E P F L EE-490g - Lab On Apps Development For $§¥SII[[ILI|]S[H.AH“R““HY

Tablets, Smartphones And Smartwatches

Lab 5: ViewModels and System Services

In case you found something to improve, please tell us!
https://forms.gle/3U6WrZNyNx2nBXQ38

In this lab, you will gain experience in using ViewModels in Android applications. More-
over, you will interface with the Sensor service on the smartwatch device to measure the
user’s heart rate (HR). Finally, you will plot the sensor acquisitions on the tablet using
LiveData and Observers.

1 Android Studio Tricks

Here are very useful Android Studio tricks you should always use (check Section 5 of
Labl1 for a more detailed explanation on how to use Android Studio debug tools):

1. Use Alt+Enter (Option+Enter for Mac users) when you have an error in your code:
put the cursor on the error and click Alt+Enter. You can also use it to update the
gradle dependencies to the latest version.

2. Use Ctrl+Space to check the documentation of a View, method or attribute: put the
cursor on the object and do Ctrl+Space. You can also use it to complete the typing
of these objects. Otherwise Android Studio always gives a list of suggestions where
you can choose the object you need.

3. ALWAYS CHECK THE COMPILATION ERRORS! They are usually quite self-explanatory.

4. ALWAYS DEBUG AND CHECK THE ERRORS IN LOGCAT! Read the usually self-
explanatory errors and click on the underlined blue line to go in the position of the

code where the error is.

For more useful keyboard shortcuts, please check this LINK!

2 UI Controllers and View Models

The ViewModel class is designed to store and manage the application data in a lifecycle-
conscious way. Using ViewModels, it is possible to separate the management of the Ul
(still performed in Composables and Activities) and the one of the application logic, en-
capsulated in ViewModels objects.

In this section, we will focus on the mobile module. We will separate the Ul controller and
ViewModels for the Screen composables that we have already implemented.

lhttps://developer.android.com/studio/intro/keyboard-shortcuts

https://forms.gle/3U6WrZNyNx2nBXQ38
https://developer.android.com/studio/intro/keyboard-shortcuts

E P F L EE-490g - Lab On Apps Development For $§¥SII[[ILI|]S[H.AH“RM|]HY

Tablets, Smartphones And Smartwatches

First, we need to add the proper dependencies. Go to the gradle file of the mobile module,
add the following lines, and synch the project:

implementation("androidx.compose.runtime:runtime-livedata:1.5.4")
implementation("androidx.lifecycle:lifecycle-runtime-compose:2.6.2")
implementation("androidx.lifecycle:lifecycle-viewmodel-compose:2.6.2")

2.1 LoginProfile

Now we can create ViewModels. Right now all of your data and code is in MainActivity
or Screen composables. We want to move application logic and data to corresponding
ViewModels, and only reference them from composables. Let’s start with LoginProfile
Screen.

Create a new Kotlin class in the java/com.epfl.esl.sportstracker directory and call it
LoginProfileViewModel. In this file, create a class LoginProfileViewModel that extends
ViewModel.

class LoginProfileViewModel : ViewModel() {...}

In this class will contain all the methods and variables which are not related directly to the
Ul Go to LoginProfileScreen.kt and add profileLoginViewModel as the last parameter.

fun LoginProfileScreen(
onEnterButtonClicked: ((LoginInfo) -> Unit),
modifier: Modifier = Modifier,
loginProfileViewModel: LoginProfileViewModel = viewModel()

) A

}

Now, you can move the sendDataToWear() function from the MainActivity to LoginPr
ofileViewModel, since this function is not related to the UI or MainActivity. Add two
arguments in the definition of this function:

fun sendDataToWear(context: Context?, dataClient: DataClient)

The first argument is the application context. The second argument is dataClient, which
you will need to pass from the Activity to LoginProfileScreen, and from there to sendDat
aToWear inside the viewModel. Consequently, we have to modify the LoginProfileScreen
again, in particular the function onEnterButtonClicked on the LoginProfileContentD,
isplaying composable.

