

EPFL STI – SEL

Téléphone : +4121 693 13 46

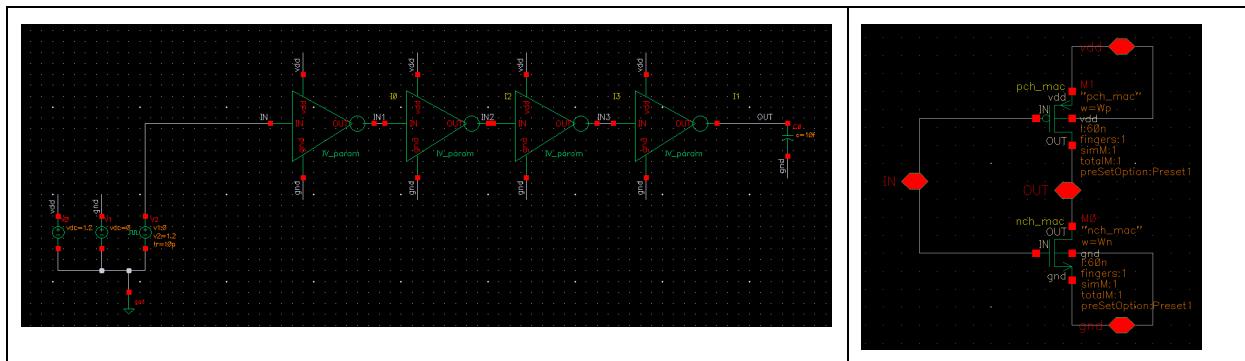
ELG

Fax :

