Advanced VLSI

Intro to Computer Arithmetic

2025

Arithmetic Circuits:

m Core of every digital chip
Arithmetic circuits are the heart of digital chips.

m Determine the performance of the system
The performance of digital chips is dictated by the arithmetic
circuits. If the arithmetic circuit is optimized, performance
Improves.

m Opportunities for improvement

New algorithms require novel combinations of arithmetic
circuits. There is always room for improvement.

Adding Multiple Digits

Dndwdy- {wdg- i1y
0515151§05051§051§l 0
0i0ilitfoilitioitio 1

p
Ly -1
19:1:8:
+aisizd s
1 355
Decimal
.

10101001011
Binary

Similar to Decimal Addition

m Starting from the Least Significant Digit, each digit is added.

m [he carry of one digit is added to the digits on the right

_ cull The full adder is
Cin— adder —Cout TI—!E.essentiaI
I building block for
Sum almost all critical
datapath operations!
S=A®B®C;

= AI§(_3i +AB(_3i +,5\I§Ci + ABC

CO = AB+BCi +ACi

useful for reducing

S =ABC + (A+B+C) C_O circuit complexity !

Ripple Carry Adder

A B
l l
C,~— RCA — G,
l
S

Curse Of The Carry

The most significant output of the adder depends on
the least significant inputs.

n+1 stages

I o I A .. | e I
e o o <JFA FA C

Carry Propagation

m [he carry signal has to propagate from LSB to MSB
m Fortunately, this case is rare

Carry-Propagate Adders

¢ Add two n-bit operands A and B and an optional carry-in
¢in by performing carry-propagation [1, 2, 11]

& Sum (Cout, S) is irredundant (n + 1)-bit number

(Couts S) = Coui2™ + S = A+ B+ ¢

A B
201+ s8i=a;+ b +¢;;

1=0,1,...,n—1 * ¢
< CPA |a—

Y

S

Co = Cin » Cout = Cn (TMLA) | coy

Carry-Propagate Adders

Ripple-carry adder (RCA)

e Serial arrangement of n full-adders

e Simplest, smallest, and slowest CPA structure

A=7Tn, T =2n, AT = 14n’

an.1 bpg a; by ap by
v ty vy
< FA4—---—-———FA «—— FA —
Cy c

Rl T

Sp.q S1 Sp

Carry-Propagate Adders

Carry-propagation speed-up techniques
a) Concatenation of partial CPAs with fast ¢;,, — Cout

anp-1; Dn-1 aj.1:x bi1x ax-1:0 Dk-1:0

NNNE TN

«— (CPA - -— CPA CPA f=—
Cout Cj Ci Ck Cin
YooYy
Sn_?'_-lr' ! ! Sll'. 1:k ! Sk‘ 1:0

Basic idea: try to do the carry propagation quickly,
iIndependently of the result for each bit and then enter
the fast carry into partial adders which operate otherwise
iIndependently on parts of the sum

Full Adder Revisited

Carry Propagation
Consider the path C; — C,:

m If A=1 and B=1
A carry is generated no matter what
the value of carry input (C,) is.

Generate = G = A-B C_ ~— FA C
m If only A=1 or B=1
The value of the carry input (C,) is
S

propagated to the carry output.

Propagate = P = A& B

10

Carry

A B C; hY C, statiis

0 0 0 0 0 delete

0 0 1 1 0 delete

0 1 0 1 0 propagate
0 1 1 0 1 propagate
1 0 0 1 0 propagate
1 0 1 0 1 propagate
1 1 0 0 1 generate
1 1 1 1 1 generate

11

Full Adder with Propagate and Generate

Alternative Formulation
The Full Adder functionality can
be expressed by using the 1
Propagate (P) and Generate (G) N
signals: U

G = A-B G P

P = A¢B C, J/ c

S = P& =

Co — G+ (POE) ?
Area model: S

3 simple gates (1x) and 2 complex (XOR) gates (2x) => 7
Delay model: 2 simple gates AB->CO => 2
12

