=PrL

c Lab on apps development for tablets,
smartphones and smartwatches

Week 7:
Coroutines, Room and Maps

Giovanni Ansaloni

Rafael Medina, Hossein Taji, Yuxuan Wang
Qunyou Liu, Amirhossein Shahbazinia, Christodoulos Kechris

School of Engineering (STI) - Institute of Electrical and Micro Engineering (IEM)

=PrL

$ Class outline

= Coroutines and Room

= Geolocation
* GoogleMaps API
* Location system service

© ESL-EPFL

=PrL Coroutines

z = The Ul must be always fast:
* Screen is updated every 16ms = Ul thread has 16ms to do all the work

UPDATE

Missed update = ﬁ

. _ Ul thread Worker
= Coroutines are (long-running) tasks myFuni() thread
on a background thread longTask()
* non-blocking myFun3() Coroutine
* asynchronous myFun4()
longTaskRes
myFun4()

\/

© ESL-EPFL

i&L Coroutines in Kotlin

= Functions that can be invoked as coroutines are marked
with the suspend keyword = suspend fun longrunningWork() {...}

= Every coroutines has associated
* aJob: a handle to the coroutines

* a Dispatcher: mechanism to send coroutines to different threads

= Dispatcher.lO - 1/0 tasks
= Dispatcher.Default - CPU-intensive tasks
» Dispatcher.Main - Main thread

* a Scope: context in which the coroutine runs
» ViewModelScope -> coroutines are destroyed if ViewModel is cleared

= LifecycleScope —> coroutines are destroyed if Lifecycle owner
(Activity) is cleared

© ESL-EPFL

i&L Coroutines in Kotlin

= Functions that can be invoked as coroutines are marked
with the suspend keyword = suspend fun longrunningWork() {...}

* alob
e a Dispatcher

* a Scope: context in which the coroutine runs
In composables, rememberCoroutineScope()

returns the composable scope

fun myComposable(){
val coroutineScope = rememberCoroutineScope()

Button(
onClick = {
coroutineScope./aunch {
Ni{.}
} From previous Lecture!

© ESL-EPFL

iEL Launching a coroutine

= A coroutine is launched in a scope, specifies a dispatcher

fun someWorkNeedsToBeDone() {
val job : Job = [viewModelScope.launchi*{—— scope
suspendFunction()

}
}

Coroutine ————[suspend] fun suspendFunction() {

withContext(Dispatchers.IO
longrunningWork()
}

Y Dispatcher

= Suspended functions do not block execution while waiting for results
e other useful work can be done
— e.g. update GUI, listen for user actions...

© ESL-EPFL

=PrL

<

= Most apps needs data to be saved
e persistent even when user closes the app

= Room provides that functionality via Room,
an abstraction layer over SQLite
* simplifies setting up and interacting over SQL databases
e provides a query syntax based on SQL

= Apps interact with the database using
normal function calls

Room library

i&L SQLite and Room

= SQLite data in tables of rows and columns (spreadsheet...)
* Field := intersection of a row and column
* Rows are identified by unique IDs
e Column names are unique per table

= Room links the Kotlin and the SQL syntaxes

SOL
\‘@Query("SELECT * from my_table WHERE myId = :key")
/ suspend fun get(key: Long): myTableRow?

Kotlin

© ESL-EPFL

=PrL

<

= Three major components

* Database
main access point to DB

* Entity
class: describes a table within the database
object: one table row

e Data Access Objects (DAO)

Functions for accessing the database

© ESL-EPFL

Room library

App

-

Lntitvs

Entity

i.._..i e
SQLite ?
! Room Databasg

S)

[[[‘ no)

=PrL

$ Room Entity

= Kotlin data class with @Entity annotation

 optional tableName annotation @ntity(tableName = "my_table")
- @Pri Kev field data class MyEntity(
unique rimaryRey ne @PrimaryKey(autoGenerate = true)

= can be auto-generated var myId: Long = 0L,

* other fields
]) @ColumnInfo(name = "a_string")
= optional @Columninfo annotation val aString: String = "",
@ColumnInfo(name =|"a_Int")

var alInt: Int = -1

= Annotations are used to construct queries
in the DAO (next slide)

@Query("SELECT x from my_table WHERE |a_int|= :intParam")
suspend fun get(intParam: Int): List<myTableRow?>

© ESL-EPFL 10

31- Room Data Access Object (DAO)

= Room databases are accessed by the app (e.g. ViewModels)
using methods defined in DAOs

= DAOs provide mapping between Kotlin methods and SQL queries

* DAOs are interfaces = the implementation of methods is generated by Room
based on SQL code