E P F L EE-490g - Lab On Apps Development For $§¥SII[[ILI|]S[H.AH“RM[IHY

Tablets, Smartphones And Smartwatches

fun LoginProfileScreen(
onEnterButtonClicked: ((LoginInfo) -> Unit),
dataClient: DataClient,
modifier: Modifier = Modifier,
loginProfileViewModel: LoginProfileViewModel = viewModel()

) {

Surface(

) A

val context = LocalContext.current
LoginProfileContentDisplaying(

onEnterButtonClicked = { loginInfo ->
loginProfileViewModel
.sendDataToWear(context.applicationContext, dataClient)
onEnterButtonClicked(loginInfo)

After moving the function to the ViewModel, we move three variables from the composable
to the ViewModel: imageUri, password, and username. We need to declare them as private
MutableLiveData variables, assign them initial values and create LiveData variables for
read-only access. We also need to create functions for updating the values.

/** mobile -> LoginProfileViewModel.kt -> LoginProfileViewModel **/
private var username = MutablelLiveData<String>("")
private var password = MutableLiveData<String>("")
private var imageUri = MutableLiveData<Uri?>(null)

val username: LiveData<String>

get() = username
val password: LiveData<String>
get() = password

val imageUri: LiveData<Uri?>
get() = imageUri

E P F L EE-490g - Lab On Apps Development For $§¥SII[[ILI|]S[H.AH“RM[IHY

Tablets, Smartphones And Smartwatches

fun updateUsername(username: String) {
_username.postValue(username)

fun updatePassword(password: String) {
_password.postValue(password)

fun updateImageUri(imageUri: Uri?) {
_imageUri.postValue(imageUri)

fun sendDataToWear(context: Context?, dataClient: DataClient) {

In order to be able to update the Ul and composables accordingly, we need to observe
the LiveData in the LoginProfileScreen composable. To do so, we have to change the
declaration of the variables for the username, password and image. For the username,
the code is:

loginProfileViewModel.username.observeAsState(initial = "")}

We also have to update the update functions for username and password, e.g. for onUse
rnameChanged:

onUsernameChanged = { newValue ->
loginProfileViewModel.updateUsername(newValue) }

As for the image, we have to call LoginProfileViewModel.updateImageUri(uri) in the
onResult() callback.

In the part of the sendDataToWear function in which imageBitmap is defined, you must
change first from this.contentResolver to context?.contentResolver. The declaration
of imageBitmap should look as follows, and similarly for the username:

var imageBitmap = MediaStore.Images.Media.getBitmap(
context?.contentResolver,
_imageUri.value

We are almost there! In PutDataRequest, there are still some errors related to username,
as this should be changed to _username.value. We should also provide a default in case
the value is null: _username.value?: "".

E P F L EE-490g - Lab On Apps Development For $E¥SII[[ILI|]S[H.AH“RM[IHY

Tablets, Smartphones And Smartwatches

Then, LoginProfileScreen, in the onLogOutButtonClicked() function, use the view-
Model’s update functions to re-initialise username, password and the image URI.

2.2 NewRecording

Let’s go to another Screen: NewRecordingScreen. Create a ViewModel for this Screen
and call it NewRecordingViewModel.kt. Don’t forget to extend ViewModel.

Move enum class SPORT {RUNNING, CYCLING, SKIING, CLIMBING} to the view model
file, outside the class. Move also the selectedSport variable, and change it into a pri-
vate MutableLiveData called _selectedSport. Again, create an corresponding LiveData
variable with an associated getter, and an update function updateSelectedSport(sport:
SPORT){..}.

Add the view model as a parameter the NewRecordingScreen composable and modify the
composable to work with the view model.

@Composable
fun NewRecordingScreen(
username: String,
imageUri: Uri?,
onLogoutClicked: () -> Unit,
modifier: Modifier = Modifier,
newRecordingViewModel: NewRecordingViewModel = viewModel()

val selectedSport by newRecordingViewModel.selectedSport
.observeAsState(initial = SPORT.NO SPORT)

Then, use newRecordingViewModel.updateSelectedSport() in this Screen to update
the selected sport.

Launch the app to see the ViewModels that you just created in action. Note that in this
step, we are not going to see any difference in the appearance of the app. ViewModels
helped us to organize the code, making the app more modular. In the following sections,
we will focus on ExerciseLiveFragment, highlighting the benefit of employing ViewMod-
els.

