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Static CMOS Logic

• Complementary Pull-Up and Pull-Down 

network of P-MOS and N-MOS transistors

• Full rail-to-rail operation

• Good noise margin

• No static currents

• N input gate requires 2*N transistors

P-MOS
Pull-Up

N-MOS
Pull-Down



Static CMOS Logic

• Complementary Pull-Up and Pull-Down 

network of P-MOS and N-MOS transistors

• Full rail-to-rail operation

• Good noise margin

• No static currents

• One branch (NMOS or PMOS) always 

suffers from many series transistors

• P-MOS network is slow 

• P-MOS upsining adds to load

How can we remove the “redundant” P-
MOS network?



Pseudo N-MOS Logic

• Idea: avoid the redundant

P-MOS network

• Replace P-MOS network by a load with a 

relatively high impedance

▪ Ratioed circuit

• Reduces transistor count (and load) to only 

N+1 (N)

• But has several issues: 

▪ Slow Pull-Up

▪ Static Power Consumption 

▪ Non-zero VOL (resistive divider)

VDD

A

Y

2/3

4/3

How can we avoid contention between 
Pull-Up and Pull-Down



Dynamic (N-MOS) Logic

• Replace the static load with a clocked 

“Precharge” transistor

• Operation in two phases

▪ Precharge (CLK=“0”): initialize output node to “1”

▪ Evaluate (CLK=“1”): N-MOS network conditionally pulls 

down the output as needed

• Several advantages: 

▪ Only N+1 transistors (load=N)

▪ Speed determined only by N-MOS
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Dynamic (N-MOS) Logic Examples

• Only N-MOS network determines the number of stacked transistors

• Good for realizing high fan-in gates which in CMOS would have a large P-MOS stack (wide 

NORs)
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Dynamic (N-MOS) Logic Examples

• Dynamic (N-MOS) logic is particularly advantageous for high fan-in gates with large P-MOS 

stacks

Using conventional CMOS logic Domino CMOS logic

slow



Footed Dynamic Logic

• Problem of dynamic logic: contention during precharge when inputs can not guarantee that 

N-MOS network is OFF

▪ Caused by the negative-unate function of “CMOS” gates
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Footed Dynamic Logic

• Footed Dynamic logic avoids contention 

during precharge (independent of the 

input)

• Adds one extra transistor

▪ N+1 => N+2

▪ No impact on the input load

▪ But, additional series resistance in pull-down path

▪ Additional load on clock network

• Necessary also always when cascading 

CMOS with dynamic logic
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Footed Dynamic Logic (Example)

• Operation based on precharging and evaluating

▪ Clock = low  :  The pMOS charges the output node

▪ Clock = high :  Logic high -> Vout remains

Logic low -> Vout drops

( )1 2 3 1 2F A A A B B= +



Monotonicity Problem

• Footed dynamic logic does not solve all the issues!

• During evaluation, inputs must be monotonically rising

▪ Output can only have a single falling transition (no P-MOS network for pull-up)
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Cascading Dynamic Logic

• Output of any (also footed) dynamic (N-MOS) gate starts HIGH and conditionally falls 

(monotonically FALLING), while inputs must be monotonically RISING

• Example: 1st and 2nd stages evaluate at the same time

→ Precharge output Vout1 discharges Vout2

→ When Vout1 evaluates to “0”, Vout2 can not rise anymore

→ Vout2 at the end of the evaluation phase will be erroneous



Cascading Dynamic Logic

• Problem: Unexpected discharge in Vout due to the propagation delay of the previous stage

• Solution: Delay precharge and evaluation until output of previous stage has settled
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Footed Domino Logic

• Problem: Unexpected discharge in Vout due to the propagation delay of the previous stage

• Solution: ensure that the output of each gate resets to “0” during precharge

▪ Insert a static INVERTER: Vout monotonically rising

▪ Effectively work with positive-UNATE gates (instead of negative-UNATE)
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N- and P-Type Dynamic Logic