Station n° 11

E-mail : alexandre.levisse@epfl.ch

CH-1015 Lausanne

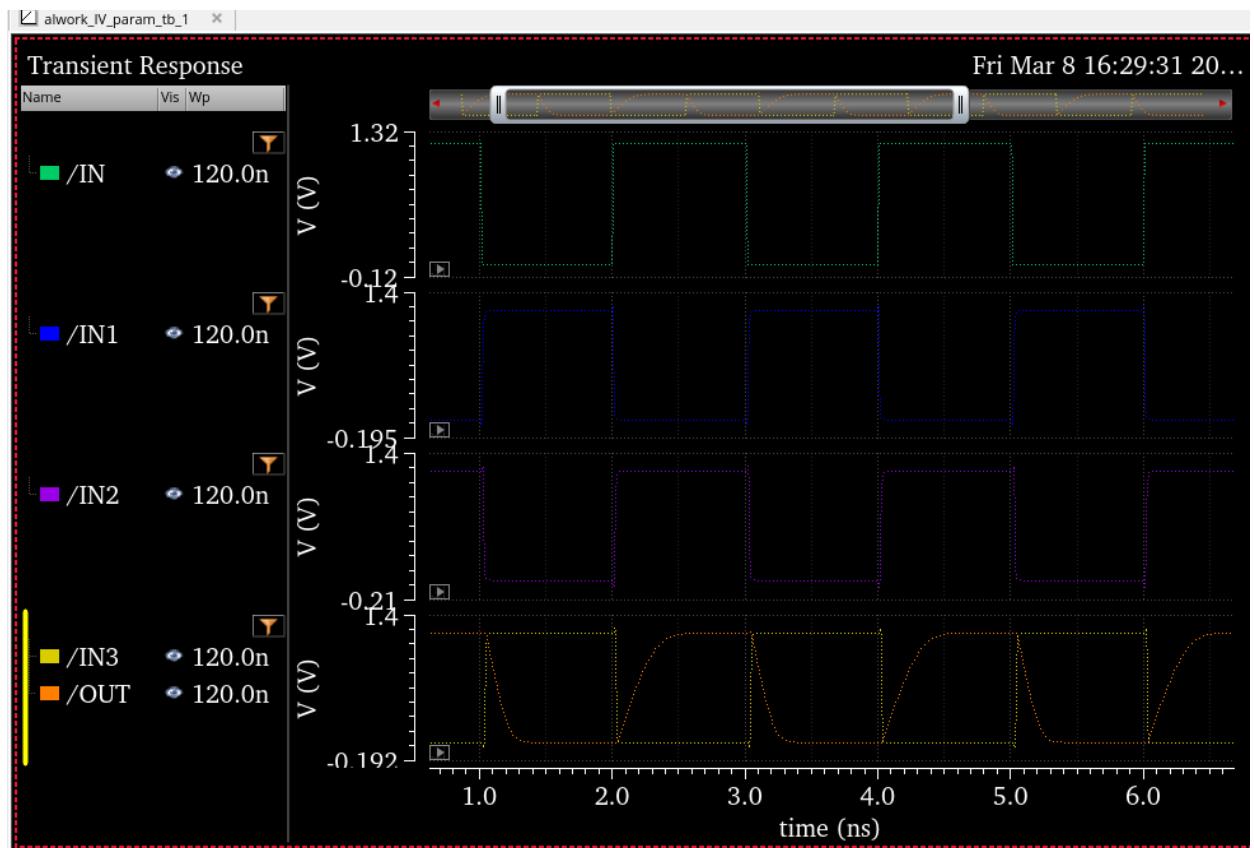

Advanced VLSI-2023/2024

SEL February 2024

Advanced VLSI design How to properly size a design using Virtuoso and ADE?

1. SETTING UP THE DESIGN UNDER TEST

Here, for the example, we consider a simple chain of inverters in 65ll UMC CMOS technology.


Each inverter is composed of 1pmos and 1nmos transistor (here we use nch_mac and pch_mac). We set the nmos and pmos W parameter to Wn and Wp respectively.

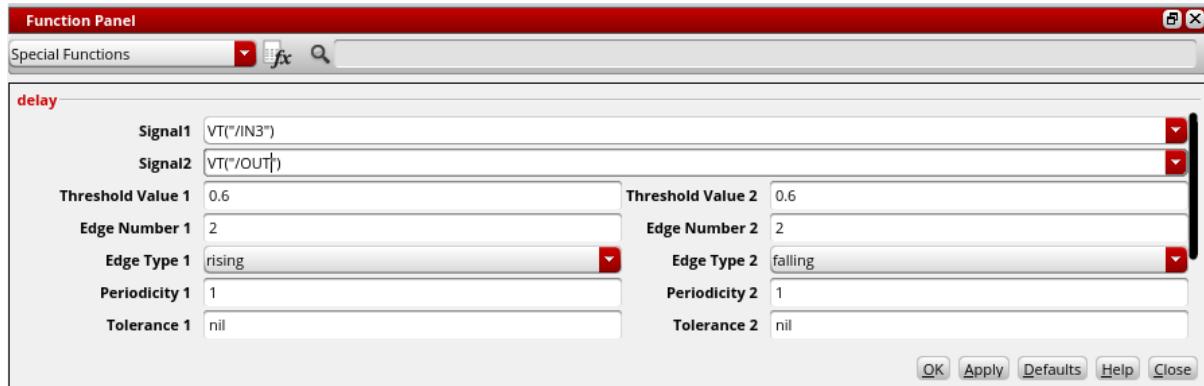
The input source (IN) generates a 50% 1ns period square signal between 0 and 1.2V with a rise and fall time of 10ps. The output capacitor is 10fF, and we chain several inverters to avoid capacitive coupling with the input signal.

Special teacher tips: We generally advise to use “mac” devices for mos transistors as they have 4 terminal and the designer has explicit control over the bulk. In non-mac mos devices, the bulk terminal is generally connected to GND!/VSS! or VDD! using a global variable. Explicit declaration is always a good way to not make mistakes.