E P F L EE-490g - Lab On Apps Development For $§¥SII[[ILI|]S[H.AH“RM[IHY

Tablets, Smartphones And Smartwatches

3 Reading and displaying heart rate sensor data

Most Android-powered devices have built-in sensors that measure motion, orientation, and
various environmental conditions. Usually, Android smartwatches also provide a heart
rate sensor.

To track the user sport activity, in our app we want to:

* read the HR sensor

* show the data in a simple layout on the watch

* send the HR to the tablet

* show the HR data in mobile -> ExerciseLiveFragment

Let’s go in the details of how to implement these steps!

3.1 Permissions

You will need to first add the WAKE_LOCK permission to allow the application to keep the
watch awake while it’s running. This is done by adding the following line in the Android
Manifest of the wear module:

<!-- wear -> AndroidManifest.xml -->
<uses-permission android:name = "android.permission.WAKE LOCK"/>

Furthermore, in order to allow an application to access data from bio-sensors such as the
heart rate one, you need to add to AndroidManifest the following line:

<!-- wear -> AndroidManifest.xml -->
<uses-permission android:name = "android.permission.BODY SENSORS"/>

Thu user can grant or deny the app request to use the HR data. The following code man-
ages this step:

/** wear -> MainActivity.kt -> onCreate(...) **/
if (Build.VERSION.SDK INT >= Build.VERSION CODES.M
&& checkSelfPermission("android.permission.BODY SENSORS")
== PackageManager.PERMISSION DENIED) {
requestPermissions(array0f("android.permission.BODY SENSORS"), 0)

Feel free to implement a part of the code in case the user denies the HR sensor permissions
to the app.

E P F L EE-490g - Lab On Apps Development For $§¥SII[[ILI|]S[H.AH“RM|]HY

Tablets, Smartphones And Smartwatches

3.2 Preliminary layouts of Wear activity and ExcerciseLiveScreen

For this lab, we add a simple Text to the MainActivity on the wear module. This text view
will show the current value of the user’s heart rate. For now, on the tablet, we also employ
only one Text in ExerciseLiveScreen that shows the HR value sent from the watch. We
will implement a more complete functionality for the Screen of the mobile module later in
the lab.

3.3 Read data from the HR sensor

To monitor raw sensor data you need to implement two callback methods that are exposed
through the SensorEventListener interface: onAccuracyChanged(...) and onSensor(C,
hanged (). The Android system calls these methods whenever the following occurs:

e A sensor’s accuracy changes: in this case the system invokes the onAccuracyChan
ged(...) method, providing you with a reference to the Sensor object that changed
and the new accuracy of the sensor. In this lab, we will not use it so it will be left
blank.

e A sensor reports a new value: in this case the system invokes the onSensorChang
ed(...) method, providing you with a SensorEvent object. A SensorEvent object
contains information about the new sensor data, including: the accuracy of the data,
the sensor that generated the data, the timestamp at which the data was generated,
and the new data that the sensor recorded.

First, make sure the MainActivity implements SensorEventListener. To do that, you
need to add SensorEventListener to the class definition as follows:

MainActivity : ComponentActivity(), SensorEventListener,
DataClient.OnDataChangedListener{

After adding the SensorEventListener interface, Android Studio suggests to implement
the onSensorChanged() and onAccuracyChanged() callbacks. Do so (otherwise your project
won’t compile), but leave them blank for now.

Now, in the onCreate() function we call the SensorManager system service to be able to
register the listener (which is in the current activity: this).

/** wear -> MainActivity.kt -> onCreate(...) **/
mSensorManager = getSystemService(SENSOR SERVICE) as SensorManager
mHeartRateSensor = mSensorManager.getDefaultSensor(Sensor.TYPE HEART RATE)

E P F L EE-490g - Lab On Apps Development For $E¥SII[[ILI|]S[H.AH“RM[IHY

Tablets, Smartphones And Smartwatches

Both mSensorManager and mHeartRateSensor should be declared as lateinit class attributes
(i.e., outside onCreate()).

