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EE-465 INVERTER STAGE

Wewill look into:
▶ 2L VSI operating principles
▶ Carrier-based PWM
▶ Zero-sequence injection principles
▶ Othermultilevel topologies
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Figure 1 PV double-stage grid connected converter.
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3-PHASE 2-L INVERTER

▶ Obtained by combining 3× 2-L phase-legs
▶ N andO are not connected together! - but can be used as references for various calculations
▶ 3-phase load can be brought in only a limited number of configurations
▶ 3-phase 2-level inverter has only 8 switching states (configurations)
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Figure 2 (a) 2L three-phase inverter scheme and (b) 23 = 8 switch combinations.
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3-PHASE 2-L INVERTER

Table 1 Instantaneous phase to neutral and commonmode voltages for all 8 space vectors,
assuming identical phase impedancesZ .

sA sB sC vAN vBN vCN vNO

V0 0 0 0 0 0 0 −VDC/2
V1 1 0 0 2VDC/3 −VDC/3 −VDC/3 −VDC/6
V2 1 1 0 VDC/3 VDC/3 −2VDC/3 VDC/6
V3 0 1 0 −VDC/3 2VDC/3 −VDC/3 −VDC/6
V4 0 1 1 −2VDC/3 VDC/3 VDC/3 VDC/6
V5 0 0 1 −VDC/3 −VDC/3 2VDC/3 −VDC/6
V6 1 0 1 VDC/3 −2VDC/3 VDC/3 VDC/6
V7 1 1 1 0 0 0 VDC/2
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Figure 3 Voltage synthesis capability for a 2-L 3-ph inverter.
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SQUARE-WAVE (SIX-STEP) OPERATION FOR 2-L INVERTERS

▶ Leg voltage is a simple square-wave type - contains all odd harmonics
▶ Only the active vectors are used (6 out of 8)
▶ Each leg is driven by 180° pulse, 120° delay between the phase-legs
▶ It is described by a geometric progression. In phase a, the voltagewith respect to the

negative bus terminal is:

vA(t) = VDC
2
π (π

4
+
1
3
sin(3ω0t) + 1

5
sin(5ω0t) + . . . )

▶ Themagnitudes of the harmonics are ∥v[k]∥phase = VDC
2
π
1
k
, k ∈ {1, 3, 5, . . . }

▶ Line-to-line voltage can be determined by subtracting phase voltages, leading to
cancelation of triplen harmonics: vAB (t) =
VDC

2
√
3

π (sin(ω0t + π/6) + 1
5
sin(5ω0t − π/6) + 1

7
sin(7ω0t + π/6) + . . . )

▶ Themagnitudes of the harmonics are ∥v[k]∥line = VDC
2
√
3

π
1
k
, k ∈ {1, 5, 7, . . . }

▶ Inverter does frequency control / voltage control through external DC link control
▶ M = 4/π ≃ 1.27
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SINUSOIDAL PWM - SPWM

▶ Normally, wewant sinusoidal line-to-line voltages
▶ Fundamental three-phase reference signals:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

v
⋆
a = Vm cos(ωt)

v
⋆
b = Vm cos(ωt − 2π/3)

v
⋆
c = Vm cos(ωt + 2π/3)

▶ Themodulation index is defined asM = Vm

VDC/2
▶ It relates the output peak phase voltage andVDC

▶ Reference normalization:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
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OVERMODULATION

▶ Normally, we have carrier bounded to±1 range
▶ SPWM is bounded byMmax = 1, else low-order harmonics

appear
▶ Non-triplen harmonics are difficult to filter out (low filter cut-off

frequency required, means large filters!)
▶ In theworst case, it becomes six-step (square-wave)

modulation
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ZERO-SEQUENCE INJECTION

▶ Frompower systems theory for three-phase system (ifω = cst): there exists a linear decomposition into positive, negative and zero
sequence of balanced (with same amplitude) symmetrical components (with±120° shift)

▶ In star-connected systems, no zero-sequence current can flow→ degree of freedom to be used for extending the DC bus utilization,
i.e. allowMmax > 1

▶ Zero-sequence component is obtained as:mzs = (ma +mb +mc)/3
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Figure 4 (a) no zero-sequence signal and (b) zero sequence signal, with line-to-line voltage preservation.

