
EE-490g – Lab On Apps Development For
Tablets, Smartphones And Smartwatches

Lab 2: Buttons and State

In case you found something to improve, please tell us!
https://forms.gle/3U6WrZNyNx2nBXQ38

This class will teach you how to build an interactive graphical user interface for a tablet ap-
plication. We will proceed towards building a complete sport tracking application, which
you will develop step by step during the upcoming lab sessions.

1 Android Studio Tricks

Here are very useful Android Studio tricks you should always use (check Section 5 of
Lab1 for more detailed explanation on how to use Android Studio debug tools):

1. Use Alt+Enter (Option+Enter for Mac users) when you have an error in your code:
put the cursor on the error and click Alt+Enter. You can also use it to update the
gradle dependencies to the latest version.

2. Use Ctrl+Space to check the documentation of a View, method or attribute: put the
cursor on the object and do Ctrl+Space. You can also use it to complete the typing
of these objects. Otherwise Android Studio always gives a list of suggestions where
you can choose the object you need.

3. ALWAYSCHECKTHECOMPILATIONERRORS! They are usually quite self-explanatory.
4. ALWAYS DEBUG AND CHECK THE ERRORS IN LOGCAT! Read the usually self-

explanatory errors and click on the underlined blue line to go in the position of the
code where the error is.

For more useful keyboard shortcuts, please check this LINK1

2 Goal

The overview of the graphical user interface (GUI) of the app realized in this lab is shown
in Fig. 1. It contains a single screen activity with one Image, two TextFields (Username &
Password) and two Buttons (”CONFIRM” & ”PICK IMAGE”). The user can select an image
from the internal storage of the tablet by pressing the ”PICK IMAGE” button. When the
user presses the ”CONFIRM” button, the TextFields are replaced by Texts, and ”CON-
FIRM” & ”PICK IMAGE” buttons are replaced by ”UPDATE” & ”LOG OUT” buttons. The
user can update or remove her/his personal information by pressing ”UPDATE” or ”LOG
OUT” buttons respectively.

1https://developer.android.com/studio/intro/keyboard-shortcuts

1

https://forms.gle/3U6WrZNyNx2nBXQ38
https://developer.android.com/studio/intro/keyboard-shortcuts


EE-490g – Lab On Apps Development For
Tablets, Smartphones And Smartwatches

Figure 1: Main Activity Android Layout

To do so you will create a new application running on the tablet. You will design its lay-
out and implement the MainActivity Kotlin code which will execute in response to user
actions. Let’s get started!

2.1 Starting your Android project

Instead of repeating last class’ procedure for creating a new Android project, we recom-
mend to use the solution of Lab1 (either the one you coded or the one available on Moodle)
to start today’s project. We would like MainActivity to be lanched everytime the user
opens the app. To this end, in themobile’s module, open AndroidManifest.xml, and check
that MainActivity is assigned the LAUNCHER category:

<activity android:name=".MainActivity">
<intent-filter>

<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>
</activity>

2.2 Initial MainActivity layout

In this lab, we will redesign the GUI of our application, so we will start from a blank slate
by deleting the composables in defined in HomeScreen. The starting code in mainacti ⌋

vity.kt should look as follows:

2



EE-490g – Lab On Apps Development For
Tablets, Smartphones And Smartwatches

class MainActivity : ComponentActivity() {

override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)

setContent {
SportsTrackerTheme {

HomeScreen()
}

}
}

}

@Composable
fun HomeScreen(modifier: Modifier = Modifier) {

Surface(
modifier = modifier.fillMaxSize(),
color = MaterialTheme.colorScheme.background

) {

}
}

@Preview
@Composable
fun HomeScreenPreview() {

SportsTrackerTheme {
HomeScreen()

}
}

Now let’s add some elements to HomeScreen()!

2.3 Add elements to your GUI layout

Let’s start by adding a Column and an Image at the top of the layout. You can download
the default user image (user_image.png) from Moodle.

Column(
horizontalAlignment = Alignment.CenterHorizontally,

3



EE-490g – Lab On Apps Development For
Tablets, Smartphones And Smartwatches

) {
Image(

painter = painterResource(id = R.drawable.user_image),
contentDescription = stringResource(R.string.default_user_image)

)
}

Then, add two TextFields inside the Column. We will see later how these can be replaced
by two Texts when the user logs in, or or vice versa when the user logs out (see Figure 1).