When the listener is registered on the heart rate sensor, it listens to events with a rate
suitable to the user interface. We register the listener in the onResume():

/** wear -> MainActivity.kt -> onResume(...) **/
mSensorManager.registerListener(this, mHeartRateSensor,
SensorManager.SENSOR DELAY UTI)

We also have to unregister the sensor when the app pauses:

/** wear -> MainActivity.kt -> onPause(...) **/
mSensorManager.unregisterListener(this)

When a new value is retrieved by the registered sensor, the onSensorChanged(...) callback
is executed. Complete its implementation as follows:

/** wear -> MainActivity.kt **/
private var heartRate by mutableStateOf<Int>(0)

override fun onSensorChanged(event: SensorEvent?) {
heartRate = event?.values?.get(0)?.toInt() ?: O

You will have to add this dependency on wear module build.gradle avoid an error when
declaring the heartRate variable:

implementation("androidx.compose.runtime:runtime-livedata:1.5.4")

The variable heartRate (which you have to decaler as a state variable of the Activity class
as a mutableIntStateOf(0))is updated whenever the sensor changes its value. Note that
we take the value from the sensor event with event?.values?.get(0), as some sensors
can return multi-dimensional values (e.g. 3-axes accelerometry). For more information
about how to get the sensor value for different types of sensors check the Android Devel-
oper documentation?.

To show the heart rate in the screen of the watch, add a Text to the Homescreen com-
posable, for example at the bottom of the ConstraintLayout, and pass to it the heartRate
value.

2https://developer.android.com/reference/android/hardware/SensorEvent

https://developer.android.com/reference/android/hardware/SensorEvent

E P F L EE-490g - Lab On Apps Development For $§¥SII[[ILI|]S[H.AH“R““HY

Tablets, Smartphones And Smartwatches

If you run your application now, the value of your heart rate should be shown in the Te
xtView that you use for heart rate measurements and will change whenever the sensor
value changes. Figure 1 shows the resulting smartwatch GUIL

ESL User
HR =82

Figure 1: HR data on smart watch

3.4 Sending HR from watch to tablet

In the onSensorChanged(...) of the MainActivity after reading the sensor we must send
the data to the mobile app. To this end, create a sendDataToMobile(...) and call it inside
onSensorChanged(...).

/** wear -> MainActivity.kt **/
private fun sendDataToMobile(heartRate: Int) {
val dataClient: DataClient = Wearable.getDataClient(this)
val putDataReq: PutDataRequest = PutDataMapRequest.create("/heart rate")
.run {
dataMap.putInt ("HEART RATE", heartRate)
asPutDataRequest ()

}
dataClient.putDatalItem(putDataReq)

E P F L EE-490g - Lab On Apps Development For $§¥SII[[ILI|]S[H.AH“RM[IHY

Tablets, Smartphones And Smartwatches

3.5 Showing HR in ExerciselLiveScreen

In this section, we need to get the heart rate in the ExerciseLiveScreen to be able to
show it to the user. The implementation is similar to the one in Lab4 when we sent the
profile from tablet to watch, but now the communication is from watch to tablet.

Therefore, you need to implement DataClient.OnDataChangedListener in the definition
of the MainActivity and add onDataChanged function in the activity. Inside this function,
you change the heart rate state variable and send it to the ExerciseLiveScreen as a
parameter based on the event received in the dataEventBuffer.

class MainActivity : ComponentActivity(), DataClient.OnDataChangedListener {

private lateinit var dataClient: DataClient
private var heartRate by mutableStateOf(0)

override fun onDataChanged(dataEvents: DataEventBuffer) {
dataEvents
.filter { it.type == DataEvent.TYPE CHANGED &&
it.dataltem.uri.path == "/heart rate" }
.forEach { event ->
heartRate = DataMapItem.fromDatalItem(event.dataltem)
.dataMap.getInt("HEART RATE")

Where "/heart_rate" and "HEART_RATE" denote the URI path and key, equal to the ones
defined in Section 3.4 for the wear module.