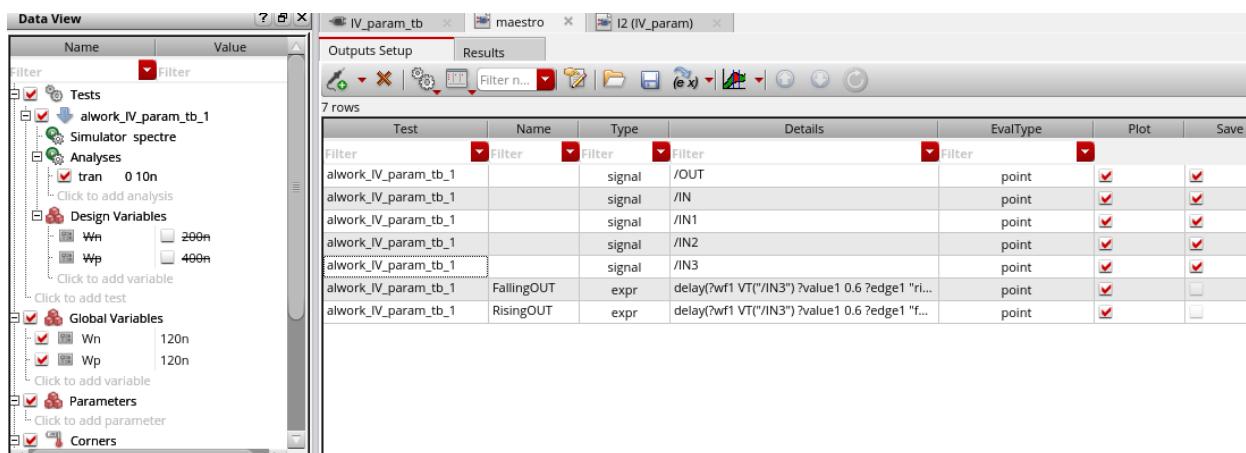
Create an ADE assembler view for it, set measures probes on IN, IN1, IN2, IN3 and OUT signals. Set a 10ns transient analysis. Define global variables Wn and Wp to 120n (no need to put the unit there – it’s obviously meters). Run the simulation and check that everything works properly.

Here we are particularly interested in the transmission time through the last inverter. So the delay between IN3 and OUT.

Open the calculator (tools > calculator) and use the special function delay to extract the time transmission time of the last inverter (I3) on the second rising and falling edges of OUT (here we are checking the transition at 2ns and 3ns). Call these expressions FallingOUT and RisingOUT. As we are characterizing an inverter, so one signal is falling while the second is rising (and inversely).


Special teacher tips: when measuring a timing, power or energy from a transient simulation, it is a good practice to not take the first switching. Typically a transient analysis starts from the state to which the DC analysis converged to. One has no guarantee that the resulting state is correct and that no nodes are stuck in some metastable states. Running a few cycles is never bad to reach some kind of “steady state” situation. Also, the measurement conditions one may want to reach are rarely the ones from the dc analysis.

Here is an example of expression :


```
delay(?wf1 VT("/IN3"), ?value1 0.6, ?edge1 "rising", ?nth1 2, ?td1 0.0, ?tol1 nil, ?wf2 VT("/OUT"),
?value2 0.6, ?edge2 "falling", ?nth2 2, ?tol2 nil, ?td2 nil, ?stop nil, ?multiple nil)
```

here we consider 50-50 at 0.6V

and the corresponding calculator window :

Here is a few of the ADE assembler view with all the signals and expressions.

Run the simulation and check the timing you get for the falling and rising times. With such an unbalanced sizing (120nm for both Wn and Wp), you should get a much slower rising than falling as the pmos is much weaker than the nmos. Something around 90ps for falling and 150ps for rising.

2. DEFINING TARGETS

In the FallingOUT and RisingOUT expressions, define timing targets at <50ps.