Carry-Propagate Adders

13

Analysis of carry propagation

Sum digit in radix r S = (X+Yy,+c)modr
Special case of radix 2 S = X @Y D¢

Computing the carries is thus our central problem

For this, the actual operand digits are not important

What matters is whether in a given position a carry is
generated, | |propagated,| or |annihilated kabsorbed)

g =% Y P =X ®Y, g =X Yi|= X +Y,

14

Carry-Skip Adders

F)O Gl I:)0 Gl F:‘2 GZ P3 GS
\ 2 . vy 3 vy 3 vy 3
Ci,O Co,o Co,l C0,2 CO,S
—| FA » FA » FA o FA >
F)O Gl I:)O G1 F)2 GZ F)3 3
L 1l 1l BP=P P,P,P,
Ci,O Co,O Co,l C:0,2
» FA FA » FA |—| FA |—» §
%_ Co,3
E
N >

ldea: If (PO and P1 and P2 and P3 =1)
then C,3 = Cy, else “kill” or “generate”.

15

Carry-Skip Adders

Bit 0-3 Bit 4—7 Bit 8—11 Bit 12-15
Setup l tsetup Setup f Setup Setup
bypass
L gy U)
™\ N N ™
Carry Carry Carry Carry

‘ propagation |_>propagation+ rpropagation+ propagation+

. | .
\/ L U L u L \/ -

Sum Sum Sum toum l Sum

M bits

N
Ladder = tsetup + Mtcarry + (M - 1) tbypass + (M - 1)tcarry T tsum

16

Carry-skip adder (CSKA)

e Type a) : partial CPA with fast ¢, — ¢;

Ci = E‘—l:kﬂi + P;_1.xcp, (bit group (ﬂh‘—l} I Gk))
Py = pi—1pi—2 - i (group propagate)

¢ 1) P_i: =0: ¢, = ¢ and ¢} selected (¢} — ¢;)
2) Pi_y = 1: ¢, — ¢ but ¢, skipped (¢; — ¢;)

= path ¢;, — ¢ — ¢; never sensitized = fast ¢;, — ¢;
= false path = inherent logic redundancy = problems in
circuit optimization, timing analysis, and testing

e Variable group sizes (faster) : larger groups in the middle
(minimize delays ag — ¢ — s;_; and ap — ¢; — Sp_1)

17

e Partial CPA typ. is RCA or CSKA (= multilevel CSKA)

¢ Medium speed-up at small hardware overhead
(+ AND/bit + MUX/group)

Ax~8n, Tadn'? | AT ~ 321/

@n.15 Pp-1; ai.1:x b1k k.10 Di-1:0

'y

'y

'

CPA
-+— CPA CPA
Cout Ck
|
|
Y |
Sn-1; Si-1:k Sk-1:0

18

e Partial CPA typ. is RCA or CSKA (= multilevel CSKA)

¢ Medium speed-up at small hardware overhead
(+ AND/bit + MUX/group)

Ax~8n, Tadn'? | AT ~ 321/

@n.15 Pp-1; ai.1:x b1k k.10 Di-1:0

'y

'y

'

CPA
-+— CPA CPA
Cout Ck
|
|
Y |
Sn-1; Si-1:k Sk-1:0

19

Carry-select adder (CSLA)

Aml14n, T ~2.8n'? AT =~ 3903

ai.1k bi1k ak-1-0 br-1:0

|
l*“l

CPA |[=—
1 CPA |[=—
CPA [« | C Cin
|
551:;; sz'.l':k i
0 1 :
|
|
| Y
Si-1:k Sk-1:0

20

Carry-select adder (CSLA)

e Type a) : partial CPA with fast c;, — ¢; and ¢, — s;—1.%

Si—1:k = CrSj_1.1 T ChSi_1.k

C; = ‘kcff + ¢ie;

¢ Tiwo CPAs compute two possible results (¢;, = 0/1),
group carry-in ¢, selects correct one afterwards

e Variable group sizes (faster) : larger groups at end (MSB)
(balance delays ag — ¢ and az, — ¢})

e Part. CPA typ. 1s RCA, CSLA (= multil. CSLA), or CLA

e High speed-up at high hardware overhead
(+ MUX/bit + (CPA + MUX)/group)