The next step is to register the data listener, again in MainActivity. Override an onResume
function and add the following code to it:

dataClient.addListener(this)

For unregistering the listener do the same way to remove the listener in an override onP
ause function.

dataClient.removelListener(this)

10

E P F L EE-490g - Lab On Apps Development For $E¥SII[[ILI|]S[H.AH“RM[IHY

Tablets, Smartphones And Smartwatches

Finally, pass the heartrate as a parameter to ExerciseLiveScreen, where you can display
in a Text. Now, if you run the app, you will see the HR value in both the watch and tablet.

3.6 Start and stop sending HR

You might have noticed that the code in Section 3.4 causes the watch to continuously
send heart rate data whenever it receives a value in the onSensorChanged. Sending data
even when it is not processed by the tablet is not efficient from an energy perspective. To
address this problem, we establish a procedure in which the tablet sends commands to
the watch to start and stop sending heart rate data.

On the mobile side, we need to send commands to the watch. We have already sent profile
information from the tablet to watch using the DataClient API. Now, we use the Messag
eClient API instead. Add the following code to MainActivity:

/** mobile -> MainActivity **/
private fun sendCommandToWear(command: String) {
Thread (Runnable {
val connectedNodes: List<String> = Tasks
.await(
Wearable
.getNodeClient(this).connectedNodes
)
.map { it.id }
connectedNodes.forEach {
val messageClient: MessageClient = Wearable
.getMessageClient (this)
messageClient.sendMessage(it, "/command", command.toByteArray())

}
}).start()

In this function, first, we get all the nodes connected to the tablet, and then, we send the
command to the tablet. The command argument can be Start or Stop, like:

sendCommandToWear ("Stop")

Therefore, we call this function in onResume() and onPause() to start, and stop the data
communication between the watch and tablet. Note that we put the code that initiates a
seach for connected nodes in a Tasks.await() clause, so that the GUI does not become
unresponsive in the meantime.

11

E P F L EE-490g - Lab On Apps Development For $E¥SII[[IL||]S[H.AH“RM[|“Y

Tablets, Smartphones And Smartwatches

Now, in the wear, we need to receive the commands. Go to MainActivity.kt in the wear
module and add the interface for the message listener:

/** wear -> MainActivity.kt **/

class MainActivity : ComponentActivity(), DataClient.OnDataChangedListener,
SensorEventListener,
MessageClient.OnMessageReceivedListener {

An error should be raised because we need to override the listener in our code, as well.
Thus, add the following function to the class. We will fill it in the next section.

/** wear -> MainActivity.kt **/
override fun onMessageReceived(messageEvent: MessageEvent) {

To activate the message receiver, we need to register the listener. In onResume():

/** wear -> MainActivity.kt/onResume()**/
Wearable.getMessageClient (this).addListener(this)

And don’t forget to remove the listener when the Activity goes in background.

/** wear -> MainActivity.kt/onPause() **/
Wearable.getMessageClient (this).removelListener(this)

3.7 Timer

The app suffers from another problem: the heart rate data is sent immediately after it is
ready. Therefore, we may receive HR data with different frequencies from time to time.
We need to use Timers to send this HR data more regularly.

First, we define a timer variable. The previously defined heartRate activity-level variable
is updated whenever the heart rate is received from the sensor, but we only send it to the
tablet at every tick of the timer. Add the following variable to the MainActivity.kt.

/** wear -> MainActivity.kt **/
private var timer = Timer()

12

E P F L EE-490g - Lab On Apps Development For $E¥SII[[ILI|]S[H.AH“RM[IHY

Tablets, Smartphones And Smartwatches

To launch this timer, we set the timer schedule when we receive the ”Start” command
from the tablet. Therefore, update the onMessageReceived function, to set and cancel the
timer based on the command we received from the tablet.

/** wear -> MainActivity.kt -> onMessageReceived **/
override fun onMessageReceived(messageEvent: MessageEvent) {
if(messageEvent.path == "/command") {
val receivedCommand: String = String(messageEvent.data)
if (receivedCommand == "Start") {
timer = Timer()
timer.schedule(timerTask {
sendDataToMobile(heartRate)
}, 0, 500)
} else if (receivedCommand == "Stop") {
timer.cancel()

}

Remember to remover the call to sendDataToMobile from the onSensorChanged function.