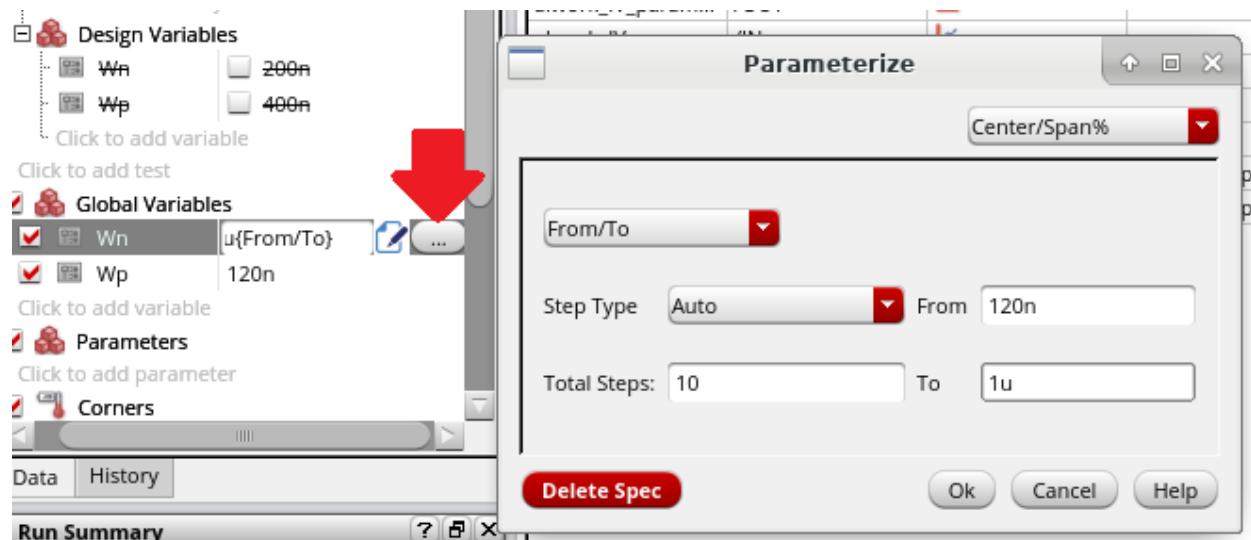
Test	Name	Type	Details	EvalType	Plot	Save	Spec	Weight
Filter	Filter	Filter	Filter	Filter	Filter	Filter	Filter	Filter
alwork_IV_param_tb_1		signal	/OUT	point	✓	✓		
alwork_IV_param_tb_1		signal	/IN	point	✓	✓		
alwork_IV_param_tb_1		signal	/IN1	point	✓	✓		
alwork_IV_param_tb_1		signal	/IN2	point	✓	✓		
alwork_IV_param_tb_1		signal	/IN3	point	✓	✓		
alwork_IV_param_tb_1	FallingOUT	expr	delay(?wf1 VT"/IN3") ?value1 0.6 ?edge1 "ri...	point	✓	✓	< 50p	
alwork_IV_param_tb_1	RisingOUT	expr	delay(?wf1 VT"/IN3") ?value1 0.6 ?edge1 "f...	point	✓	✓	< 50p	

Note how both of them are in red and marked as failed in the results panel after you run the simulation

Outputs Setup Results

Detail Filter n... Replace (None)

7 rows


Test	Output	Nominal	Spec	Weight	Pass/Fail
Filter	Filter	Filter	Filter	Filter	Filter
alwork_IV_param...	/OUT				
alwork_IV_param...	/IN				
alwork_IV_param...	/IN1				
alwork_IV_param...	/IN2				
alwork_IV_param...	/IN3				
alwork_IV_param...	FallingOUT	90.7p	< 50p		fail
alwork_IV_param...	RisingOUT	148.8p	< 50p		fail

3. RUNNING A PARAMETRIC ANALYSIS

Let's analysis Wn first.

To set a parametric analysis, define a parameter, and set a from/to analysis.

- In the dataview panel in the Wn global variable, click on the “...” button
- Click delete spec to remove the current 120nm sizing
- Select from/to in the dropdown menu, and select 10 step, auto, from 120n to 1u.

This will run 10 simulations with various sizes of Wn from 120nm to 1u.

In the results panel, note that the dropdown menu has a lot of options. The Detail-transpose is generally the easier to read. Here Wp is constant and Wn varies.

Point	Corner	Wn	Pass/Fail	/OUT	/IN	/IN1	/IN2	/IN3	FallingOUT	RisingOUT
1	nom	120n	fail	✓	✓	✓	✓	✓	90.7p	148.8p
2	nom	217.8n	fail	✓	✓	✓	✓	✓	59.36p	148.9p
3	nom	315.6n	fail	✓	✓	✓	✓	✓	46.77p	150.2p
4	nom	413.3n	fail	✓	✓	✓	✓	✓	39.87p	152.7p
5	nom	511.1n	fail	✓	✓	✓	✓	✓	36.06p	154.6p
6	nom	608.9n	fail	✓	✓	✓	✓	✓	33.8p	155.2p
7	nom	706.7n	fail	✓	✓	✓	✓	✓	32.04p	157.5p
8	nom	804.4n	fail	✓	✓	✓	✓	✓	30.97p	158.8p
9	nom	902.2n	fail	✓	✓	✓	✓	✓	30.09p	160.3p
10	nom	1u	fail	✓	✓	✓	✓	✓	29.51p	161.9p

Counterintuitive remarks: Note that RisingOUT increases when Wn increases (think about it 😊). And if you can't find the answer, it's in the EDALABS material session 2.