Each TextField is initialized with two parameters: value and onValueChange. To imple-
ment this properly we will need to define a username and a password state variables in
the HomeScreen() function: var username by remember { mutableStateOf("") } and
var password by remember { mutableStateOf("") }.

Add them to the TextFields and implement the onValueChange parameter to update the
password when the value of the TextField changes. For the pasword, let’s also add a vis ⌋

ualTransformation and set the keyboardOptions to KeyboardType.Password to hide the
password being typed by the user.

TextField(
value = username,
onValueChange = { newValue ->

username = newValue
},
label = {

Text(stringResource(R.string.username_hint))
},
textStyle = TextStyle(fontSize = 24.sp, textAlign = TextAlign.Center),
modifier = modifier.fillMaxWidth().padding(bottom = 8.dp)

)
TextField(

value = password,
onValueChange = { newValue ->

password = newValue
},
textStyle = TextStyle(fontSize = 24.sp, textAlign = TextAlign.Center),
label = {

Text(stringResource(R.string.password_hint))
},
visualTransformation = PasswordVisualTransformation(),

4



EE-490g – Lab On Apps Development For
Tablets, Smartphones And Smartwatches

keyboardOptions = KeyboardOptions(keyboardType = KeyboardType.Password),
modifier = modifier.fillMaxWidth()

)

You might have noticed that the TextFields are underlined with a red color. There is an
error and to resolve let’s click on the TextField and press ALT+ENTER and choose the first
option Opt in for ExperimentalMaterial3Api on HomeScreen.

Let’s continue with adding the buttons. They shuld be horizontally placed next to each
other, so let’s place two Buttons in a Row composable below our TextFields.

Row(
modifier = Modifier

.fillMaxWidth()

.padding(top = 16.dp)
) {

Button(
onClick = { /*TODO*/ },
modifier = Modifier.weight(1f)

) {
Text(text = stringResource(R.string.confirm_button_text))

}
Button(

onClick = { /*TODO*/ },
modifier = Modifier.weight(1f)

) {
Text(text = stringResource(R.string.pick_image_button_text))

}
}

The button have Modifier.weight(1f). Wights are used to set the space occupied by com-
posables in relation to their parent, where each element k will occupy weightk/

∑N
i=0 weighti

space in a given direction. In this case, since both buttons have a weight of 1, they will
occupy the same space (horizontally): each will be half of the space used by the Row
composable containing them.

2.4 State hoisting

Before implementing the other layout with Texts, let’s implement state hoisting for our
current layout. Our application will have two modes:

5



EE-490g – Lab On Apps Development For
Tablets, Smartphones And Smartwatches

• Editing mode: When the user can change the username and password, and also pick
a picture.

• Displaying mode: When the user can only see the username, password, and picture.

The layout we implemented is for the Editing mode, so let’s copy the layout starting from
Column composable and place it in a new one. Let’s call it HomeContentEditing and call
it inside the HomeScreen composable. State hoisting makes the composable stateless, by
moving the state to the composable’s parent. To do so, need to move password and user ⌋

name outside of the HomeContentEditing composable, together with the methods that are
changing them, and provide them as parameters. Your code should now look as follows:

@Composable
fun HomeScreen(modifier: Modifier = Modifier) {

Surface(
modifier = modifier.fillMaxSize(),
color = MaterialTheme.colorScheme.background

) {
var username by remember { mutableStateOf("") }
var password by remember { mutableStateOf("") }

HomeContentEditing(
username = username,
password = password,
onUsernameChanged = { newValue -> username = newValue },
onPasswordChanged = { newValue -> password = newValue },
modifier = modifier

)
}

}

@OptIn(ExperimentalMaterial3Api::class)
@Composable
fun HomeContentEditing(

username: String,
password: String,
onUsernameChanged: (String) -> Unit,
onPasswordChanged: (String) -> Unit,
modifier: Modifier = Modifier

) {

6



EE-490g – Lab On Apps Development For
Tablets, Smartphones And Smartwatches

...
}

Remember that, since now the onUsernameChanged and onPasswordChanged functions are
parameters passed to the HomeContentEditing composable, the onValueChange method
of the username and passwords TextFields should be updated accordingly. For example,
for the username that would be

TextField(
value = username,
onValueChange = onUsernameChanged,
...

