selected device. We will
place it below the Text with the latest HR value.

Column(
modifier = modifier

.weight(1f)
) {

Text(
text = stringResource(R.string.heart_rate, heartRate),
modifier = modifier

.padding(top = 8.dp, bottom = 8.dp)
)
Text(text = "Device ${device.value}")

}

7 Finishing the project

We here conclude the guided development of the sport tracker app. You may have noticed
that the addition of some further functionalities could greatly add to the app’s value. For
example, in its current form, the app does not store the acquired HR and location data
in the cloud, nor can visualize the acquisitions performed in past exercise activities. We
do not devote further labs to the implementations of these features, as their development
could be done by using concepts already covered in this series of labs. Next weeks will
instead be dedicated to the design of your own app.

14

	Android Studio Tricks
	Introduction
	Key terms and concepts
	Set up Bluetooth
	Find BLE devices
	Connecting to the Bluetooth belt
	Connection State Change
	Discover Services
	Heart Rate Characteristics
	Characteristics Change
	Stop BLE

	Finishing the project