EE-465 October 17, 2022 Power Electronics Laboratory | 8 of 22



ZERO SEQUENCE SIGNAL INJECTION

▶ The zero-sequence injection is defined as: ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ma = M cos(ωt) +mzs

mb = M cos(ωt − 2π/3) +mzs

mc = M cos(ωt + 2π/3) +mzs

▶ The harmonic distortionwill be reduced, as no low-order non triplen harmonics are injected, contrary to the six-stepmodulation
▶ The zero-sequence signal doesn’t appear in the line-to-line voltages as the triplen harmonics cancel each other: vAB = vAN − vBN

▶ No zero-sequence current will flow in star-connected loads
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Figure 5 Zero-sequence injectionmethods illustration: (a) sinusoidal PWM, (b) third harmonic injection and (c) min/max injection.

EE-465 October 17, 2022 Power Electronics Laboratory | 9 of 22



THIRD HARMONIC INJECTION

▶ The third harmonic is the lowest triplen harmonic. It might very
likely have the largest impact.

▶ Let b the relative amount of third harmonic that wewant to add
to the fundamental

▶ Taking phase a as exampled:
m

⋆
a = M cos(ωt) + bM cos(3ωt)

▶ Extreme of the function is found by equalizing the derivative to
0:

dma

dt
= −Mω sin(ωt) − b3Mω sin(3ωt) = 0

b = −
sin(ωt)

3 sin(3ωt)
▶ The peak of themodulating signal is found atωt = π/6
▶ Result: b = −

sin(π/6)
3 sin(3π/6) = −

sin(π/6)
3

= −1/6
▶ At peak value:
Mmax cos(ωt) + bMmax cos(3ωt) = 1 → Mmax =

1
cos(π/6)

▶ The increase is around 15%:Mmax =
1

cos(π/6) = 2√
3
≈ 1.15
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MIN/MAX SIGNAL INJECTION

▶ It is not convenient to inject a third harmonic, as themagnitude and
frequency of the reference signal cannot be directly determined
from the instantaneous sampledmodulation index references

▶ The harmonic content is an infinite sum of odd triplen harmonics!
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Figure 6 Min/max zero-sequence injection: (a) analog scheme and
(b) digital PWM.
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DISCONTINUOUS PWM - DPWM

▶ Depending on the load type (resistive, inductive, capacitive),
switching losses (∼ v ⋅ i) are highwhen the load current is large

▶ Discontinuous PWMavoids switching for a certain time in a
period (2× 60°)

▶ That region has to be adapted depending on the load type
▶ Mmax = 2/√3
▶ Not switching = clamping one phase voltage toVDC or 0

−1

−0.5

0

0.5

1

V Z
[p
.u
.]

−2

−1

0

1

2

R
lo
ad

[p
.u
.]

−1

−0.5

0

0.5

1

RL
lo
ad

[p
.u
.]

0 100 200 300
−2

−1

0

1

2

θ [°]

RC
lo
ad

[p
.u
.]

Figure 7 Load types: resistive (current in phase), inductive (current lagging)
and capacitive (current leading).
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DISCONTINUOUS PWM - DPWM
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Figure 8 Discontinuous PWMclamping regions: (a) DPWMMIN, (b) DPWMMAX, (c) DPWM0, (d) DPWM1, (e) DPWM2 and (f) DPWM3.
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DISCONTINUOUS PWM - DPWM

0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1

Time [p.u.]

va v
⋆
a vzs

(a)

0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1

Time [p.u.]

va v
⋆
a vzs

(b)

0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1

Time [p.u.]

va v
⋆
a vzs

(c)