4 ExerciseliveViewModel

As mentioned in Section 2, we’d like to separate GUI and application logic concerns, us-
ing UI controllers and View Models. In this section, we will implement a ViewModel for
ExerciseLive, as this will become more complex in the following

First, add a new file ExerciseLiveViewModel.kt. Then, remove the DataClient.OnD
ataChangedListener from the activity definition and add it to ExerciselLiveViewModel.
Move the onDataChanged function from the fragment to the ViewModel.

Note that as we do not have access to the UI from the ViewModel, the ViewModel can’t
directly display the received HR value. Instead, the heart rate TextView should be updated
using Live Data and Observers. To this end, define a private MutableLiveData variable in
the ViewModel for the heart rate. Then, define a corresponding LiveData variable. The
code should be as follows:

/** mobile -> ExerciselLiveViewModel.kt **/
private val heartRate = MutablelLiveData<Int>(0)
val heartRate: LiveData<Int>

get() = heartRate

13

E P F L EE-490g - Lab On Apps Development For $E¥SII[[ILI|]S[H.AH“RM[IHY

Tablets, Smartphones And Smartwatches

In onDataChanged, update the value of _heartRate as the end of the function as follows.

/** mobile -> ExerciselLiveViewModel.kt -> onDataChanged()**/
_heartRate.value =
DataMapItem.fromDataltem(event.dataltem).dataMap.getInt("HEART RATE")

Now, go to MainActivity.kt and initialize the viewModel.

/** mobile -> MainActivity.kt **/
private val exerciseliveViewModel: ExerciselLiveViewModel by viewModels ()

}

We now need to provide the view model as a parameter to the ExerciselLiveScreen, where
we can observe the heart rate as a state.

fun ExerciselLiveScreen(exerciselLiveViewModel: ExerciselLiveViewModel,
modifier: Modifier = Modifier) {
val heartRate by exerciselLiveViewModel.heartRate.observeAsState(initial = 0)

Note that you need to change the onResume and onPause functions as well, because there
is no onDataChange in this activity anymore. Instead, you need to set the viewModel when
you register or unregister the listener. For instance, to register the listener in onResume:

dataClient.addListener(exerciselLiveViewModel)

Now you can launch the app to see the changes in reading and displaying the heart rate.

4.1 Refactor the lifecycles

Since we moved the DataClient.OnDataChangedListener we can refactor the code to be
simpler. We move some of the logic from the MainActivity to the ExerciseLiveScreen,
since it only refers to that screen. To do this, we will need to use composable lifecycle
callbacks. Let’s start by adding the import to the build.gradle file.

/** mobile -> build.gradle **/

implementation("androidx.lifecycle:lifecycle-runtime-compose:2.7.0-rc02")
implementation("androidx.lifecycle:lifecycle-runtime-ktx:2.7.0-rc02")

14

E P F L EE-490g - Lab On Apps Development For $E¥SII[[ILI|]S[H.AH“RM[IHY

Tablets, Smartphones And Smartwatches

Now, we can use the LifecycleResumeEffect composable to listen for onResume and onP
ause events. Remove the onResume and onPause methods from the MainActivity and im-
plement the same logic in the ExerciseLiveScreen. Move the sendCommandToWear func-
tion to the ExerciseLiveScreen.kt file, but outside of the ExerciseLiveScreen composable.
Add a Context parameter to the function and change this to context inside the function.

/** mobile -> ExerciseliveScreen.kt **/

@Composable
fun ExerciselLiveScreen(

) A

fun sendCommandToWear(command: String, context: Context) {

Then we can create a LifecycleResumeEffect and paste the appropriate method. Like-
wise, you can instead decide to use LifecycleEventEffect(Lifecycle.Event.ON_RESU
ME) and LifecycleEventEffect(Lifecycle.Event.ON_ PAUSE).