Do the same with both Wn and Wp. Note that now virtuoso has to do 100 simulations. It's a lot. One way to go faster is to run several simulations in parallel.

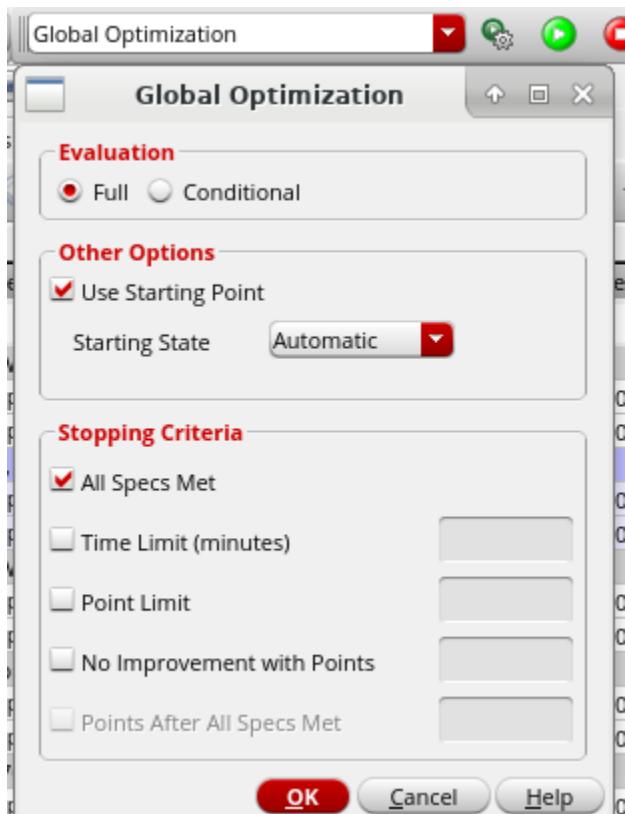
Options>Job Setup...

There you can define the number of jobs that can run simultaneously. You can put 2 in "max jobs"

Options>Run Options...

Tick "parallel"

PLEASE, be gentle with the resources. Remember that you generally work in a shared infrastructure with other users, and a limited amount of licenses.