21

Carry-Select Adders

Bit 0-3 Bit 4-7 Bit 8-11 Bit 12-15

Setup Setup Setup

I [|

—> ":d"Carry Je— O Carry g O Carry

L L

' Carry N Carry

=
-V
|

Sum Generation Sum Generation Sum Generation

So-3 Sa7 Sg-11

22

Analysis of carry propagation

C =01+ Ci4Pi carry
=0i1 *+ (Ji2 + Ci_oPi2)Pj_1 recurrence
= 0i—1 T Ji—2Pi—1 *+ Ci_2Pi_2Pi—1
= 0Gj-1 + 9i2Pi—1 * 9i3Pj—2Pi—1 + Ci_3Pi—3Pi—2Pi—1
= 0i—1 + 9i—2Pi—1 *+ 9i_3Pi—2Pi—1 + 9i_4Pi-3Pi-2Pi—1

+ Ci_4Pi—4Pi—3Pi—2Pj—1

93 + 92P3 + 91P2P3 + 9oP1P2P3 + CoPoP1P2P3
9o + J1P2 + 9pP1P2 + CoPoP1P2

91 + 9oP1 + CoPoP+

9o *+ CoPo

23

Carry-Lookahead Adder (CLA)

|

C ——

e

£

S

Four-bit carry network with full lookahead.

Manchester Carry Chain Circuit

VDD
¢ d d
. Oj_*d T T - q
o c,
C.
"0 GOO_I Glo_l GZO_I GSO_I
LN l l |
I I | 1
Dynamic circuit)))
Clocked operation !
C C C C

25

CLA from combined (prefix) Generate Propagate Signals

« Define individual sub-adders each comprise multiple bits
« Fore each sub-adder define propagate signal P; and a

generate signal G; G4, P; Go, Py
T 1Y ﬁ Y v
M-24 Y3124 158 .Y 15-8 -6 -0
ey Block |- €3 o s €15 —| Block ‘s Block | e,
3 1 0
uwa By = prpepspapapapipo 7o

T —_— - % — TR "] o Fal - i
Go = g7 + prge + prpegs + + prpepsPAPaP2P190
2 G _|_ .P c C8 = g7 + Prds + PrPegs + PrPePsd4 + PTPEPEPAGY + PrPeDsPAPAGD
"t' _ {] {] [:I —I—IJ?PSPSEMPEPE,GI T PTPEPSPAPIR P10 T PTPEPsP4P3P2P1P0ch

Unrolling keeps growing
the fanin and fanout ® and c1e = G + Pﬁ

P, =
leads to CLA adder — G 4 PiCo <+ P, Poco 1 = PgP9P10P11P12P13P14P15

26

Carry-lookahead adder (CLA)

e High speed-up at medium hardware overhead

Ax~14n, T ~4logn, AT ~ 56nlogn

(G15P15) - (G2Pid) (G11P11) - (GaPs) (97P7) . (QuPs) (95.P3) .. (Go.Po)

I11S 111 A 111 M 111

CLB CLB ‘C_Ig CLB *c_:; CLB --lli:r
lww gl |) | 2| oww
H}% Ci5-+Cqo 5| C11Ce S| €7+ Ca S| csco
21T

CLB [c,,

| +preprocessing : g; = a;b; , p; = a;Db;

+ postprocessing : 8; = p; B ¢;

27

—-— Block Cag o o 8 = Block | Black L, ¢y
G| P ‘ G, P, Gy [Py
cs = Go + Pocp ‘3124 15 o
cig = G1 + Pies e -
= G1+ PiGo + P1Poeg Dl r T P
€1 ‘) \‘ C1s) T3 i

Hierarchical CLAs with two levels

Objective: decompose the carry propagation into multiple
levels of logic

Keep the hierarchical structure in two levels: fanin and
fanout still grow but more slowly with each level

Vapag Vo Vis-g ¥i5-g Yoo ¥

| L

Second-level lookahead

28

Carry-lookahead adder (CLA)

3‘_3

£(48.63]
P 4863

g132.47)
Piaz.a7

ﬂa

2 [4.7] 210.3]
P 4.7 P 0.3
]

4-bit lookahead carry generator

2116.31]

[0,15]

4-bit lookahead carry generator

16-bit
Carry-Lookahead
Adder

<

21063
P [0.63)

Building a 64-bit carry-lookahead adder from 16

4-bit adders and 5 lookahead carry generators.

29

Prefix Operations

We define a set of signals

(Gﬁja Pakj)

Which define the combined Generate and Propagate signals
covering the bits from i to j at the k!’ stage.

m [heinitial Generate and Propagate signals GG; and P; will

be written as
0 0
(Gz’:?}? Pzz)

in this notation.

m [he goal is to calculate

(Gi{cz,—l:[}: Prif—l:{})

for all n, in any number of k£ stages.