)

We still are not done. You might notice that our buttons still have TODO in their onClick
methods, let’s declare them as parameters. In HomeScreen():

HomeContentEditing(
username = username,
password = password,
onUsernameChanged = { newValue -> username = newValue },
onPasswordChanged = { newValue -> password = newValue },
onContinueButtonClicked = { /* TODO */ },
onPickImageButtonClicked = { /* TODO */ },
modifier

)

And, correspondingly, in HomeScreenEditing we will list them as parameters:

fun HomeContentEditing(
...
onContinueButtonClicked: () -> Unit,
onPickImageButtonClicked: () -> Unit,
modifier: Modifier

and pass the proper function to the onClick methods of the buttons:

Button(
onClick = onContinueButtonClicked,
modifier = Modifier.weight(1f)

7



EE-490g – Lab On Apps Development For
Tablets, Smartphones And Smartwatches

) {
Text(text = stringResource(R.string.confirm_button_text))

}
Button(

onClick = onPickImageButtonClicked,
modifier = Modifier.weight(1f)

) {
Text(text = stringResource(R.string.pick_image_button_text))

}

Before implementing the click listeners for the buttons, let’s implement for layout for dis-
playing mode. Copy-paste the layout from the existing composable into a new composable,
name it HomeContentDisplaying, implement Texts instead of TextFields and change the
buttons accordingly, including the name of the onClick methods. In our displaying com-
posable, we won’t be able to change the username or the password, so we don’t need the
onUsernameChanged and onPasswordChanged parameters. You can create new previews
for HomeContentEditing and HomeContentDisplaying to observe the changes that you
make.

@Composable
fun HomeContentDisplaying(

username: String,
onUpdateButtonClicked: () -> Unit,
onLogOutButtonClicked: () -> Unit,
modifier: Modifier = Modifier

) {
Column(

horizontalAlignment = Alignment.CenterHorizontally,
) {

Image(
painter = painterResource(id = R.drawable.user_image),
contentDescription = stringResource(R.string.default_user_image),
modifier = modifier

.fillMaxWidth()

.height(500.dp)
)
Text(

text = username,
style = TextStyle(fontSize = 24.sp, textAlign = TextAlign.Center),
maxLines = 1,

8



EE-490g – Lab On Apps Development For
Tablets, Smartphones And Smartwatches

modifier = modifier
.fillMaxWidth()
.padding(bottom = 8.dp)

)
Text(

text = stringResource(R.string.password_hidden_text),
style = TextStyle(fontSize = 24.sp, textAlign = TextAlign.Center),
maxLines = 1,
modifier = modifier.fillMaxWidth()

)
Row(

modifier = Modifier
.fillMaxWidth()
.padding(top = 16.dp)

) {
Button(

onClick = onUpdateButtonClicked,
modifier = Modifier.weight(1f)

) {
Text(text = stringResource(R.string.update_button_text))

}
Button(

onClick = onLogOutButtonClicked,
modifier = Modifier.weight(1f)

) {
Text(text = stringResource(R.string.log_out_button_text))

}
}

}
}

@Preview
@Composable
fun HomeScreenDisplayingPreview() {

SportsTrackerTheme {
HomeContentDisplaying("username", {}, {})

}

}

9



EE-490g – Lab On Apps Development For
Tablets, Smartphones And Smartwatches

@Preview
@Composable
fun HomeScreenEditingPreview() {

SportsTrackerTheme {
HomeContentEditing("", "", {}, {}, {}, {})

}
}

3 Reacting to clicks on Buttons

3.1 The Confirm button

When we click on the ”Confirm” button, we are expecting the change the mode, from
Editing to Displaying, i.e. the TextFields to be removed and replaced with Texts and
the text of the Buttons to be updated. We can do that from the top-level composable
(HomeScreen), using a new state variable called isEditingMode initialized to true, since
we want our application to start in Editing mode. When we click on the ”Confirm” button,
we just need to change the state to false. To implement to changing of screens we need
and if-else block where the variable isEditingMode is the condition. If isEditingModeis
true, we want to call the HomeContentEditing composable, if it is false we want to call
the HomeContentDisplaying. Run the application and test the changing of modes.