• Idea: Dynamic logic gates with monotonically RISING output
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NP-Domino Logic

• Dynamic logic stages using both nMOS and pMOS

▪ During Φ =‘0’ and ഥΦ =‘1’:

• nMOS logic pre-charge 

• pMOS logic pre-discharge 

▪ During Φ =‘1’ and ഥΦ =‘0’:

• nMOS logic evaluate (falling) 

• pMOS logic evaluate (rising)



Footed vs. Unfooted Logic

• Footer is only needed to avoid contention during pre-(dis)charge

• Domino Logic and NP-Domino Logic can be unfooted

▪ Exception: 1st stage which interfaces to conventional logic
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Leakage Currents

• Problem: output is floating during evaluation for a “1”

▪ Sensitive to any kind of coupling

▪ Leakage through OFF N-MOS network may deteriorate the logic “1”, 

especially for slow circuits

• Solution: add a keeper to 

compensate for leakage and to 

restore logic “1” level

• Only small overhead for Domino 

gates



Charge Sharing Problem

• Suppose output (C1) is precharged to “1”, but in previous cycles, C2 was discharged to “0”

▪ During evaluation, input A rises

▪ Other inputs remain “0”, keeping the gate OFF

• Charge sharing between C1 and C2 causes a drop in Vout
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Charge Sharing Problem

• Solution: precharge also critical (highly capacitive) internal nodes

▪ More transistors

▪ Increases the clock load

▪ Increases the intrinsic output load 

(additional delay)
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Charge Sharing Problem

• Simulation results

(a) w/o additional pMOS (b) w/ additional pMOS precharge Tr.
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Clock Feedthrough

• Capacitive coupling from clock to floating (output) node => negative impact 

on speed
▪ Rising clock turns off precharge transistor and raises floating node through capacitive coupling

▪ Falling clock edge lowers floating node through coupling while precharge transistor is not yet conducting

Impact beyond 
VDD and GND!



Multiple-Output Domino Structure

Multiple-output domino CMOS 
structures

multiple-output domino 
gate realizing 4 functions 

1 1 1 0C G PC= + 2 2 2 1 2 1 0C G P G P PC= + +

3 3 3 2 3 2 1 3 2 1 0C G PG P P G P P PC= + + +

4 4 4 3 4 3 2 4 3 2 1 4 3 2 1 0C G P G P PG P P P G P P P PC= + + + +

Needed!

𝐶2 = 𝐺2 + 𝑃2𝐶1𝐶1 = 𝐺1 + 𝑃1𝐶0



Sizing

• Precharge transistor (P-MOS): size to complete precharge in time (generally small) before 

the evaluation phase

• nMOS sizes should be increased from top to bottom   to lead a better transient performance

(a) Four-input domino 
CMOS NAND gate

(b) Stick-diagram layout



Clocking

• Most clocks have a 50/50 duty cycle

▪ Dynamic logic: 50% of cycle wasted for precharge

• Solution: changing the duty cycle (pulsed clk)

▪ Allocate only the necessary time for precharge

▪ Tradeoff: shorter precharge -> larger precharge transistors -> more power, stronger clock drivers, more 

intrinsic capacitance on output node

▪ Caveat of pulse generation: quality of short pulses, propagating pulses through clock network, control over 

pulse width (variation)
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Logic Effort with NP Domino

• Logical Effort Model can be applied roughly

▪ Remember: Logical-effort 𝑔 =
𝐶𝐼𝑁
𝑔𝑎𝑡𝑒

𝐶𝐼𝑁
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Logic Effort with NP Domino

• Logical Effort Model can be applied roughly

▪ Remember: Logical-effort 𝑔 =
𝐶𝐼𝑁
𝑔𝑎𝑡𝑒
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Logic Effort with NP Domino

• Logical Effort Model can be applied roughly

▪ Remember: Logical-effort 𝑔 =
𝐶𝐼𝑁
𝑔𝑎𝑡𝑒
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