
Lab on apps development for tablets,
smartphones and smartwatches

Week 7:
Coroutines, Room and Maps

Giovanni Ansaloni
Rafael Medina, Hossein Taji, Yuxuan Wang

Qunyou Liu, Amirhossein Shahbazinia, Christodoulos Kechris

School of Engineering (STI) – Institute of Electrical and Micro Engineering (IEM)

§ Coroutines and Room

§ Geolocation
• GoogleMaps API
• Location system service

© ESL-EPFL 2

© ESL-EPFL

§ The UI must be always fast:
• Screen is updated every 16ms à UI thread has 16ms to do all the work

§ Coroutines are (long-running) tasks
on a background thread
• non-blocking
• asynchronous

myFun1()
longTask()

myFun3()
myFun4()

longTaskRes
myFun4()

UI thread

Coroutine

Worker
thread

3

suspend fun longrunningWork() {...}

© ESL-EPFL

§ Functions that can be invoked as coroutines are marked
with the suspend keyword à

§ Every coroutines has associated
• a Job: a handle to the coroutines

• a Dispatcher: mechanism to send coroutines to different threads
§ Dispatcher.IO à I/O tasks
§ Dispatcher.Default à CPU-intensive tasks
§ Dispatcher.Main à Main thread

• a Scope: context in which the coroutine runs
§ ViewModelScope à coroutines are destroyed if ViewModel is cleared
§ LifecycleScope à coroutines are destroyed if Lifecycle owner

 (Activity) is cleared

4

suspend fun longrunningWork() {...}

© ESL-EPFL

§ Functions that can be invoked as coroutines are marked
with the suspend keyword à

• a Job
• a Dispatcher
• a Scope: context in which the coroutine runs

In composables, rememberCoroutineScope()
returns the composable scope

5

@Composable
fun myComposable(){

val coroutineScope = rememberCoroutineScope()

Button(
onClick = {

coroutineScope.launch {
}) {…}

} From previous Lecture!

fun someWorkNeedsToBeDone() {
val job : Job = viewModelScope.launch {

suspendFunction()
}

}

suspend fun suspendFunction() {
withContext(Dispatchers.IO) {

longrunningWork()
}

}

© ESL-EPFL

§ A coroutine is launched in a scope, specifies a dispatcher

scope

Dispatcher

Coroutine

§ Suspended functions do not block execution while waiting for results
• other useful work can be done
 à e.g. update GUI, listen for user actions...

6

§ Most apps needs data to be saved
• persistent even when user closes the app

§ Room provides that functionality via Room,
an abstraction layer over SQLite
• simplifies setting up and interacting over SQL databases
• provides a query syntax based on SQL

§ Apps interact with the database using
normal function calls

7

§ SQLite data in tables of rows and columns (spreadsheet…)
• Field := intersection of a row and column
• Rows are identified by unique IDs
• Column names are unique per table

§ Room links the Kotlin and the SQL syntaxes

© ESL-EPFL

SQL

Kotlin

@Query("SELECT * from my_table WHERE myId = :key")
suspend fun get(key: Long): myTableRow?

8

§ Three major components

• Database
 main access point to DB

• Entity
 class: describes a table within the database
 object: one table row

• Data Access Objects (DAO)
 Functions for accessing the database

App

RoomDatabase

DAO
Entity

SQLite

DAODAO
EntityEntityEntity

© ESL-EPFL 9

§ Kotlin data class with @Entity annotation
• optional tableName annotation
• unique @PrimaryKey field

§ can be auto-generated
• other fields

§ optional @ColumnInfo annotation

§ Annotations are used to construct queries
in the DAO (next slide)

10

@Entity(tableName = "my_table")
data class MyEntity(

@PrimaryKey(autoGenerate = true)
var myId: Long = 0L,

@ColumnInfo(name = "a_string")
val aString: String = "",

@ColumnInfo(name = "a_Int")
var aInt: Int = -1

...
)

@Query("SELECT * from my_table WHERE a_int = :intParam")
suspend fun get(intParam: Int): List<myTableRow?>

© ESL-EPFL

@Dao
interface MyDatabaseDao {

 @Insert
 fun insert(myTableRow: MyEntity)

@Query("SELECT * from my_table WHERE myId = :key")
fun get(key: Long): MyEntity?

}

§ Room databases are accessed by the app (e.g. ViewModels)
using methods defined in DAOs

§ DAOs provide mapping between Kotlin methods and SQL queries
• DAOs are interfaces à the implementation of methods is generated by Room

 based on SQL code

11

@Insert, @Update, @Delete
à convenience methods,

do not require any extra code

Arbitrary queries
are defined with @Query

© ESL-EPFL

@Database(entities = [MyEntity::class], ...)
abstract class MyDatabase : RoomDatabase() {

abstract val myDatabaseDaoInstance: MyDatabaseDao

companion object {
fun getInstance(context: Context): MyDatabase {

...

}
}

}

§ Class annotated with @Database
§ Only one instance needed for the app à Singleton
§ getInstance() to either grab a handler of existing database, or create one

12

Entities used by the database

DAOs used by the database

getInstance() method in
companion object

© ESL-EPFL

class MyViewModel(
val databaseDao: MyDatabaseDao,
application: Application) : AndroidViewModel(application) {

 ...

private fun fun1(key: Long): MyEntity? {
return databaseDao.get(key)

}

§ Ultimately, databases should be accessed

• get an handler to the DB instance

§ We can now access the DAO methods

13

DAO

DAO
method
(query)

val dataSource = MyDatabase.getInstance(application).myDatabaseDaoInstance

© ESL-EPFL

@Dao
interface MyDatabaseDao {

@Query("SELECT * from my_table WHERE myId = :key")
suspend fun get(key: Long): MyEntity?