@Composable
fun ExerciselLiveScreen(
dataClient: DataClient,
modifier: Modifier = Modifier,
exerciselLiveViewModel: ExerciseliveViewModel = viewModel()

val context = LocalContext.current

LifecycleResumeEffect {
dataClient.addListener(exerciselLiveViewModel)
sendCommandToWear("Start", context)
onPauseOrDispose {

dataClient.removelListener(exerciselLiveViewModel)
sendCommandToWear ("Stop", context)

15

E P F L EE-490g - Lab On Apps Development For $E¥SII[[ILI|]S[H.AH“RM|]HY

Tablets, Smartphones And Smartwatches

We can now remove the ExerciseLiveViewModel instance in MainActivity since we moved
all of the logic to the ExerciseLiveScreen and we are instantiating the view model in the
constructor. The only thing left is to pass dataClient to the ExerciseLiveScreen instan-
tiation in the NavHost. You can also move the sendCommandToWear to the excerciseLive
viewModel, since it is not part of the GUI management.

Now launch the application and check if everything is working as expected.

5 Show HR in AndroidPlot

To improve the look-and-feel of our sports tracker app, we will show the HR data in a live
plot. For this, we need to add the plot in the layout of ExerciseLiveScreen and then draw
it every time we receive new HR data.

5.1 Adding YCharts and configure it

We will use the YCharts library, an open-source third-library that will plot our data.

/** mobile --> build.gradle **/
dependencies {
implementation("co.yml:ycharts:2.1.0")

Since the library uses a higher minSdkVersion, we will have to override it in our Android-
Manifest file.

/** mobile -> manifests -> AndroidManifest.xml **/
<uses-sdk android:targetSdkVersion="33" android:minSdkVersion="23"
tools:overrideLibrary="co.yml.charts.components"/>

5.2 Create a list of Points

In order to use the library, we will have to prepare the data. The graph employs a list of
Points as input to plot the data. We will add two new variables _heartRateList, which

16

E P F L EE-490g - Lab On Apps Development For $§¥SII[[IL||]S[H.AH“RM[|“Y

Tablets, Smartphones And Smartwatches

will be used as a helper, and _heartRatelListLiveData, which will update the composable
about the changes. In the onDataChanged method we will create a new Point object, add
it to the _heartRatelList, and assign the new array to the value of _heartRateListLiv
eData.

/** mobile -> ExerciselLiveViewModel **/
private val heartRatelList = ArrayList<Point>()

private val heartRateListlLiveData = MutablelLiveData<List<Point>>()

val heartRatelList: LiveData<List<Point>>
get() = heartRatelListlLiveData

override fun onDataChanged(dataEvents: DataEventBuffer) {

dataEvents
.filter { it.type == DataEvent.TYPE CHANGED
&& it.dataltem.uri.path == "/heart rate" }

.forEach { event ->
val newValue = DataMapItem.fromDataltem(event.dataltem)
.dataMap.getInt("HEART RATE")

_heartRate.value = newValue
val x = heartRatelList.size
val newPoint = Point(x.toFloat(), newValue.toFloat())

_heartRatelList.add(newPoint)

_heartRatelListLiveData.value = heartRatelList

5.3 Draw HR data on the plot

In the ExerciselLiveScreen we have to observe the new list that we created. We have to
change the Row into a Column and add the LineChart composable.

/** mobile -> ExerciselLiveScreen.kt **/

val pointsData by exerciselLiveViewModel.heartRatelList
.observeAsState(initial = listO0f())

17

E P F L EE-490g - Lab On Apps Development For $E¥SII[[ILI|]S[H.AH“RM[IHY

Tablets, Smartphones And Smartwatches

Column(

modifier = modifier.fillMaxSize(),
Arrangement.Center,
Alignment.CenterHorizontally

verticalArrangement
horizontalAlignment

) A

Text(text = stringResource(R.string.heart rate, heartRate))

LineChart(
modifier = Modifier
FillMaxWidth()

.height(300.dp),
lineChartData = lineChartData

LineChart is expecting a parameter lineChartData, so let’s create a ‘LineChardData ob-

ject.

val lineChartData = LineChartData(
linePlotData = LinePlotData(
lines = listOf(
Line(

dataPoints = pointsData,
LineStyle(),
IntersectionPoint (),
SelectionHighlightPoint(),
ShadowUnderLine(),
SelectionHighlightPopUp()