0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1

Time [p.u.]

va v
⋆
a vzs

(d)

0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1

Time [p.u.]

va v
⋆
a vzs

(e)

0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1

Time [p.u.]

va v
⋆
a vzs

(f)

Figure 9 Discontinuous PWM,M = 1: (a) DPWMMIN, (b) DPWMMAX, (c) DPWM0, (d) DPWM1, (e) DPWM2 and (f) DPWM3.
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HARMONIC DISTORTION FACTOR - HDF

▶ Figure ofmerit for harmonic losses caused by switching harmonics
▶ DPWMschemes allow for effective increase of switching frequency of 1.5 times of CPWM
▶ Switching losses of CPWMandDPWMcan bemaintained at the same level
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Figure 10 HDF plot for: (a) fsw,CBPWM = fsw,DPWM and (b) fsw,CBPWM = 2fsw,DPWM/3.
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EFFECTIVEMODULATION INDEX

▶ In overmodulation region (M > 1 for SPWMorM > 2/√3 for zero-sequence injectionmethods), the real modulation index (i.e.
fundamental term of the Fourier series) is not anymore given by a linear expression

▶ The effectivemodulation index saturation at 4/π (six-stepmodulation)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2/√3
4/π

M

Ef
fe
ct
ive

M

SPWM

Min/max

Figure 11 Effectivemodulation index in linear and overmodulation regions.
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MULTILEVEL CONVERTERS

▶ Advantages
▶ Higher DC link voltage accessible with same semiconductor

technology
▶ Improved resolution/quality of the output voltagewith lower fsw

▶ Drawbacks
▶ Higher complexity in themodulator
▶ Device failure

▶ Examples of three-level topologies
▶ 3L Neutral Point Piloted (Holtz 1977)
▶ 3L Neutral Point Clamped (Nabae 1981)
▶ 3L Flying Capacitor (Meynard 1992)

▶ Can be extended to > 3-L
▶ Intermediate voltage levels must be kept balanced
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Figure 12 Multilevel phase-legs: (a) 3L NPP, (b) 3L NPC and (c) 3L FC.
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MULTILEVEL CONVERTERS
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MULTILEVELMODULATIONMETHODS

▶ One carrier assigned per pair of complementary switches
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Figure 13 Multilevel PWMmethods illustrated for the5L case forfsw = 24fg : (a) PD-PWM→ all carriers in phase, (b) APOD-PWM→ 180° shift betweencarrier
bands and (c) POD-PWM→ 180° shift between the carrier above and below 0.5.
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3-L INVERTERWAVEFORMS

▶ PD-PWM is the best multilevel PWMmethod (cf. line-to-line voltagewaveforms)
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Figure 14 Typical waveform for a 3L NPC inverter, VDC = 800V, fsw = 450Hz, S = 50 kVA, ϕ = π/6, asymmetrical sampling: (a) PD-PWM and (b)
APOD-PWM (POD-PWM is identical to APOD-PWM for 3L).
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CASCADED H-BRIDGE

▶ Enhanced reliability (operationwith failed cells possible)
▶ Extension to higher voltages

▶ Series-connection of LV cells
▶ Externally supplied series-connected cells (McMurray 1969)
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Figure 15 Operation waveforms for vg,ll = 6 kV, S = 1 MVA, ϕ = π/6,
Ncells = 3, fsw,IGBT = 500Hz, PS-PWM, bipolar modulation for the cell.
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Figure 16 CascadedH-bridgewith externally supplied cells (Robicon drive).
Unidirectional power flow!
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MODULARMULTILEVEL CONVERTER

▶ Avoid large bulky transformer(s) of CHB
▶ ForMV andHV applications

▶ HVDC, grid support & frequency support (STATCOM), frequency
conversion (rail interties), MV drives, shaft generator, etc.

Figure 17 HVDC hall fromSiemens.
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Figure 18 Double-star modular multilevel converter (Marquardt 2002).
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