var isEditingMode by remember { mutableStateOf(true) }

if (isEditingMode) {
HomeContentEditing(

username = username,
password = password,
onUsernameChanged = { newValue -> username = newValue },
onPasswordChanged = { newValue -> password = newValue },
onContinueButtonClicked = { isEditingMode = false },
onPickImageButtonClicked = { /* TODO */ },
modifier

)
} else {

HomeContentDisplaying(
username = username,
onUpdateButtonClicked = { /*TODO*/ },

10



EE-490g – Lab On Apps Development For
Tablets, Smartphones And Smartwatches

onLogOutButtonClicked = { /*TODO*/ },
modifier)

}

Indeed, when ”Confirm” is pressed, username and password are no longer editable, so
TextFields are substituted by the corresponding Texts.

3.2 The ”PickImage” button

Now let’s define onPickImageButtonClicked function. To perform this task, we have to
request data from outside of the app (from an image chooser).

External apps are invoked via Intents. In our case, the action must be ”ACTION GET
CONTENT” and the type ”image/*”. The Intent is then launched, so that the (external)
image chooser app can come in the foreground. We also need to add another state variable
to remember the Uri (location) of the image that was received from the intent. We need
to add a type Uri? to the MutableState, and initialize it to null.

onPickImageButtonClicked = {
val intent = Intent(Intent.ACTION_GET_CONTENT)
intent.type = "image/*"
resultLauncher.launch(intent)

},

The launcher callback is defined inside the HomeScreen composable:

var imageUri by remember { mutableStateOf<Uri?>(null) }
var resultLauncher = rememberLauncherForActivityResult(

contract = ActivityResultContracts.StartActivityForResult(),
onResult = { result ->

if (result.resultCode == Activity.RESULT_OK) {
val uri = result.data?.data
imageUri = uri

}
}

)

In order to see the image that we picked, we will need to modify our HomeContentEdit ⌋

ing and HomeContentDisplaying composables. Let’s first add a Uri parameter as a first
pameters, imageUri: Uri?. In both cases, we should pass the ImageURI (that we retrieved

11



EE-490g – Lab On Apps Development For
Tablets, Smartphones And Smartwatches

from the resultLauncher) as an argument when calling them from HomeScreen as a first
argument when calling

Loading image from files or from the internet is a ”heavy” process that should be done
asynchronously in the background (not blocking the UI). To do this we will use an external
library that that. Add implementation("io.coil-kt:coil-compose:2.4.0") in the bui ⌋

ld.gradle.kts in the mobile module. Click on Sync now and wait for it to finish.

When it is finished we can use the AsyncImage composable. We want to show the current
R.drawable.user-image when imageUri is null, and when we Uri is not null (the user
as not selected any image). Instead, we want to display the Image from the imageUri.
This can be achieved by adding the following code both in theHomeContentEditing and
in the HomeContentDisplaying composable. Note that this solution present redundant
code. A more elegant (but a bit more complex) aldernative would have been to use a
dedicated composable function for displaying the image, and reusing it in both the editing
and displaying interfaces.

if (imageUri == null) {
Image(

painter = painterResource(id = R.drawable.user_image),
contentDescription = stringResource(R.string.default_user_image),
modifier = modifier

.fillMaxWidth()

.height(500.dp)
)

} else {
AsyncImage(

model = imageUri,
contentDescription = stringResource(R.string.picked_user_image),
modifier = modifier

.fillMaxWidth()

.height(500.dp)
)

}

3.3 ”Update” and ”Logout” buttons

Using the same strategy illustrated for the ”Confirm” button, implement the onUpdateB ⌋

uttonClicked and onLogOutButtonClicked. Their functionality should be as follows:

• Tapping on the ”Log out” button should remove the user information from the GUI,

12



EE-490g – Lab On Apps Development For
Tablets, Smartphones And Smartwatches

returning it to its initial state: usernames and passwords are blank, and the default
image is displayed and we should return to Editing mode.

• The ”Update” button should instead allow the user to change username, password,
and picture without resetting it, i.e. changing to ‘Editing mode.

Both click listeners must properly manipulate the modes, and Buttons and the content of
texts and images.

13


	Android Studio Tricks
	Goal
	Starting your Android project
	Initial MainActivity layout
	Add elements to your GUI layout
	State hoisting

	Reacting to clicks on Buttons
	The Confirm button
	The "PickImage" button
	"Update" and "Logout" buttons