@Dao @Insert, @Update, @Delete
interface MyDatabaseDao { = convenience methods,
do not require any extra code
@Insert
fun insert(myTableRow: MyEntity)

@Query("SELECT x from my_table WHERE myId = :key") Arbitrary queries
fun get(key: Long): MyEntity? are defined with @Query

© ESL-EPFL 11

=PrL

e Room Database

= Class annotated with @Database
= Only one instance needed for the app = Singleton

= getinstance() to either grab a handler of existing database, or create one

@atabase(entities = [MyEntity::classl, ...)— .
abstract class MyDatabase : RoomDatabase() { Entities used by the database

abstract val myDatabaseDa stance: MyDatabaseDao

™ DAOs used by the database
companion object {

fun getlInsta context: Context): MyDatabase {
e getinstance() method in

) companion object

© ESL-EPFL 12

g Performing Room queries

c = Ultimately, databases should be accessed

e get an handler to the DB instance
val dataSource = MyDatabase.getInstance(application).myDatabaseDaoInstance

= We can now access the DAO methods
class MyViewModel(

val databaseDao: MyDatabaseDao,_#__—_-#——-——-—-——~*—~*"*"”“’ DAO

application: Application) : AndroidViewModel(application) {

DAO

meth
private fun funl(key: Long): MyEntity? {7 ethod
return databaseDao.get(key) (query)

}

© ESL-EPFL

iEL Room and coroutines

= Accessing database can be slow = delegate it to coroutines!

@Dao

interface MyDatabaseDao {

@Query("SELECT x from my_table WHERE myId = :key")
suspend | fun get(key: Long): MyEntity?

1. mark DAO methods as suspend

I3
, , private fun longDbWork(key: Long) {
2. |aunCh coroutine W|th the viewModelScope. launch {
appropriate scope myDBelement = getFunction(key)
}
I3
private suspend fun getFunction(key : Long): MyEntity?
3. Call the DAO method {
= Room automatically uses var myDBelement = databaseDao.get(key)
the 1/0 dispatcher , return myDBelement

© ESL-EPFL 14

=PrL

<

= Coroutines and Room

= Geolocation
* GoogleMaps API
* Location system service

© ESL-EPFL

Outline of the class

15

=PrL

<

The GoogleMaps API

= The APl allows you to add maps to your app
based on Google Maps data.

¥ .4 1 07:00

Map with Marker

= Takes care of:
e Access Google maps servers
e Data downloading

* Map display
* Touch gestures on the map.

= De-facto monopoly
* Alternatives: OpenStreetMap (Data), Mapbox (API)

© ESL-EPFL

16

=PrL

<

Setting up GoogleMaps in Cloud Store

= GoogleMaps requires an APl key

9.4 1 07:00

* obtained from Google Cloud Console: console.cloud.google.com/

Map with Marker

* requires a billing method, even if GoogleMap API
is free for use in GoogleMap composable
https://developers.google.com/maps/documentation/android-
sdk/usage-and-billing#mobile-dynamic

MONTHLY VOLUME RANGE
(Price per MAP LOAD)
0-100,000 100,001-500,000 500,000+
0.00 USD 0.00 USD 0.00 USD

© ESL-EPFL

17

https://console.cloud.google.com/
https://developers.google.com/maps/documentation/android-sdk/usage-and-billing
https://developers.google.com/maps/documentation/android-sdk/usage-and-billing

g Displaying a map

c 1. Add a Google map key to the app manifest XML (obtained from GoogleCloud)

<meta-data
android:name="com.google.android.geo.API_KEY"

android:value="YOUR_KEY_HERE" />

2. Add a GoogleMap to the layout of the composable
in which you want to host the map
e Adding initial camera position

GoogleMap(
modifier = Modifier.fillMaxSize(),
cameraPositionState = cameraPositionState

val lausanne = LatLng(46.5197, 6.6323)
val cameraPositionState = rememberCameraPositionState { TE e O4

position = CameraPosition.fromLatLngZoom(lausanne, 10f) AP T SN

}

© ESL-EPFL 18

=PrL

<

= Zoom levels

10

15

20

© ESL-EPFL

- World

—> Continent
- City

—> Streets

—> Buildings

Customizing the map: Zoom

aaaaaaa

Isaka (] YYokoham:
KPR -Nagoya iR
e BER
Googl

Zoom level

5

15

HEE >
£ ks |
rgs O I\
: b)
P v
o“g\e‘: ; '.‘\
Zoom level

position = CameraPosition.fromLatLngZoom(lausanne,

10f)