}

§ Accessing database can be slow à delegate it to coroutines!

1. mark DAO methods as suspend

2. launch coroutine with the
appropriate scope

3. Call the DAO method
§ Room automatically uses

the I/O dispatcher

14

private fun longDbWork(key: Long) {
viewModelScope.launch {

myDBelement = getFunction(key)
}

}

private suspend fun getFunction(key : Long): MyEntity?
{

var myDBelement = databaseDao.get(key)
return myDBelement

}

© ESL-EPFL

§ Coroutines and Room

§ Geolocation
• GoogleMaps API
• Location system service

© ESL-EPFL 15

§ The API allows you to add maps to your app
based on Google Maps data.

§ Takes care of:
• Access Google maps servers
• Data downloading
• Map display
• Touch gestures on the map.

§ De-facto monopoly
• Alternatives: OpenStreetMap (Data), Mapbox (API)

16© ESL-EPFL

§ GoogleMaps requires an API key

• obtained from Google Cloud Console: console.cloud.google.com/

• requires a billing method, even if GoogleMap API
is free for use in GoogleMap composable
https://developers.google.com/maps/documentation/android-
sdk/usage-and-billing#mobile-dynamic

17© ESL-EPFL

https://console.cloud.google.com/
https://developers.google.com/maps/documentation/android-sdk/usage-and-billing
https://developers.google.com/maps/documentation/android-sdk/usage-and-billing

1. Add a Google map key to the app manifest XML (obtained from GoogleCloud)

2. Add a GoogleMap to the layout of the composable
in which you want to host the map
• Adding initial camera position

18© ESL-EPFL

<meta-data
android:name="com.google.android.geo.API_KEY"

android:value="YOUR_KEY_HERE" />

GoogleMap(
modifier = Modifier.fillMaxSize(),
cameraPositionState = cameraPositionState

)

val lausanne = LatLng(46.5197, 6.6323)
val cameraPositionState = rememberCameraPositionState {

position = CameraPosition.fromLatLngZoom(lausanne, 10f)
}

§ Zoom levels

• 1 à World

• 5 à Continent

• 10 à City

• 15 à Streets

• 20 à Buildings

19© ESL-EPFL

Zoom level
5

Zoom level
15

Zoom level
20

position = CameraPosition.fromLatLngZoom(lausanne, 10f)

§ Define the Map type, governing the
overall representation of the map

• Normal à Typical road map

• Hybrid à Satellite data + roads

• Satellite à Satellite data only

• Terrain à Topographic data

• None à no tiles, empty grid

20© ESL-EPFL

GoogleMap(
…
properties = MapProperties(mapType = MapType.NORMAL)

)

§ Add zoom buttons

§ Add compass
• appears when you rotate the map, or the map is not aligned to the North

§ Add myLocation button
• requires location information!

© ESL-EPFL 21

GoogleMap(
…
uiSettings = MapUiSettings(zoomControlsEnabled = true)

)

uiSettings = MapUiSettings(compassEnabled = true)

uiSettings = MapUiSettings(myLocationButtonEnabled = true)

§ Apps must advertise the use of location data

§ ...ask the user permission to use it...

§ ...and provide gradle dependencies...

22© ESL-EPFL

<manifest xmlns:android= ... >
<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />
<application> ...
</application>

</manifest>

val cameraPermissionState = rememberPermissionState(
android.Manifest.permission.ACCESS_FINE_LOCATION

)
if (!cameraPermissionState.hasPermission) {

cameraPermissionState.launchPermissionRequest()
} else {

//update UI accordingly
}

implementation("com.google.accompanist:accompanist-permissions:0.23.1")

§ Location data can be obtained
via several sources:
• GPS, WiFi, Cell tower…

§ Google provides a FusedLocationProvider system service
• Provides best position estimate, without having to explicitly manage different sources

23© ESL-EPFL

fusedLocationProviderClient = LocationServices
 .getFusedLocationProviderClient(context)

private fun getDeviceLocation() {
try {

fusedLocationProviderClient.lastLocation
.addOnCompleteListener(this) { task ->

if (task.isSuccessful) {

lastKnownLocation = task.result
if (lastKnownLocation != null) {

... //Do something with the location
 }
 }
 }
 } catch (e: SecurityException) {
 Log.e("Exception: %s", e.message, e)
 }
}

© ESL-EPFL 24

“Location provider, get me the
last known location”

Listening for the Location
provider replay

“Here it is!”

No permission to use location
data

§ Location data is retrieved by asking the location provider
for the last known location

§ Get location information at regular intervals

1. Create a Location Request

2. Request location updates to the fusedLocationProvider

25© ESL-EPFL

val locationRequest = LocationRequest.create()
locationRequest.interval = 10000
locationRequest.fastestInterval = 5000
locationRequest.priority = LocationRequest.PRIORITY_HIGH_ACCURACY

fusedLocationProviderClient
.requestLocationUpdates(

locationRequest, locationCallback, Looper.getMainLooper())

26© ESL-EPFL

private lateinit var locationCallback: LocationCallback

override fun onCreate(...) {
 ...

 locationCallback = object : LocationCallback() {
 override fun onLocationResult(locationResult: LocationResult?) {
 locationResult ?: return
 for (location in locationResult.locations){
 // Update UI with location data
 // ...
 }
 }
 }
}

3. Implement the callback
à what to do when data is received

§ Add a map to ExcerciseLiveScreen
• Showing the user’s current location

§ Implement a Room database on the watch
• storing and retrieving Heart Rate data

27© ESL-EPFL

Questions?

28© ESL-EPFL