),
),

xAxisData = xAxisData,
yAxisData = yAxisData,
gridLines = GridLines(),

backgroundColor = Color.White

We already have the list with points, we need to create xAxisData and yAxisData. We want
to x-axis to represent the number of steps and the y-axis to represent the HR values. To
want a better visibility and readability of the graph, we will make the ranges of y-axis to

18

E P F L EE-490g - Lab On Apps Development For awill[[l;s[uﬂ[m”““v

Tablets, Smartphones And Smartwatches

go from the minimum value to the maximum value in the list.

val
val
val

val

val

max = pointsData.maxO0fOrNull { it.y }?.toInt() ?: 0O
min = pointsData.minOfOrNull { it.y }?.toInt() ?: 0O
steps = pointsData.size - 1

xAxisData = AxisData.Builder()
.axisStepSize(100.dp)
.backgroundColor(Color.Blue)
.steps(steps)
.axisStepSize(20.dp)
.labelData { 1 ->

i.toString()

}
.labelAndAxisLinePadding(15.dp)
Lbuild()

yAxisData = AxisData.Builder()

.steps(max-min)
.backgroundColor(Color.Red)
.labelAndAxisLinePadding(20.dp)
.labelData { i ->

(i4+min).toString()
}.build()

The final modification is that we want to show the graph when the points data list is not

empty because if it is empty we have nothing to plot. Below is the final code:

/** mobile -> ExerciselLiveScreen.kt ->

Column(

modifier = modifier.fillMaxSize(),
verticalArrangement = Arrangement.Center,
horizontalAlignment

Alignment.CenterHorizontally

Text(text = stringResource(R.string.heart rate, heartRate))

val max pointsData.max0fOrNull { it.y }?.toInt() ?: 0O
val min = pointsData.minOfOrNull { it.y }?.toInt() 7: 0O
val steps = pointsData.size - 1

19

=PrFL

EE-490g - Lab On Apps Development For
Tablets, Smartphones And Smartwatches

e

ENBEDDED
SISTENS L

ARORATORY

if (pointsData.isNotEmpty()) {
val xAxisData = AxisData.Builder()

val

val

.axisStepSize(100.dp)
.backgroundColor(Color.Blue)
.steps(steps)
.axisStepSize(20.dp)
.labelData { 1 ->

i.toString()
}
.labelAndAxisLinePadding(15.dp)
.build()

yAxisData = AxisData.Builder()
.steps(max-min)
.backgroundColor(Color.Red)
.labelAndAxisLinePadding(20.dp)
.labelData { i ->

(i4+min).toString()
}.build()

lineChartData = LineChartData(
linePlotData = LinePlotData(
lines = listOf(
Line(

dataPoints = pointsData,
LineStyle(),
IntersectionPoint(),
SelectionHighlightPoint(),
ShadowUnderLine(),
SelectionHighlightPopUp()

),
),

xAxisData = xAxisData,
yAxisData = yAxisData,
gridLines = GridLines(),

backgroundColor = Color.White

20

E P F L EE-490g - Lab On Apps Development For $E¥SII[[ILI|]S[H.AH“RM[IHY

Tablets, Smartphones And Smartwatches

Figure 2: HR data on Android plot

LineChart(
modifier = Modifier
fillMaxWidth()

.height(300.dp),
lineChartData = lineChartData

Run again the app. You should see the HR plot, updated from each value being acquired
by the smartwatch and and sent to the tablet. the app you can see that the plot is updated
at each value coming from the smartwatch HR sensor, as shown in Figure 2.

There is much more you can do with YChart. You can find the library documentation at
this LINKS.

Shttps://github.com/codeandtheory/YCharts

21

https://github.com/codeandtheory/YCharts

	Android Studio Tricks
	UI Controllers and View Models
	LoginProfile
	NewRecording

	Reading and displaying heart rate sensor data
	Permissions
	Preliminary layouts of Wear activity and ExcerciseLiveScreen
	Read data from the HR sensor
	Sending HR from watch to tablet
	Showing HR in ExerciseLiveScreen
	Start and stop sending HR
	Timer

	ExerciseLiveViewModel
	Refactor the lifecycles

	Show HR in AndroidPlot
	Adding YCharts and configure it
	Create a list of Points
	Draw HR data on the plot