P¥512

~~~~
IIIII

yyyy
=2

Zoom level

20

aaaaaaaaa

19



=PrL

<

= Define the Map type, governing the
overall representation of the map

Normal

Hybrid

Satellite

Terrain

None

© ESL-EPFL

-~ Typical road map
— Satellite data + roads

—> Satellite data only

— Topographic data

- no tiles, empty grid

Customizing the map: Type

GoogleMap(

properties = MapProperties(mapType = MapType.NORMAL)

20



i&L Customizing the map: Map controls

me

= Add zoom buttons

GoogleMap( -

uiSettings = MapUiSettings(zoomControlsEnabled = true)

)
= Add compass (/4

e appears when you rotate the map, or the map is not aligned to the North

Bankstown
SN

uiSettings = MapUiSettings(compassEnabled = true)

= Add myLocation button
* requires location information! @

uiSettings = MapUiSettings(myLocationButtonEnabled = true)

© ESL-EPFL 21



=PrL

<

Location data

= Apps must advertise the use of location data

<manifest xmlns:android= ... >
<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />
<application>
</application>

</manifest>

= ...ask the user permission to use it...

val cameraPermissionState = rememberPermissionState(
android.Manifest.permission.ACCESS FINE LOCATION
)

if (!cameraPermissionState.hasPermission) {
cameraPermissionState.launchPermissionRequest()
} else {
//update Ul accordingly

}
= ...and provide gradle dependencies...

implementation("com.google.accompanist:accompanist-permissions:0.23.1")

© ESL-EPFL

22



EPFL Location Provider(s)

I GPS DATA WIFI /| BEACON CELL TOWER / IP ADDRESS

= Location data can be obtained Rle 0% "
via several sources: ! @ & vy
* GPS, WiFi, Cell tower... \ !
cﬁ
-ll_ -III R
HIGH ACCURACY VERY HIGH ACCURACY LOW ACCURACY
LARGE SCALE SMALL SCALE LARGE SCALE

= Google provides a FusedLocationProvider system service
* Provides best position estimate, without having to explicitly manage different sources

fusedLocationProviderClient = LocationServices
.getFusedLocationProviderClient(context)

© ESL-EPFL 23



=PrL Retrieve location data

$ = Location data is retrieved by asking the location provider
for the last known location

try { I
fusedLocationProviderClient. lastlLocation last known location

.addOnCompleteListener(this) { task ->

if (task.isSuccessful) { _ _ _
Listening for the Location

lastKnownLocation = task.result provider replay
if (lastKnownLocation != null) {\\\\\\\\\\\\\\\*

.«. //Do something with the location . e
1 Here it is!

by
¥

} catch (e: SecurityException) {

Log.e("Exception: %s'", e.messaqge, e o .
} ) P ’ g,\\ No permission to use location

1 data

© ESL-EPFL



=PrL

Request location updates

= Get location information at regular intervals

1. Create a Location Request

val locationRequest = LocationRequest.create()
locationRequest.interval = 10000

locationRequest.fastestInterval = 5000

locationRequest.priority = LocationRequest.PRIORITY_HIGH_ACCURACY

2. Request location updates to the fusedLocationProvider

fusedLocationProviderClient
.requestLocationUpdates
locationRequest, locationCallback, Looper.getMainLooper())

© ESL-EPFL

25



=PrL

<

Request location updates

3. Implement the callback
— what to do when data is received

private lateinit var locationCallback: LocationCallback

override fun onCreate(...) {

locationCallback = object :
override fun onLocationResult(locationResult: LocationResult?) {
locationResult ?:

for (location in locationResult.locations){

© ESL-EPFL

LocationCallback() {

return

// Update UI with location data

/] e

Rengstorff House @

Shoreline Golf Links @
Kite
Dog Park

| Shoreline Amphitheatre
\ & ¢

Parking Lot C o

Amp'rre Pkwy ' Stierlin Ct

Googleplex J
= S S
Landings O (%]
g Charleston.Rd 5,
! o
3
ymE @
o = s
Google Android @ =l
Lawn Statues 3 z S
> & =
Q i 2
2
] & Plymo areen’
Sierra %’50 lymouth St Zareen's o
Vigg@@ark %0 2
%
Comouter @
Old Middlefield yay History r':um
Sprmg St
Morgan St
Google  rockst

26



i&L Today’s Lab

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ ¥4 0 9
) e = | ool
ot - Vi ER
. S < - i -]
= Add a map to ExcerciseLiveScreen =t S
* Showing the user’s current location .

= Implement a Room database on the watch
e storing and retrieving Heart Rate data

© ESL-EPFL



=PrL

© ESL-EPFL

Questions?

5 &k

28