30

Parallel Prefix Adders

Parallel Prefix Adders (PPA) represent a systematic
approach to designing optimized adder architectures.

m Pre-processing (P and GG generation)

m Carry Propagation Tree

m Post Processing (S generation)

31

Merging Generate and Propagate Signals

« How to merge signals from two subsequent stages

(G?UPO) — (géap) |
(Gakﬁpél:k) (Gij—ll—lﬁplj—l—l) (Gi_klﬁpl_l) ak S j S ?
(Gi:i F, J+1Gf:_kl?P :7+1 j;l)

(2

Cit1 = ;%;ZIO;...,’R—I?ZIL
Stagel — 1

i j+1 j k
Stagel

Main Parallel Prefix Operators

k-1 lrI-(-1 J k-1 j.k11 m k-1 k!l
(Gi:j :Pi:j) (Gj-1:m:Pj-1:m) (Gizi :Pi:j)

— "

(GimPim) (GimPlm) GyPy (GPY)
i'om ioj
Merge Feedthrough

At each level we have two operations

m Merge
Merges the two (P,) of adjacent bit ranges.

m Feedthrough
No operation, just copies the (P, G) signals to the next stage.

33

Prefix problem

e Inputs (2,1, ..., Zp), outputs (4n-1,..., %), associative
binary operator e [11, 13]

(y’n—li'“jyﬂ)= (mn—l e &7y, ..., T ®T, if(_]) or
Yo =20, Y =2;®Yi—;;2=1,...,n—1 (rm.a.)

e Associativity of @ = tree structures for evaluation :

ry0 (20 (1) 010)) = (230 2,) 0 (22, 020) ,but 35 ?

un =Y, Yy, u =Y,
N g RN g)
v = Y5 ys = Y3,
L > -
= I,
e Group variables Y}, : covers bits (zy, ..., x;) at level [

e Carry-propagation is prefix problem : sz = (G, P.,)

34

Basic Structure of Parallel Prefix Adders

An1Ba An2By, A, B, Ao By
— — Preprocessing
HA HA e o o HA FA C,,
Gyy [Poi |Ger [P 6, [P 16 [P
i : : e oexzt® " i
R Oarry Propagatton s
--------- (Paraﬂel—Pref:x Log:g:)
Postprocessing
GOLI ------- L [] ® — — +
| Cry Cne C, C,
l i A Y
Sh1 Sn2 S, S,

35

Example: Ripple Carry Adder (PPA-RCA)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0
1
2

s

PPA Performance Metrics

The following parameters define the performance
m Number of Black Dots

Determines the area, since only the Merge cells contain logic:

(G

zm?)

k— f— k— k— k—
= (G + P - Gio Pt PR)
m Number of Stages
Determines the critical path —

fewer stages result in a faster the adder.

m Maximum Fan Out
Determines the per stage delay.
Cells with a higher fan out will be slower.

37

15 14 13 12 11 10

| .I:...I:.:.ﬂ....I:.:
;fxt-f- g: f

1 felelole
11T T felelelelelele)e

I)Ifr‘.
=AY
==
- -
- =AM
= AAH-ANE
A=A
==

Performance Summary

Adder || Area | Speed | FO ~ A, ~ T ~ FOpnax
RCA | small | slow | min n—1 n—1 2
SK large | fast | high 5 logn log n 5
BK med med | med | 2n —logn | 2logn — 2 logn
KS huge | fast min nlogn log n 2
HC large | fast | min 5 logn logn +1 2
CIA || med | med | med | 2n — 2/n 2\/n 2\/n

The formulas above are approximations

Some adders (KS, HC) have long connections, that are sometimes
hard to route, their post layout results differ.

44

Some observations

m RCA is a very efficient adder
It is by far the smallest and simplest adder, especially for small
bit sizes it is not too slow either.

m BK offers good compromise
Traditional Carry Look-Ahead Adder (CLA) is BK with 4-bit

groups.

m SK suffers from high fan-out
In theory it is very fast, but the large fan out make it difficult
to implement.

m KS and HC are very fast, but suffer from routing
These are very large and fast adders, routing is a serious
problem.

45

Simple Rule For Optimizing Parallel Prefix Adders

0
——
1 Faster 1
2
3 ? Smaller

46

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