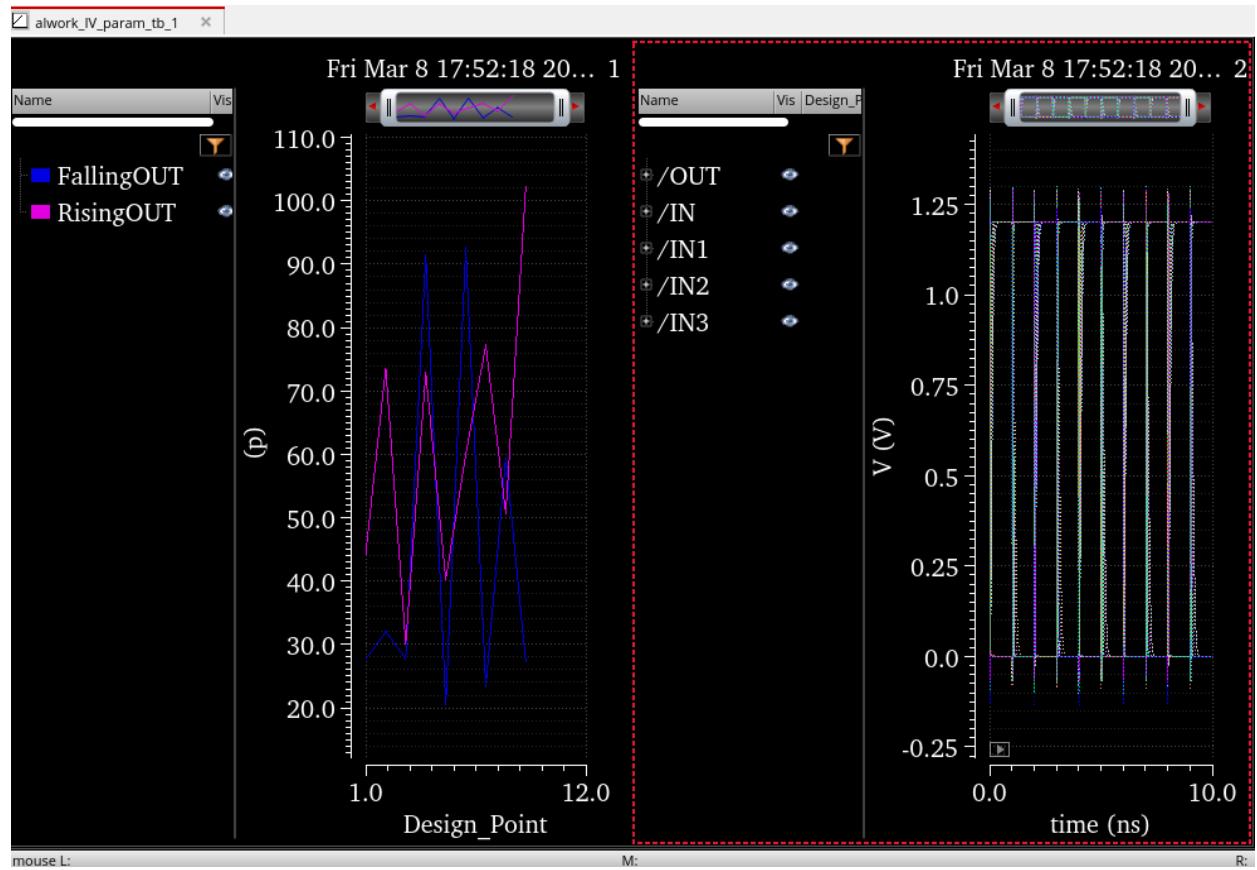
Check the result. You should find that sizes of Wn=315n and Wp=610n are good.

This highlights how design space explorations can become complex particularly when involving constraints pulling in different directions.

4. AUTOMATING PARAMETRIC ANALYSIS WITH VIRTUOSO

Virtuoso embeds an optimization tool that enables you to explore a design space faster. It does a pre-screening of the design space, identifies trends, and then try to find an optimum that matches with the defined targets. Note that you can also weight them to help it converge.

Select “Global optimization” and click on . There are many options in there, here we pick a configuration, but depending on your needs you may want :


- To change parameters
- To read about it on support.cadence.com

Selecting a starting point will force it to start from the middle of the range defined in the global variable panel (here approx. $W_p=W_n=600\text{nm}$). For the example, we updated the constraints to a range between 50p and 60ps for the target, to force the optimizer to explore the design space.

Outputs Setup		Results	
Detail - Transpose			
Filter n...		Filter n...	
Replace		(None)	
9 rows			
Point	Corner	Wn	Wp
1	nom	608.9n	608.9n
2	nom	511.1n	315.6n
3	nom	608.9n	1u
4	nom	120n	315.6n
5	nom	1u	706.7n
6	nom	120n	413.3n
7	nom	1u	315.6n
8	nom	217.8n	511.1n
9	nom	804.4n	217.8n
Pass/Fail		/OUT	/IN
Filter	Filter	Filter	Filter
fail			
pass			
fail	canceled	canceled	canceled
/IN1		/IN2	/IN3
Filter	Filter	Filter	Filter
fail			
cancel			
/IN2		/IN3	FallingOUT
Filter	Filter	Filter	Filter
fail			
cancel			
/IN3		FallingOUT	RisingOUT
Filter	Filter	Filter	Filter
27.73p	44.33p		
32.09p	73.64p		
27.71p	30.12p		
91.51p	72.95p		
20.43p	40.3p		
92.61p	60.07p		
23.37p	77.27p		
59.58p	50.68p		
cancel	cancel		

It took 8 iterations to converge to an acceptable solution, relatively similar to the one we got with a complete design space exploration.

Clicking on will show you the iterative process to converge.

